1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
// Copyright 2018 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use std::collections::btree_map;
use std::collections::BTreeMap;
use base::pagesize;
use crate::address_allocator::AddressAllocator;
use crate::address_allocator::AddressAllocatorSet;
use crate::AddressRange;
use crate::Alloc;
use crate::Error;
use crate::Result;
/// Manages allocating system resources such as address space and interrupt numbers.
/// MMIO address Type
/// Low: address allocated from low_address_space
/// High: address allocated from high_address_space
#[derive(Copy, Clone, PartialEq, Eq)]
pub enum MmioType {
Low,
High,
}
/// Memory allocation options.
#[derive(Copy, Clone, Debug)]
pub struct AllocOptions {
prefetchable: bool,
max_address: u64,
alignment: Option<u64>,
top_down: bool,
}
impl Default for AllocOptions {
fn default() -> Self {
AllocOptions::new()
}
}
impl AllocOptions {
pub fn new() -> Self {
AllocOptions {
prefetchable: false,
max_address: u64::MAX,
alignment: None,
top_down: false,
}
}
/// If `true`, memory may be allocated in a prefetchable/cacheable region.
/// If `false`, memory must be allocated within a non-prefetechable region, appropriate for
/// device registers.
/// Default: `false`
pub fn prefetchable(&mut self, prefetchable: bool) -> &mut Self {
self.prefetchable = prefetchable;
self
}
/// Largest valid address for the end of the allocated region.
/// For example, `u32::MAX` may be used to allocate a region that is addressable with a 32-bit
/// pointer.
/// Default: `u64::MAX`
pub fn max_address(&mut self, max_address: u64) -> &mut Self {
self.max_address = max_address;
self
}
/// Minimum alignment of the allocated address.
/// Default: `None` (allocation preference of the address allocator pool will be used)
pub fn align(&mut self, alignment: u64) -> &mut Self {
self.alignment = Some(alignment);
self
}
/// If `true`, prefer allocating from the upper end of the region rather than the low end.
/// Default: `false`
pub fn top_down(&mut self, top_down: bool) -> &mut Self {
self.top_down = top_down;
self
}
}
pub struct SystemAllocatorConfig {
/// IO ports. Only for x86_64.
pub io: Option<AddressRange>,
/// Low (<=4GB) MMIO region.
///
/// Parts of this region may be reserved or otherwise excluded from the
/// created SystemAllocator's MmioType::Low allocator. However, no new
/// regions will be added.
pub low_mmio: AddressRange,
/// High (>4GB) MMIO region.
///
/// Parts of this region may be reserved or otherwise excluded from the
/// created SystemAllocator's MmioType::High allocator. However, no new
/// regions will be added.
pub high_mmio: AddressRange,
/// Platform MMIO space. Only for ARM.
pub platform_mmio: Option<AddressRange>,
/// The first IRQ number to give out.
pub first_irq: u32,
}
#[derive(Debug)]
pub struct SystemAllocator {
io_address_space: Option<AddressAllocator>,
// Indexed by MmioType::Low and MmioType::High.
mmio_address_spaces: [AddressAllocator; 2],
mmio_platform_address_spaces: Option<AddressAllocator>,
reserved_region: Option<AddressRange>,
// Each bus number has a AddressAllocator
pci_allocator: BTreeMap<u8, AddressAllocator>,
irq_allocator: AddressAllocator,
gpe_allocator: AddressAllocator,
next_anon_id: usize,
}
impl SystemAllocator {
/// Creates a new `SystemAllocator` for managing addresses and irq numbers.
/// Will return an error if `base` + `size` overflows u64 (or allowed
/// maximum for the specific type), or if alignment isn't a power of two.
///
/// If `reserve_region_size` is not None, then a region is reserved from
/// the start of `config.high_mmio` before the mmio allocator is created.
///
/// If `mmio_address_ranges` is not empty, then `config.low_mmio` and
/// `config.high_mmio` are intersected with the ranges specified.
pub fn new(
config: SystemAllocatorConfig,
reserve_region_size: Option<u64>,
mmio_address_ranges: &[AddressRange],
) -> Result<Self> {
let page_size = pagesize() as u64;
let (high_mmio, reserved_region) = match reserve_region_size {
Some(reserved_len) => {
let high_mmio_len = config.high_mmio.len().ok_or(Error::OutOfBounds)?;
if reserved_len > high_mmio_len {
return Err(Error::OutOfSpace);
}
let reserved_start = config.high_mmio.start;
let reserved_end = reserved_start + reserved_len - 1;
let high_mmio_start = reserved_end + 1;
let high_mmio_end = config.high_mmio.end;
(
AddressRange {
start: high_mmio_start,
end: high_mmio_end,
},
Some(AddressRange {
start: reserved_start,
end: reserved_end,
}),
)
}
None => (config.high_mmio, None),
};
let intersect_mmio_range = |src_range: AddressRange| -> Result<Vec<AddressRange>> {
Ok(if mmio_address_ranges.is_empty() {
vec![src_range]
} else {
mmio_address_ranges
.iter()
.map(|r| r.intersect(src_range))
.collect()
})
};
Ok(SystemAllocator {
io_address_space: if let Some(io) = config.io {
// TODO make sure we don't overlap with existing well known
// ports such as 0xcf8 (serial ports).
if io.end > 0xffff {
return Err(Error::IOPortOutOfRange(io));
}
Some(AddressAllocator::new(io, Some(0x400), None)?)
} else {
None
},
mmio_address_spaces: [
// MmioType::Low
AddressAllocator::new_from_list(
intersect_mmio_range(config.low_mmio)?,
Some(page_size),
None,
)?,
// MmioType::High
AddressAllocator::new_from_list(
intersect_mmio_range(high_mmio)?,
Some(page_size),
None,
)?,
],
pci_allocator: BTreeMap::new(),
mmio_platform_address_spaces: if let Some(platform) = config.platform_mmio {
Some(AddressAllocator::new(platform, Some(page_size), None)?)
} else {
None
},
reserved_region,
irq_allocator: AddressAllocator::new(
AddressRange {
start: config.first_irq as u64,
end: 1023,
},
Some(1),
None,
)?,
// GPE range depends on ACPIPM_RESOURCE_GPE0_BLK_LEN, which is used to determine
// ACPIPM_GPE_MAX. The AddressRange should be in sync with ACPIPM_GPE_MAX. The
// hard-coded value is used since devices lib (where ACPIPM_* consts are defined)
// depends on resource lib. Therefore using ACPI_* const from device lib will not be
// possible because it will require introducing cyclic dependencies.
gpe_allocator: AddressAllocator::new(
AddressRange { start: 0, end: 255 },
Some(1),
None,
)?,
next_anon_id: 0,
})
}
/// Reserves the next available system irq number.
pub fn allocate_irq(&mut self) -> Option<u32> {
let id = self.get_anon_alloc();
self.irq_allocator
.allocate(1, id, "irq-auto".to_string())
.map(|v| v as u32)
.ok()
}
/// release irq to system irq number pool
pub fn release_irq(&mut self, irq: u32) {
let _ = self.irq_allocator.release_containing(irq.into());
}
/// Reserves the next available system irq number.
pub fn reserve_irq(&mut self, irq: u32) -> bool {
let id = self.get_anon_alloc();
self.irq_allocator
.allocate_at(
AddressRange {
start: irq.into(),
end: irq.into(),
},
id,
"irq-fixed".to_string(),
)
.is_ok()
}
/// Reserve the next available system GPE number
pub fn allocate_gpe(&mut self) -> Option<u32> {
let id = self.get_anon_alloc();
self.gpe_allocator
.allocate(1, id, "gpe-auto".to_string())
.map(|v| v as u32)
.ok()
}
fn get_pci_allocator_mut(&mut self, bus: u8) -> Option<&mut AddressAllocator> {
match self.pci_allocator.entry(bus) {
btree_map::Entry::Occupied(entry) => Some(entry.into_mut()),
btree_map::Entry::Vacant(entry) => {
// pci root is 00:00.0, Bus 0 next device is 00:01.0 with mandatory function number
// zero.
let base = if bus == 0 { 8 } else { 0 };
// Each bus supports up to 32 (devices) x 8 (functions).
// Prefer allocating at device granularity (preferred_align = 8), but fall back to
// allocating individual functions (min_align = 1) when we run out of devices.
let pci_alloc = AddressAllocator::new(
AddressRange {
start: base,
end: (32 * 8) - 1,
},
Some(1),
Some(8),
)
.ok()?;
Some(entry.insert(pci_alloc))
}
}
}
// Check whether devices exist or not on the specified bus
pub fn pci_bus_empty(&self, bus: u8) -> bool {
!self.pci_allocator.contains_key(&bus)
}
/// Allocate PCI slot location.
pub fn allocate_pci(&mut self, bus: u8, tag: String) -> Option<Alloc> {
let id = self.get_anon_alloc();
let allocator = match self.get_pci_allocator_mut(bus) {
Some(v) => v,
None => return None,
};
allocator
.allocate(1, id, tag)
.map(|v| Alloc::PciBar {
bus,
dev: (v >> 3) as u8,
func: (v & 7) as u8,
bar: 0,
})
.ok()
}
/// Reserve PCI slot location.
pub fn reserve_pci(&mut self, alloc: Alloc, tag: String) -> bool {
let id = self.get_anon_alloc();
match alloc {
Alloc::PciBar {
bus,
dev,
func,
bar: _,
} => {
let allocator = match self.get_pci_allocator_mut(bus) {
Some(v) => v,
None => return false,
};
let df = ((dev as u64) << 3) | (func as u64);
allocator
.allocate_at(AddressRange { start: df, end: df }, id, tag)
.is_ok()
}
_ => false,
}
}
/// release PCI slot location.
pub fn release_pci(&mut self, bus: u8, dev: u8, func: u8) -> bool {
let allocator = match self.get_pci_allocator_mut(bus) {
Some(v) => v,
None => return false,
};
let df = ((dev as u64) << 3) | (func as u64);
allocator.release_containing(df).is_ok()
}
/// Allocate a memory-mapped I/O region with properties requested in `opts`.
pub fn allocate_mmio(
&mut self,
size: u64,
alloc: Alloc,
tag: String,
opts: &AllocOptions,
) -> Result<u64> {
// For now, there is no way to ensure allocations fit in less than 32 bits.
// This can be removed once AddressAllocator accepts AllocOptions.
if opts.max_address < u32::MAX as u64 {
return Err(Error::OutOfSpace);
}
let mut mmio_type = MmioType::High;
if opts.max_address < u64::MAX || !opts.prefetchable {
mmio_type = MmioType::Low;
}
let res = self.allocate_mmio_internal(size, alloc, tag.clone(), opts, mmio_type);
// If a high allocation failed, retry in low. The reverse is not valid, since the address
// may be out of range and/or prefetchable memory may not be appropriate.
if mmio_type == MmioType::High && matches!(res, Err(Error::OutOfSpace)) {
self.allocate_mmio_internal(size, alloc, tag, opts, MmioType::Low)
} else {
res
}
}
fn allocate_mmio_internal(
&mut self,
size: u64,
alloc: Alloc,
tag: String,
opts: &AllocOptions,
mmio_type: MmioType,
) -> Result<u64> {
let allocator = &mut self.mmio_address_spaces[mmio_type as usize];
match (opts.alignment, opts.top_down) {
(Some(align), true) => allocator.reverse_allocate_with_align(size, alloc, tag, align),
(Some(align), false) => allocator.allocate_with_align(size, alloc, tag, align),
(None, true) => allocator.reverse_allocate(size, alloc, tag),
(None, false) => allocator.allocate(size, alloc, tag),
}
}
/// Reserve specified range from pci mmio, get the overlap of specified
/// range with mmio pools, exclude the overlap from mmio allocator.
///
/// If any part of the specified range has been allocated, return Error.
pub fn reserve_mmio(&mut self, range: AddressRange) -> Result<()> {
let mut pools = Vec::new();
for pool in self.mmio_pools() {
pools.push(*pool);
}
pools.sort_by(|a, b| a.start.cmp(&b.start));
for pool in &pools {
if pool.start > range.end {
break;
}
let overlap = pool.intersect(range);
if !overlap.is_empty() {
let id = self.get_anon_alloc();
self.mmio_allocator_any().allocate_at(
overlap,
id,
"pci mmio reserve".to_string(),
)?;
}
}
Ok(())
}
/// Gets an allocator to be used for platform device MMIO allocation.
pub fn mmio_platform_allocator(&mut self) -> Option<&mut AddressAllocator> {
self.mmio_platform_address_spaces.as_mut()
}
/// Gets an allocator to be used for IO memory.
pub fn io_allocator(&mut self) -> Option<&mut AddressAllocator> {
self.io_address_space.as_mut()
}
/// Gets an allocator to be used for MMIO allocation.
/// MmioType::Low: low mmio allocator
/// MmioType::High: high mmio allocator
pub fn mmio_allocator(&mut self, mmio_type: MmioType) -> &mut AddressAllocator {
&mut self.mmio_address_spaces[mmio_type as usize]
}
/// Gets a set of allocators to be used for MMIO allocation.
/// The set of allocators will try the low and high MMIO allocators, in that order.
pub fn mmio_allocator_any(&mut self) -> AddressAllocatorSet {
AddressAllocatorSet::new(&mut self.mmio_address_spaces)
}
/// Gets the pools of all mmio allocators.
pub fn mmio_pools(&self) -> Vec<&AddressRange> {
self.mmio_address_spaces
.iter()
.flat_map(|mmio_as| mmio_as.pools())
.collect()
}
/// Gets the reserved address space region.
pub fn reserved_region(&self) -> Option<AddressRange> {
self.reserved_region
}
/// Gets a unique anonymous allocation
pub fn get_anon_alloc(&mut self) -> Alloc {
self.next_anon_id += 1;
Alloc::Anon(self.next_anon_id)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn example() {
let mut a = SystemAllocator::new(
SystemAllocatorConfig {
io: Some(AddressRange {
start: 0x1000,
end: 0xffff,
}),
low_mmio: AddressRange {
start: 0x3000_0000,
end: 0x3000_ffff,
},
high_mmio: AddressRange {
start: 0x1000_0000,
end: 0x1fffffff,
},
platform_mmio: None,
first_irq: 5,
},
None,
&[],
)
.unwrap();
assert_eq!(a.allocate_irq(), Some(5));
assert_eq!(a.allocate_irq(), Some(6));
assert_eq!(a.allocate_gpe(), Some(0));
assert_eq!(a.allocate_gpe(), Some(1));
assert_eq!(
a.mmio_allocator(MmioType::High).allocate(
0x100,
Alloc::PciBar {
bus: 0,
dev: 0,
func: 0,
bar: 0
},
"bar0".to_string()
),
Ok(0x10000000)
);
assert_eq!(
a.mmio_allocator(MmioType::High).get(&Alloc::PciBar {
bus: 0,
dev: 0,
func: 0,
bar: 0
}),
Some(&(
AddressRange {
start: 0x10000000,
end: 0x100000ff
},
"bar0".to_string()
))
);
let id = a.get_anon_alloc();
assert_eq!(
a.mmio_allocator(MmioType::Low).allocate_at(
AddressRange {
start: 0x3000_5000,
end: 0x30009fff
},
id,
"Test".to_string()
),
Ok(())
);
assert_eq!(
a.mmio_allocator(MmioType::Low).release(id),
Ok(AddressRange {
start: 0x3000_5000,
end: 0x30009fff
})
);
assert_eq!(
a.reserve_mmio(AddressRange {
start: 0x3000_2000,
end: 0x30005fff
}),
Ok(())
);
assert_eq!(
a.mmio_allocator(MmioType::Low)
.allocate_at(
AddressRange {
start: 0x3000_5000,
end: 0x3000_9fff
},
id,
"Test".to_string()
)
.is_err(),
true
);
}
}