1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
// Copyright 2019 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use std::collections::VecDeque;
use std::fmt;
use std::io;
use std::io::Read;
use std::io::Write;
use std::iter::ExactSizeIterator;

use base::AsRawDescriptor;
use base::RawDescriptor;
use base::ReadNotifier;
use base::StreamChannel;
use linux_input_sys::virtio_input_event;
use linux_input_sys::InputEventDecoder;
use serde::Deserialize;
use serde::Serialize;
use zerocopy::AsBytes;
use zerocopy::FromZeroes;

const EVENT_SIZE: usize = virtio_input_event::SIZE;
const EVENT_BUFFER_LEN_MAX: usize = 64 * EVENT_SIZE;

#[derive(Copy, Clone, Debug, Deserialize, Eq, Hash, PartialEq, Serialize)]
pub enum EventDeviceKind {
    /// Produces relative mouse motions, wheel, and button clicks while the real mouse is captured.
    Mouse,
    /// Produces absolute motion and touch events from the display window's events.
    Touchscreen,
    /// Produces key events while the display window has focus.
    Keyboard,
}

/// Encapsulates a virtual event device, such as a mouse or keyboard
#[derive(Deserialize, Serialize)]
pub struct EventDevice {
    kind: EventDeviceKind,
    event_buffer: VecDeque<u8>,
    event_socket: StreamChannel,
}

impl EventDevice {
    pub fn new(kind: EventDeviceKind, mut event_socket: StreamChannel) -> EventDevice {
        let _ = event_socket.set_nonblocking(true);
        EventDevice {
            kind,
            event_buffer: Default::default(),
            event_socket,
        }
    }

    #[inline]
    pub fn mouse(event_socket: StreamChannel) -> EventDevice {
        Self::new(EventDeviceKind::Mouse, event_socket)
    }

    #[inline]
    pub fn touchscreen(event_socket: StreamChannel) -> EventDevice {
        Self::new(EventDeviceKind::Touchscreen, event_socket)
    }

    #[inline]
    pub fn keyboard(event_socket: StreamChannel) -> EventDevice {
        Self::new(EventDeviceKind::Keyboard, event_socket)
    }

    #[inline]
    pub fn kind(&self) -> EventDeviceKind {
        self.kind
    }

    /// Flushes the buffered events that did not fit into the underlying transport, if any.
    ///
    /// Returns `Ok(true)` if, after this function returns, there all the buffer of events is
    /// empty.
    pub fn flush_buffered_events(&mut self) -> io::Result<bool> {
        while !self.event_buffer.is_empty() {
            let written = self.event_socket.write(self.event_buffer.as_slices().0)?;
            if written == 0 {
                return Ok(false);
            }
            self.event_buffer.drain(..written);
        }
        Ok(true)
    }

    pub fn is_buffered_events_empty(&self) -> bool {
        self.event_buffer.is_empty()
    }

    /// Determines if there is space in the event buffer for the given number
    /// of events. The buffer is capped at `EVENT_BUFFER_LEN_MAX`.
    #[inline]
    fn can_buffer_events(&self, num_events: usize) -> bool {
        let event_bytes = match EVENT_SIZE.checked_mul(num_events) {
            Some(bytes) => bytes,
            None => return false,
        };
        let free_bytes = EVENT_BUFFER_LEN_MAX.saturating_sub(self.event_buffer.len());

        free_bytes >= event_bytes
    }

    pub fn send_report<E: IntoIterator<Item = virtio_input_event>>(
        &mut self,
        events: E,
    ) -> io::Result<bool>
    where
        E::IntoIter: ExactSizeIterator,
    {
        let it = events.into_iter();

        if !self.can_buffer_events(it.len() + 1) {
            return Ok(false);
        }

        for event in it {
            let bytes = event.as_bytes();
            self.event_buffer.extend(bytes.iter());
        }

        self.event_buffer
            .extend(virtio_input_event::syn().as_bytes().iter());

        self.flush_buffered_events()
    }

    /// Sends the given `event`, returning `Ok(true)` if, after this function returns, there are no
    /// buffered events remaining.
    pub fn send_event_encoded(&mut self, event: virtio_input_event) -> io::Result<bool> {
        if !self.flush_buffered_events()? {
            return Ok(false);
        }

        let bytes = event.as_bytes();
        let written = self.event_socket.write(bytes)?;

        if written == bytes.len() {
            return Ok(true);
        }

        if self.can_buffer_events(1) {
            self.event_buffer.extend(bytes[written..].iter());
        }

        Ok(false)
    }

    pub fn recv_event_encoded(&self) -> io::Result<virtio_input_event> {
        let mut event = virtio_input_event::new_zeroed();
        (&self.event_socket).read_exact(event.as_bytes_mut())?;
        Ok(event)
    }
}

impl AsRawDescriptor for EventDevice {
    fn as_raw_descriptor(&self) -> RawDescriptor {
        self.event_socket.as_raw_descriptor()
    }
}

impl ReadNotifier for EventDevice {
    fn get_read_notifier(&self) -> &dyn AsRawDescriptor {
        self.event_socket.get_read_notifier()
    }
}

impl fmt::Debug for EventDevice {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "Event device ({:?})", self.kind)
    }
}