1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
// Copyright 2017 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use std::cmp::min;
use std::fs::File;
use std::marker::PhantomData;
use std::mem::MaybeUninit;
use std::ptr::null_mut;
use std::time::Duration;

use libc::c_int;
use libc::epoll_create1;
use libc::epoll_ctl;
use libc::epoll_event;
use libc::epoll_wait;
use libc::ENOENT;
use libc::EPOLLHUP;
use libc::EPOLLIN;
use libc::EPOLLOUT;
use libc::EPOLLRDHUP;
use libc::EPOLL_CLOEXEC;
use libc::EPOLL_CTL_ADD;
use libc::EPOLL_CTL_DEL;
use libc::EPOLL_CTL_MOD;
use smallvec::SmallVec;

use super::errno_result;
use super::Result;
use crate::handle_eintr_errno;
use crate::AsRawDescriptor;
use crate::EventToken;
use crate::EventType;
use crate::FromRawDescriptor;
use crate::RawDescriptor;
use crate::TriggeredEvent;

const EVENT_CONTEXT_MAX_EVENTS: usize = 16;

impl From<EventType> for u32 {
    fn from(et: EventType) -> u32 {
        let v = match et {
            EventType::None => 0,
            EventType::Read => EPOLLIN,
            EventType::Write => EPOLLOUT,
            EventType::ReadWrite => EPOLLIN | EPOLLOUT,
        };
        v as u32
    }
}

/// Used to poll multiple objects that have file descriptors.
///
/// See [`crate::WaitContext`] for an example that uses the cross-platform wrapper.
pub struct EventContext<T> {
    epoll_ctx: File,
    // Needed to satisfy usage of T
    tokens: PhantomData<[T]>,
}

impl<T: EventToken> EventContext<T> {
    /// Creates a new `EventContext`.
    pub fn new() -> Result<EventContext<T>> {
        // SAFETY:
        // Safe because we check the return value.
        let epoll_fd = unsafe { epoll_create1(EPOLL_CLOEXEC) };
        if epoll_fd < 0 {
            return errno_result();
        }
        Ok(EventContext {
            // SAFETY:
            // Safe because epoll_fd is valid.
            epoll_ctx: unsafe { File::from_raw_descriptor(epoll_fd) },
            tokens: PhantomData,
        })
    }

    /// Creates a new `EventContext` and adds the slice of `fd` and `token` tuples to the new
    /// context.
    ///
    /// This is equivalent to calling `new` followed by `add_many`. If there is an error, this will
    /// return the error instead of the new context.
    pub fn build_with(fd_tokens: &[(&dyn AsRawDescriptor, T)]) -> Result<EventContext<T>> {
        let ctx = EventContext::new()?;
        ctx.add_many(fd_tokens)?;
        Ok(ctx)
    }

    /// Adds the given slice of `fd` and `token` tuples to this context.
    ///
    /// This is equivalent to calling `add` with each `fd` and `token`. If there are any errors,
    /// this method will stop adding `fd`s and return the first error, leaving this context in a
    /// undefined state.
    pub fn add_many(&self, fd_tokens: &[(&dyn AsRawDescriptor, T)]) -> Result<()> {
        for (fd, token) in fd_tokens {
            self.add(*fd, T::from_raw_token(token.as_raw_token()))?;
        }
        Ok(())
    }

    /// Adds the given `fd` to this context and associates the given `token` with the `fd`'s
    /// readable events.
    ///
    /// A `fd` can only be added once and does not need to be kept open. If the `fd` is dropped and
    /// there were no duplicated file descriptors (i.e. adding the same descriptor with a different
    /// FD number) added to this context, events will not be reported by `wait` anymore.
    pub fn add(&self, fd: &dyn AsRawDescriptor, token: T) -> Result<()> {
        self.add_for_event(fd, EventType::Read, token)
    }

    /// Adds the given `descriptor` to this context, watching for the specified events and
    /// associates the given 'token' with those events.
    ///
    /// A `descriptor` can only be added once and does not need to be kept open. If the `descriptor`
    /// is dropped and there were no duplicated file descriptors (i.e. adding the same descriptor
    /// with a different FD number) added to this context, events will not be reported by `wait`
    /// anymore.
    pub fn add_for_event(
        &self,
        descriptor: &dyn AsRawDescriptor,
        event_type: EventType,
        token: T,
    ) -> Result<()> {
        let mut evt = epoll_event {
            events: event_type.into(),
            u64: token.as_raw_token(),
        };
        // SAFETY:
        // Safe because we give a valid epoll FD and FD to watch, as well as a valid epoll_event
        // structure. Then we check the return value.
        let ret = unsafe {
            epoll_ctl(
                self.epoll_ctx.as_raw_descriptor(),
                EPOLL_CTL_ADD,
                descriptor.as_raw_descriptor(),
                &mut evt,
            )
        };
        if ret < 0 {
            return errno_result();
        };
        Ok(())
    }

    /// If `fd` was previously added to this context, the watched events will be replaced with
    /// `event_type` and the token associated with it will be replaced with the given `token`.
    pub fn modify(&self, fd: &dyn AsRawDescriptor, event_type: EventType, token: T) -> Result<()> {
        let mut evt = epoll_event {
            events: event_type.into(),
            u64: token.as_raw_token(),
        };
        // SAFETY:
        // Safe because we give a valid epoll FD and FD to modify, as well as a valid epoll_event
        // structure. Then we check the return value.
        let ret = unsafe {
            epoll_ctl(
                self.epoll_ctx.as_raw_descriptor(),
                EPOLL_CTL_MOD,
                fd.as_raw_descriptor(),
                &mut evt,
            )
        };
        if ret < 0 {
            return errno_result();
        };
        Ok(())
    }

    /// Deletes the given `fd` from this context. If the `fd` is not being polled by this context,
    /// the call is silently dropped without errors.
    ///
    /// If an `fd`'s token shows up in the list of hangup events, it should be removed using this
    /// method or by closing/dropping (if and only if the fd was never dup()'d/fork()'d) the `fd`.
    /// Failure to do so will cause the `wait` method to always return immediately, causing ~100%
    /// CPU load.
    pub fn delete(&self, fd: &dyn AsRawDescriptor) -> Result<()> {
        // SAFETY:
        // Safe because we give a valid epoll FD and FD to stop watching. Then we check the return
        // value.
        let ret = unsafe {
            epoll_ctl(
                self.epoll_ctx.as_raw_descriptor(),
                EPOLL_CTL_DEL,
                fd.as_raw_descriptor(),
                null_mut(),
            )
        };
        // If epoll_ctl returns ENOENT it means the fd is not part of the current polling set so
        // there is nothing to delete.
        if ret < 0 && ret != ENOENT {
            return errno_result();
        };
        Ok(())
    }

    /// Waits for any events to occur in FDs that were previously added to this context.
    ///
    /// The events are level-triggered, meaning that if any events are unhandled (i.e. not reading
    /// for readable events and not closing for hungup events), subsequent calls to `wait` will
    /// return immediately. The consequence of not handling an event perpetually while calling
    /// `wait` is that the callers loop will degenerated to busy loop polling, pinning a CPU to
    /// ~100% usage.
    pub fn wait(&self) -> Result<SmallVec<[TriggeredEvent<T>; 16]>> {
        self.wait_timeout(Duration::new(i64::MAX as u64, 0))
    }

    /// Like `wait` except will only block for a maximum of the given `timeout`.
    ///
    /// This may return earlier than `timeout` with zero events if the duration indicated exceeds
    /// system limits.
    pub fn wait_timeout(&self, timeout: Duration) -> Result<SmallVec<[TriggeredEvent<T>; 16]>> {
        let mut epoll_events: [MaybeUninit<epoll_event>; EVENT_CONTEXT_MAX_EVENTS] =
            // SAFETY:
            // `MaybeUnint<T>` has the same layout as plain `T` (`epoll_event` in our case).
            // We submit an uninitialized array to the `epoll_wait` system call, which returns how many
            // elements it initialized, and then we convert only the initialized `MaybeUnint` values
            // into `epoll_event` structures after the call.
            unsafe { MaybeUninit::uninit().assume_init() };

        let timeout_millis = if timeout.as_secs() as i64 == i64::MAX {
            // We make the convenient assumption that 2^63 seconds is an effectively unbounded time
            // frame. This is meant to mesh with `wait` calling us with no timeout.
            -1
        } else {
            // In cases where we the number of milliseconds would overflow an i32, we substitute the
            // maximum timeout which is ~24.8 days.
            let millis = timeout
                .as_secs()
                .checked_mul(1_000)
                .and_then(|ms| ms.checked_add(u64::from(timeout.subsec_nanos()) / 1_000_000))
                .unwrap_or(i32::MAX as u64);
            min(i32::MAX as u64, millis) as i32
        };
        let ret = {
            let max_events = epoll_events.len() as c_int;
            // SAFETY:
            // Safe because we give an epoll context and a properly sized epoll_events array
            // pointer, which we trust the kernel to fill in properly. The `transmute` is safe,
            // since `MaybeUnint<T>` has the same layout as `T`, and the `epoll_wait` syscall will
            // initialize as many elements of the `epoll_events` array as it returns.
            unsafe {
                handle_eintr_errno!(epoll_wait(
                    self.epoll_ctx.as_raw_descriptor(),
                    std::mem::transmute(&mut epoll_events[0]),
                    max_events,
                    timeout_millis
                ))
            }
        };
        if ret < 0 {
            return errno_result();
        }
        let count = ret as usize;

        let events = epoll_events[0..count]
            .iter()
            .map(|e| {
                // SAFETY:
                // Converting `MaybeUninit<epoll_event>` into `epoll_event` is safe here, since we
                // are only iterating over elements that the `epoll_wait` system call initialized.
                let e = unsafe { e.assume_init() };
                TriggeredEvent {
                    token: T::from_raw_token(e.u64),
                    is_readable: e.events & (EPOLLIN as u32) != 0,
                    is_writable: e.events & (EPOLLOUT as u32) != 0,
                    is_hungup: e.events & ((EPOLLHUP | EPOLLRDHUP) as u32) != 0,
                }
            })
            .collect();
        Ok(events)
    }
}

impl<T: EventToken> AsRawDescriptor for EventContext<T> {
    fn as_raw_descriptor(&self) -> RawDescriptor {
        self.epoll_ctx.as_raw_descriptor()
    }
}

#[cfg(test)]
mod tests {
    use std::time::Instant;

    use base_event_token_derive::EventToken;

    use super::*;
    use crate::Event;

    #[test]
    fn event_context() {
        let evt1 = Event::new().unwrap();
        let evt2 = Event::new().unwrap();
        evt1.signal().unwrap();
        evt2.signal().unwrap();
        let ctx: EventContext<u32> = EventContext::build_with(&[(&evt1, 1), (&evt2, 2)]).unwrap();

        let mut evt_count = 0;
        while evt_count < 2 {
            for event in ctx.wait().unwrap().iter().filter(|e| e.is_readable) {
                evt_count += 1;
                match event.token {
                    1 => {
                        evt1.wait().unwrap();
                        ctx.delete(&evt1).unwrap();
                    }
                    2 => {
                        evt2.wait().unwrap();
                        ctx.delete(&evt2).unwrap();
                    }
                    _ => panic!("unexpected token"),
                };
            }
        }
        assert_eq!(evt_count, 2);
    }

    #[test]
    fn event_context_overflow() {
        const EVT_COUNT: usize = EVENT_CONTEXT_MAX_EVENTS * 2 + 1;
        let ctx: EventContext<usize> = EventContext::new().unwrap();
        let mut evts = Vec::with_capacity(EVT_COUNT);
        for i in 0..EVT_COUNT {
            let evt = Event::new().unwrap();
            evt.signal().unwrap();
            ctx.add(&evt, i).unwrap();
            evts.push(evt);
        }
        let mut evt_count = 0;
        while evt_count < EVT_COUNT {
            for event in ctx.wait().unwrap().iter().filter(|e| e.is_readable) {
                evts[event.token].wait().unwrap();
                evt_count += 1;
            }
        }
    }

    #[test]
    fn event_context_timeout() {
        let ctx: EventContext<u32> = EventContext::new().unwrap();
        let dur = Duration::from_millis(10);
        let start_inst = Instant::now();
        ctx.wait_timeout(dur).unwrap();
        assert!(start_inst.elapsed() >= dur);
    }

    #[test]
    #[allow(dead_code)]
    fn event_token_derive() {
        #[derive(EventToken)]
        enum EmptyToken {}

        #[derive(PartialEq, Debug, EventToken)]
        enum Token {
            Alpha,
            Beta,
            // comments
            Gamma(u32),
            Delta { index: usize },
            Omega,
        }

        assert_eq!(
            Token::from_raw_token(Token::Alpha.as_raw_token()),
            Token::Alpha
        );
        assert_eq!(
            Token::from_raw_token(Token::Beta.as_raw_token()),
            Token::Beta
        );
        assert_eq!(
            Token::from_raw_token(Token::Gamma(55).as_raw_token()),
            Token::Gamma(55)
        );
        assert_eq!(
            Token::from_raw_token(Token::Delta { index: 100 }.as_raw_token()),
            Token::Delta { index: 100 }
        );
        assert_eq!(
            Token::from_raw_token(Token::Omega.as_raw_token()),
            Token::Omega
        );
    }
}