1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
// Copyright 2020 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use std::ops::Deref;
use std::ops::DerefMut;
use std::sync::Arc;

use base::sys::FallocateMode;
use base::AsRawDescriptor;

use super::uring_executor::RegisteredSource;
use super::uring_executor::Result;
use super::uring_executor::UringReactor;
use crate::common_executor::RawExecutor;
use crate::mem::BackingMemory;
use crate::mem::MemRegion;
use crate::mem::VecIoWrapper;
use crate::AsyncResult;

/// `UringSource` wraps FD backed IO sources for use with io_uring. It is a thin wrapper around
/// registering an IO source with the uring that provides an `IoSource` implementation.
pub struct UringSource<F: AsRawDescriptor> {
    registered_source: RegisteredSource,
    source: F,
}

impl<F: AsRawDescriptor> UringSource<F> {
    /// Creates a new `UringSource` that wraps the given `io_source` object.
    pub fn new(io_source: F, ex: &Arc<RawExecutor<UringReactor>>) -> Result<UringSource<F>> {
        let r = ex.reactor.register_source(ex, &io_source)?;
        Ok(UringSource {
            registered_source: r,
            source: io_source,
        })
    }

    /// Reads from the iosource at `file_offset` and fill the given `vec`.
    pub async fn read_to_vec(
        &self,
        file_offset: Option<u64>,
        vec: Vec<u8>,
    ) -> AsyncResult<(usize, Vec<u8>)> {
        let buf = Arc::new(VecIoWrapper::from(vec));
        let op = self.registered_source.start_read_to_mem(
            file_offset,
            buf.clone(),
            [MemRegion {
                offset: 0,
                len: buf.len(),
            }],
        )?;
        let len = op.await?;
        let bytes = if let Ok(v) = Arc::try_unwrap(buf) {
            v.into()
        } else {
            panic!("too many refs on buf");
        };

        Ok((len as usize, bytes))
    }

    /// Wait for the FD of `self` to be readable.
    pub async fn wait_readable(&self) -> AsyncResult<()> {
        let op = self.registered_source.poll_fd_readable()?;
        op.await?;
        Ok(())
    }

    /// Reads to the given `mem` at the given offsets from the file starting at `file_offset`.
    pub async fn read_to_mem(
        &self,
        file_offset: Option<u64>,
        mem: Arc<dyn BackingMemory + Send + Sync>,
        mem_offsets: impl IntoIterator<Item = MemRegion>,
    ) -> AsyncResult<usize> {
        let op = self
            .registered_source
            .start_read_to_mem(file_offset, mem, mem_offsets)?;
        let len = op.await?;
        Ok(len as usize)
    }

    /// Writes from the given `vec` to the file starting at `file_offset`.
    pub async fn write_from_vec(
        &self,
        file_offset: Option<u64>,
        vec: Vec<u8>,
    ) -> AsyncResult<(usize, Vec<u8>)> {
        let buf = Arc::new(VecIoWrapper::from(vec));
        let op = self.registered_source.start_write_from_mem(
            file_offset,
            buf.clone(),
            [MemRegion {
                offset: 0,
                len: buf.len(),
            }],
        )?;
        let len = op.await?;
        let bytes = if let Ok(v) = Arc::try_unwrap(buf) {
            v.into()
        } else {
            panic!("too many refs on buf");
        };

        Ok((len as usize, bytes))
    }

    /// Writes from the given `mem` from the given offsets to the file starting at `file_offset`.
    pub async fn write_from_mem(
        &self,
        file_offset: Option<u64>,
        mem: Arc<dyn BackingMemory + Send + Sync>,
        mem_offsets: impl IntoIterator<Item = MemRegion>,
    ) -> AsyncResult<usize> {
        let op = self
            .registered_source
            .start_write_from_mem(file_offset, mem, mem_offsets)?;
        let len = op.await?;
        Ok(len as usize)
    }

    /// Deallocates the given range of a file.
    pub async fn punch_hole(&self, file_offset: u64, len: u64) -> AsyncResult<()> {
        let op = self.registered_source.start_fallocate(
            file_offset,
            len,
            FallocateMode::PunchHole.into(),
        )?;
        let _ = op.await?;
        Ok(())
    }

    /// Fills the given range with zeroes.
    pub async fn write_zeroes_at(&self, file_offset: u64, len: u64) -> AsyncResult<()> {
        let op = self.registered_source.start_fallocate(
            file_offset,
            len,
            FallocateMode::ZeroRange.into(),
        )?;
        let _ = op.await?;
        Ok(())
    }

    /// Sync all completed write operations to the backing storage.
    pub async fn fsync(&self) -> AsyncResult<()> {
        let op = self.registered_source.start_fsync()?;
        let _ = op.await?;
        Ok(())
    }

    /// Sync all data of completed write operations to the backing storage. Currently, the
    /// implementation is equivalent to fsync.
    pub async fn fdatasync(&self) -> AsyncResult<()> {
        // Currently io_uring does not implement fdatasync. Fall back to fsync.
        // TODO(b/281609112): Implement real fdatasync with io_uring.
        self.fsync().await
    }

    /// Yields the underlying IO source.
    pub fn into_source(self) -> F {
        self.source
    }

    /// Provides a mutable ref to the underlying IO source.
    pub fn as_source(&self) -> &F {
        &self.source
    }

    /// Provides a ref to the underlying IO source.
    pub fn as_source_mut(&mut self) -> &mut F {
        &mut self.source
    }
}

impl<F: AsRawDescriptor> Deref for UringSource<F> {
    type Target = F;

    fn deref(&self) -> &Self::Target {
        &self.source
    }
}

impl<F: AsRawDescriptor> DerefMut for UringSource<F> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.source
    }
}

// NOTE: Prefer adding tests to io_source.rs if not backend specific.
#[cfg(test)]
mod tests {
    use std::fs::File;
    use std::future::Future;
    use std::pin::Pin;
    use std::task::Context;
    use std::task::Poll;
    use std::task::Waker;

    use sync::Mutex;

    use super::super::uring_executor::is_uring_stable;
    use super::super::UringSource;
    use super::*;
    use crate::sys::linux::ExecutorKindSys;
    use crate::Executor;
    use crate::ExecutorTrait;
    use crate::IoSource;

    async fn read_u64<T: AsRawDescriptor>(source: &UringSource<T>) -> u64 {
        // Init a vec that translates to u64::max;
        let u64_mem = vec![0xffu8; std::mem::size_of::<u64>()];
        let (ret, u64_mem) = source.read_to_vec(None, u64_mem).await.unwrap();
        assert_eq!(ret, std::mem::size_of::<u64>());
        let mut val = 0u64.to_ne_bytes();
        val.copy_from_slice(&u64_mem);
        u64::from_ne_bytes(val)
    }

    #[test]
    fn event() {
        if !is_uring_stable() {
            return;
        }

        use base::Event;
        use base::EventExt;

        async fn write_event(ev: Event, wait: Event, ex: &Arc<RawExecutor<UringReactor>>) {
            let wait = UringSource::new(wait, ex).unwrap();
            ev.write_count(55).unwrap();
            read_u64(&wait).await;
            ev.write_count(66).unwrap();
            read_u64(&wait).await;
            ev.write_count(77).unwrap();
            read_u64(&wait).await;
        }

        async fn read_events(ev: Event, signal: Event, ex: &Arc<RawExecutor<UringReactor>>) {
            let source = UringSource::new(ev, ex).unwrap();
            assert_eq!(read_u64(&source).await, 55);
            signal.signal().unwrap();
            assert_eq!(read_u64(&source).await, 66);
            signal.signal().unwrap();
            assert_eq!(read_u64(&source).await, 77);
            signal.signal().unwrap();
        }

        let event = Event::new().unwrap();
        let signal_wait = Event::new().unwrap();
        let ex = RawExecutor::<UringReactor>::new().unwrap();
        let write_task = write_event(
            event.try_clone().unwrap(),
            signal_wait.try_clone().unwrap(),
            &ex,
        );
        let read_task = read_events(event, signal_wait, &ex);
        ex.run_until(futures::future::join(read_task, write_task))
            .unwrap();
    }

    #[test]
    fn pend_on_pipe() {
        if !is_uring_stable() {
            return;
        }

        use std::io::Write;

        use futures::future::Either;

        async fn do_test(ex: &Arc<RawExecutor<UringReactor>>) {
            let (read_source, mut w) = base::pipe().unwrap();
            let source = UringSource::new(read_source, ex).unwrap();
            let done = Box::pin(async { 5usize });
            let pending = Box::pin(read_u64(&source));
            match futures::future::select(pending, done).await {
                Either::Right((5, pending)) => {
                    // Write to the pipe so that the kernel will release the memory associated with
                    // the uring read operation.
                    w.write_all(&[0]).expect("failed to write to pipe");
                    ::std::mem::drop(pending);
                }
                _ => panic!("unexpected select result"),
            };
        }

        let ex = RawExecutor::<UringReactor>::new().unwrap();
        ex.run_until(do_test(&ex)).unwrap();
    }

    #[test]
    fn range_error() {
        if !is_uring_stable() {
            return;
        }

        async fn go(ex: &Arc<RawExecutor<UringReactor>>) {
            let f = File::open("/dev/zero").unwrap();
            let source = UringSource::new(f, ex).unwrap();
            let v = vec![0x55u8; 64];
            let vw = Arc::new(VecIoWrapper::from(v));
            let ret = source
                .read_to_mem(
                    None,
                    Arc::<VecIoWrapper>::clone(&vw),
                    [MemRegion {
                        offset: 32,
                        len: 33,
                    }],
                )
                .await;
            assert!(ret.is_err());
        }

        let ex = RawExecutor::<UringReactor>::new().unwrap();
        ex.run_until(go(&ex)).unwrap();
    }

    #[test]
    fn wait_read() {
        if !is_uring_stable() {
            return;
        }

        async fn go(ex: &Arc<RawExecutor<UringReactor>>) {
            let f = File::open("/dev/zero").unwrap();
            let source = UringSource::new(f, ex).unwrap();
            source.wait_readable().await.unwrap();
        }

        let ex = RawExecutor::<UringReactor>::new().unwrap();
        ex.run_until(go(&ex)).unwrap();
    }

    struct State {
        should_quit: bool,
        waker: Option<Waker>,
    }

    impl State {
        fn wake(&mut self) {
            self.should_quit = true;
            let waker = self.waker.take();

            if let Some(waker) = waker {
                waker.wake();
            }
        }
    }

    struct Quit {
        state: Arc<Mutex<State>>,
    }

    impl Future for Quit {
        type Output = ();

        fn poll(self: Pin<&mut Self>, cx: &mut Context) -> Poll<()> {
            let mut state = self.state.lock();
            if state.should_quit {
                return Poll::Ready(());
            }

            state.waker = Some(cx.waker().clone());
            Poll::Pending
        }
    }

    #[cfg(any(target_os = "android", target_os = "linux"))]
    #[test]
    fn await_uring_from_poll() {
        if !is_uring_stable() {
            return;
        }
        // Start a uring operation and then await the result from an FdExecutor.
        async fn go(source: IoSource<File>) {
            let v = vec![0xa4u8; 16];
            let (len, vec) = source.read_to_vec(None, v).await.unwrap();
            assert_eq!(len, 16);
            assert!(vec.iter().all(|&b| b == 0));
        }

        let state = Arc::new(Mutex::new(State {
            should_quit: false,
            waker: None,
        }));

        let uring_ex = Executor::with_executor_kind(ExecutorKindSys::Uring.into()).unwrap();
        let f = File::open("/dev/zero").unwrap();
        let source = uring_ex.async_from(f).unwrap();

        let quit = Quit {
            state: state.clone(),
        };
        let handle = std::thread::spawn(move || uring_ex.run_until(quit));

        let poll_ex = Executor::with_executor_kind(ExecutorKindSys::Fd.into()).unwrap();
        poll_ex.run_until(go(source)).unwrap();

        state.lock().wake();
        handle.join().unwrap().unwrap();
    }

    #[cfg(any(target_os = "android", target_os = "linux"))]
    #[test]
    fn await_poll_from_uring() {
        if !is_uring_stable() {
            return;
        }
        // Start a poll operation and then await the result
        async fn go(source: IoSource<File>) {
            let v = vec![0x2cu8; 16];
            let (len, vec) = source.read_to_vec(None, v).await.unwrap();
            assert_eq!(len, 16);
            assert!(vec.iter().all(|&b| b == 0));
        }

        let state = Arc::new(Mutex::new(State {
            should_quit: false,
            waker: None,
        }));

        let poll_ex = Executor::with_executor_kind(ExecutorKindSys::Fd.into()).unwrap();
        let f = File::open("/dev/zero").unwrap();
        let source = poll_ex.async_from(f).unwrap();

        let quit = Quit {
            state: state.clone(),
        };
        let handle = std::thread::spawn(move || poll_ex.run_until(quit));

        let uring_ex = Executor::with_executor_kind(ExecutorKindSys::Uring.into()).unwrap();
        uring_ex.run_until(go(source)).unwrap();

        state.lock().wake();
        handle.join().unwrap().unwrap();
    }
}