1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
// Copyright 2020 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use std::sync::Arc;

use anyhow::anyhow;
use anyhow::Context;
use base::error;
#[cfg(not(test))]
use base::Clock;
use base::Error;
use base::Event;
#[cfg(test)]
use base::FakeClock as Clock;
use base::Result;
use base::Tube;
use hypervisor::kvm::KvmVcpu;
use hypervisor::kvm::KvmVm;
use hypervisor::HypervisorCap;
use hypervisor::IoapicState;
use hypervisor::IrqRoute;
use hypervisor::IrqSource;
use hypervisor::IrqSourceChip;
use hypervisor::LapicState;
use hypervisor::MPState;
use hypervisor::PicSelect;
use hypervisor::PicState;
use hypervisor::PitState;
use hypervisor::Vcpu;
use hypervisor::VcpuX86_64;
use hypervisor::Vm;
use hypervisor::VmX86_64;
use kvm_sys::*;
use resources::SystemAllocator;
use serde::Deserialize;
use serde::Serialize;
use sync::Mutex;

use crate::irqchip::Ioapic;
use crate::irqchip::IrqEvent;
use crate::irqchip::IrqEventIndex;
use crate::irqchip::Pic;
use crate::irqchip::VcpuRunState;
use crate::irqchip::IOAPIC_BASE_ADDRESS;
use crate::irqchip::IOAPIC_MEM_LENGTH_BYTES;
use crate::Bus;
use crate::IrqChip;
use crate::IrqChipCap;
use crate::IrqChipX86_64;
use crate::IrqEdgeEvent;
use crate::IrqEventSource;
use crate::IrqLevelEvent;
use crate::Pit;
use crate::PitError;

/// PIT tube 0 timer is connected to IRQ 0
const PIT_CHANNEL0_IRQ: u32 = 0;

/// Default x86 routing table.  Pins 0-7 go to primary pic and ioapic, pins 8-15 go to secondary
/// pic and ioapic, and pins 16-23 go only to the ioapic.
fn kvm_default_irq_routing_table(ioapic_pins: usize) -> Vec<IrqRoute> {
    let mut routes: Vec<IrqRoute> = Vec::new();

    for i in 0..8 {
        routes.push(IrqRoute::pic_irq_route(IrqSourceChip::PicPrimary, i));
        routes.push(IrqRoute::ioapic_irq_route(i));
    }
    for i in 8..16 {
        routes.push(IrqRoute::pic_irq_route(IrqSourceChip::PicSecondary, i));
        routes.push(IrqRoute::ioapic_irq_route(i));
    }
    for i in 16..ioapic_pins as u32 {
        routes.push(IrqRoute::ioapic_irq_route(i));
    }

    routes
}

/// IrqChip implementation where the entire IrqChip is emulated by KVM.
///
/// This implementation will use the KVM API to create and configure the in-kernel irqchip.
pub struct KvmKernelIrqChip {
    pub(super) vm: KvmVm,
    pub(super) vcpus: Arc<Mutex<Vec<Option<KvmVcpu>>>>,
    pub(super) routes: Arc<Mutex<Vec<IrqRoute>>>,
}

#[derive(Serialize, Deserialize)]
struct KvmKernelIrqChipSnapshot {
    routes: Vec<IrqRoute>,
    // apic_base and interrupt_bitmap are part of the IrqChip, despite the
    // fact that we get the values from the Vcpu ioctl "KVM_GET_SREGS".
    // Contains 1 entry per Vcpu.
    apic_base: Vec<u64>,
    interrupt_bitmap: Vec<[u64; 4usize]>,
}

impl KvmKernelIrqChip {
    /// Construct a new KvmKernelIrqchip.
    pub fn new(vm: KvmVm, num_vcpus: usize) -> Result<KvmKernelIrqChip> {
        vm.create_irq_chip()?;
        vm.create_pit()?;
        let ioapic_pins = vm.get_ioapic_num_pins()?;

        Ok(KvmKernelIrqChip {
            vm,
            vcpus: Arc::new(Mutex::new((0..num_vcpus).map(|_| None).collect())),
            routes: Arc::new(Mutex::new(kvm_default_irq_routing_table(ioapic_pins))),
        })
    }
    /// Attempt to create a shallow clone of this x86_64 KvmKernelIrqChip instance.
    pub(super) fn arch_try_clone(&self) -> Result<Self> {
        Ok(KvmKernelIrqChip {
            vm: self.vm.try_clone()?,
            vcpus: self.vcpus.clone(),
            routes: self.routes.clone(),
        })
    }
}

impl IrqChipX86_64 for KvmKernelIrqChip {
    fn try_box_clone(&self) -> Result<Box<dyn IrqChipX86_64>> {
        Ok(Box::new(self.try_clone()?))
    }

    fn as_irq_chip(&self) -> &dyn IrqChip {
        self
    }

    fn as_irq_chip_mut(&mut self) -> &mut dyn IrqChip {
        self
    }

    /// Get the current state of the PIC
    fn get_pic_state(&self, select: PicSelect) -> Result<PicState> {
        Ok(PicState::from(&self.vm.get_pic_state(select)?))
    }

    /// Set the current state of the PIC
    fn set_pic_state(&mut self, select: PicSelect, state: &PicState) -> Result<()> {
        self.vm.set_pic_state(select, &kvm_pic_state::from(state))
    }

    /// Get the current state of the IOAPIC
    fn get_ioapic_state(&self) -> Result<IoapicState> {
        Ok(IoapicState::from(&self.vm.get_ioapic_state()?))
    }

    /// Set the current state of the IOAPIC
    fn set_ioapic_state(&mut self, state: &IoapicState) -> Result<()> {
        self.vm.set_ioapic_state(&kvm_ioapic_state::from(state))
    }

    /// Get the current state of the specified VCPU's local APIC
    fn get_lapic_state(&self, vcpu_id: usize) -> Result<LapicState> {
        match self.vcpus.lock().get(vcpu_id) {
            Some(Some(vcpu)) => Ok(LapicState::from(&vcpu.get_lapic()?)),
            _ => Err(Error::new(libc::ENOENT)),
        }
    }

    /// Set the current state of the specified VCPU's local APIC
    fn set_lapic_state(&mut self, vcpu_id: usize, state: &LapicState) -> Result<()> {
        match self.vcpus.lock().get(vcpu_id) {
            Some(Some(vcpu)) => vcpu.set_lapic(&kvm_lapic_state::from(state)),
            _ => Err(Error::new(libc::ENOENT)),
        }
    }

    /// Get the lapic frequency in Hz
    fn lapic_frequency(&self) -> u32 {
        // KVM emulates the lapic to have a bus frequency of 1GHz
        1_000_000_000
    }

    /// Retrieves the state of the PIT. Gets the pit state via the KVM API.
    fn get_pit(&self) -> Result<PitState> {
        Ok(PitState::from(&self.vm.get_pit_state()?))
    }

    /// Sets the state of the PIT. Sets the pit state via the KVM API.
    fn set_pit(&mut self, state: &PitState) -> Result<()> {
        self.vm.set_pit_state(&kvm_pit_state2::from(state))
    }

    /// Returns true if the PIT uses port 0x61 for the PC speaker, false if 0x61 is unused.
    /// KVM's kernel PIT doesn't use 0x61.
    fn pit_uses_speaker_port(&self) -> bool {
        false
    }

    fn snapshot_chip_specific(&self) -> anyhow::Result<serde_json::Value> {
        let mut apics: Vec<u64> = Vec::new();
        let mut interrupt_bitmaps: Vec<[u64; 4usize]> = Vec::new();
        {
            let vcpus_lock = self.vcpus.lock();
            for vcpu in (*vcpus_lock).iter().flatten() {
                apics.push(vcpu.get_apic_base()?);
                interrupt_bitmaps.push(vcpu.get_interrupt_bitmap()?);
            }
        }
        serde_json::to_value(KvmKernelIrqChipSnapshot {
            routes: self.routes.lock().clone(),
            apic_base: apics,
            interrupt_bitmap: interrupt_bitmaps,
        })
        .context("failed to serialize KvmKernelIrqChip")
    }

    fn restore_chip_specific(&mut self, data: serde_json::Value) -> anyhow::Result<()> {
        let deser: KvmKernelIrqChipSnapshot =
            serde_json::from_value(data).context("failed to deserialize data")?;
        self.set_irq_routes(&deser.routes)?;
        let vcpus_lock = self.vcpus.lock();
        assert_eq!(deser.interrupt_bitmap.len(), vcpus_lock.len());
        assert_eq!(deser.apic_base.len(), vcpus_lock.len());
        for (i, vcpu) in vcpus_lock.iter().enumerate() {
            if let Some(vcpu) = vcpu {
                vcpu.set_apic_base(*deser.apic_base.get(i).unwrap())?;
                vcpu.set_interrupt_bitmap(*deser.interrupt_bitmap.get(i).unwrap())?;
            } else {
                return Err(anyhow!(
                    "Received None instead of Vcpu while restoring apic_base and interrupt_bitmap"
                ));
            }
        }
        Ok(())
    }
}

/// The KvmSplitIrqsChip supports KVM's SPLIT_IRQCHIP feature, where the PIC and IOAPIC
/// are emulated in userspace, while the local APICs are emulated in the kernel.
/// The SPLIT_IRQCHIP feature only supports x86/x86_64 so we only define this IrqChip in crosvm
/// for x86/x86_64.
pub struct KvmSplitIrqChip {
    vm: KvmVm,
    vcpus: Arc<Mutex<Vec<Option<KvmVcpu>>>>,
    routes: Arc<Mutex<Vec<IrqRoute>>>,
    pit: Arc<Mutex<Pit>>,
    pic: Arc<Mutex<Pic>>,
    ioapic: Arc<Mutex<Ioapic>>,
    ioapic_pins: usize,
    /// Vec of ioapic irq events that have been delayed because the ioapic was locked when
    /// service_irq was called on the irqchip. This prevents deadlocks when a Vcpu thread has
    /// locked the ioapic and the ioapic sends a AddMsiRoute signal to the main thread (which
    /// itself may be busy trying to call service_irq).
    delayed_ioapic_irq_events: Arc<Mutex<Vec<usize>>>,
    /// Event which is meant to trigger process of any irqs events that were delayed.
    delayed_ioapic_irq_trigger: Event,
    /// Array of Events that devices will use to assert ioapic pins.
    irq_events: Arc<Mutex<Vec<Option<IrqEvent>>>>,
}

fn kvm_dummy_msi_routes(ioapic_pins: usize) -> Vec<IrqRoute> {
    let mut routes: Vec<IrqRoute> = Vec::new();
    for i in 0..ioapic_pins {
        routes.push(
            // Add dummy MSI routes to replace the default IRQChip routes.
            IrqRoute {
                gsi: i as u32,
                source: IrqSource::Msi {
                    address: 0,
                    data: 0,
                },
            },
        );
    }
    routes
}

impl KvmSplitIrqChip {
    /// Construct a new KvmSplitIrqChip.
    pub fn new(
        vm: KvmVm,
        num_vcpus: usize,
        irq_tube: Tube,
        ioapic_pins: Option<usize>,
    ) -> Result<Self> {
        let ioapic_pins = ioapic_pins.unwrap_or(vm.get_ioapic_num_pins()?);
        vm.enable_split_irqchip(ioapic_pins)?;
        let pit_evt = IrqEdgeEvent::new()?;
        let pit = Pit::new(pit_evt.try_clone()?, Arc::new(Mutex::new(Clock::new()))).map_err(
            |e| match e {
                PitError::CloneEvent(err) => err,
                PitError::CreateEvent(err) => err,
                PitError::CreateWaitContext(err) => err,
                PitError::WaitError(err) => err,
                PitError::TimerCreateError(err) => err,
                PitError::SpawnThread(_) => Error::new(libc::EIO),
            },
        )?;

        let pit_event_source = IrqEventSource::from_device(&pit);

        let mut chip = KvmSplitIrqChip {
            vm,
            vcpus: Arc::new(Mutex::new((0..num_vcpus).map(|_| None).collect())),
            routes: Arc::new(Mutex::new(Vec::new())),
            pit: Arc::new(Mutex::new(pit)),
            pic: Arc::new(Mutex::new(Pic::new())),
            ioapic: Arc::new(Mutex::new(Ioapic::new(irq_tube, ioapic_pins)?)),
            ioapic_pins,
            delayed_ioapic_irq_events: Arc::new(Mutex::new(Vec::new())),
            delayed_ioapic_irq_trigger: Event::new()?,
            irq_events: Arc::new(Mutex::new(Default::default())),
        };

        // Setup standard x86 irq routes
        let mut routes = kvm_default_irq_routing_table(ioapic_pins);
        // Add dummy MSI routes for the first ioapic_pins GSIs
        routes.append(&mut kvm_dummy_msi_routes(ioapic_pins));

        // Set the routes so they get sent to KVM
        chip.set_irq_routes(&routes)?;

        chip.register_edge_irq_event(PIT_CHANNEL0_IRQ, &pit_evt, pit_event_source)?;
        Ok(chip)
    }
}

impl KvmSplitIrqChip {
    /// Convenience function for determining which chips the supplied irq routes to.
    fn routes_to_chips(&self, irq: u32) -> Vec<(IrqSourceChip, u32)> {
        let mut chips = Vec::new();
        for route in self.routes.lock().iter() {
            match route {
                IrqRoute {
                    gsi,
                    source: IrqSource::Irqchip { chip, pin },
                } if *gsi == irq => match chip {
                    IrqSourceChip::PicPrimary
                    | IrqSourceChip::PicSecondary
                    | IrqSourceChip::Ioapic => chips.push((*chip, *pin)),
                    IrqSourceChip::Gic => {
                        error!("gic irq should not be possible on a KvmSplitIrqChip")
                    }
                    IrqSourceChip::Aia => {
                        error!("Aia irq should not be possible on x86_64")
                    }
                },
                // Ignore MSIs and other routes
                _ => {}
            }
        }
        chips
    }

    /// Return true if there is a pending interrupt for the specified vcpu. For KvmSplitIrqChip
    /// this calls interrupt_requested on the pic.
    pub fn interrupt_requested(&self, vcpu_id: usize) -> bool {
        // Pic interrupts for the split irqchip only go to vcpu 0
        if vcpu_id != 0 {
            return false;
        }
        self.pic.lock().interrupt_requested()
    }

    /// Check if the specified vcpu has any pending interrupts. Returns [`None`] for no interrupts,
    /// otherwise [`Some::<u8>`] should be the injected interrupt vector. For [`KvmSplitIrqChip`]
    /// this calls `get_external_interrupt` on the pic.
    pub fn get_external_interrupt(&self, vcpu_id: usize) -> Option<u8> {
        // Pic interrupts for the split irqchip only go to vcpu 0
        if vcpu_id != 0 {
            return None;
        }
        self.pic.lock().get_external_interrupt()
    }

    /// Register an event that can trigger an interrupt for a particular GSI.
    fn register_irq_event(
        &mut self,
        irq: u32,
        irq_event: &Event,
        resample_event: Option<&Event>,
        source: IrqEventSource,
    ) -> Result<Option<IrqEventIndex>> {
        if irq < self.ioapic_pins as u32 {
            let mut evt = IrqEvent {
                gsi: irq,
                event: irq_event.try_clone()?,
                resample_event: None,
                source,
            };

            if let Some(resample_event) = resample_event {
                evt.resample_event = Some(resample_event.try_clone()?);
            }

            let mut irq_events = self.irq_events.lock();
            let index = irq_events.len();
            irq_events.push(Some(evt));
            Ok(Some(index))
        } else {
            self.vm.register_irqfd(irq, irq_event, resample_event)?;
            Ok(None)
        }
    }

    /// Unregister an event for a particular GSI.
    fn unregister_irq_event(&mut self, irq: u32, irq_event: &Event) -> Result<()> {
        if irq < self.ioapic_pins as u32 {
            let mut irq_events = self.irq_events.lock();
            for (index, evt) in irq_events.iter().enumerate() {
                if let Some(evt) = evt {
                    if evt.gsi == irq && irq_event.eq(&evt.event) {
                        irq_events[index] = None;
                        break;
                    }
                }
            }
            Ok(())
        } else {
            self.vm.unregister_irqfd(irq, irq_event)
        }
    }
}

/// Convenience function for determining whether or not two irq routes conflict.
/// Returns true if they conflict.
fn routes_conflict(route: &IrqRoute, other: &IrqRoute) -> bool {
    // They don't conflict if they have different GSIs.
    if route.gsi != other.gsi {
        return false;
    }

    // If they're both MSI with the same GSI then they conflict.
    if let (IrqSource::Msi { .. }, IrqSource::Msi { .. }) = (route.source, other.source) {
        return true;
    }

    // If the route chips match and they have the same GSI then they conflict.
    if let (
        IrqSource::Irqchip {
            chip: route_chip, ..
        },
        IrqSource::Irqchip {
            chip: other_chip, ..
        },
    ) = (route.source, other.source)
    {
        return route_chip == other_chip;
    }

    // Otherwise they do not conflict.
    false
}

/// This IrqChip only works with Kvm so we only implement it for KvmVcpu.
impl IrqChip for KvmSplitIrqChip {
    /// Add a vcpu to the irq chip.
    fn add_vcpu(&mut self, vcpu_id: usize, vcpu: &dyn Vcpu) -> Result<()> {
        let vcpu: &KvmVcpu = vcpu
            .downcast_ref()
            .expect("KvmSplitIrqChip::add_vcpu called with non-KvmVcpu");
        self.vcpus.lock()[vcpu_id] = Some(vcpu.try_clone()?);
        Ok(())
    }

    /// Register an event that can trigger an interrupt for a particular GSI.
    fn register_edge_irq_event(
        &mut self,
        irq: u32,
        irq_event: &IrqEdgeEvent,
        source: IrqEventSource,
    ) -> Result<Option<IrqEventIndex>> {
        self.register_irq_event(irq, irq_event.get_trigger(), None, source)
    }

    fn unregister_edge_irq_event(&mut self, irq: u32, irq_event: &IrqEdgeEvent) -> Result<()> {
        self.unregister_irq_event(irq, irq_event.get_trigger())
    }

    fn register_level_irq_event(
        &mut self,
        irq: u32,
        irq_event: &IrqLevelEvent,
        source: IrqEventSource,
    ) -> Result<Option<IrqEventIndex>> {
        self.register_irq_event(
            irq,
            irq_event.get_trigger(),
            Some(irq_event.get_resample()),
            source,
        )
    }

    fn unregister_level_irq_event(&mut self, irq: u32, irq_event: &IrqLevelEvent) -> Result<()> {
        self.unregister_irq_event(irq, irq_event.get_trigger())
    }

    /// Route an IRQ line to an interrupt controller, or to a particular MSI vector.
    fn route_irq(&mut self, route: IrqRoute) -> Result<()> {
        let mut routes = self.routes.lock();
        routes.retain(|r| !routes_conflict(r, &route));

        routes.push(route);

        // We only call set_gsi_routing with the msi routes
        let mut msi_routes = routes.clone();
        msi_routes.retain(|r| matches!(r.source, IrqSource::Msi { .. }));

        self.vm.set_gsi_routing(&msi_routes)
    }

    /// Replace all irq routes with the supplied routes
    fn set_irq_routes(&mut self, routes: &[IrqRoute]) -> Result<()> {
        let mut current_routes = self.routes.lock();
        *current_routes = routes.to_vec();

        // We only call set_gsi_routing with the msi routes
        let mut msi_routes = routes.to_vec();
        msi_routes.retain(|r| matches!(r.source, IrqSource::Msi { .. }));

        self.vm.set_gsi_routing(&msi_routes)
    }

    /// Return a vector of all registered irq numbers and their associated events and event
    /// indices. These should be used by the main thread to wait for irq events.
    fn irq_event_tokens(&self) -> Result<Vec<(IrqEventIndex, IrqEventSource, Event)>> {
        let mut tokens = vec![];
        for (index, evt) in self.irq_events.lock().iter().enumerate() {
            if let Some(evt) = evt {
                tokens.push((index, evt.source.clone(), evt.event.try_clone()?));
            }
        }
        Ok(tokens)
    }

    /// Either assert or deassert an IRQ line.  Sends to either an interrupt controller, or does
    /// a send_msi if the irq is associated with an MSI.
    fn service_irq(&mut self, irq: u32, level: bool) -> Result<()> {
        let chips = self.routes_to_chips(irq);
        for (chip, pin) in chips {
            match chip {
                IrqSourceChip::PicPrimary | IrqSourceChip::PicSecondary => {
                    self.pic.lock().service_irq(pin as u8, level);
                }
                IrqSourceChip::Ioapic => {
                    self.ioapic.lock().service_irq(pin as usize, level);
                }
                _ => {}
            }
        }
        Ok(())
    }

    /// Service an IRQ event by asserting then deasserting an IRQ line. The associated Event
    /// that triggered the irq event will be read from. If the irq is associated with a resample
    /// Event, then the deassert will only happen after an EOI is broadcast for a vector
    /// associated with the irq line.
    /// For the KvmSplitIrqChip, this function identifies which chips the irq routes to, then
    /// attempts to call service_irq on those chips. If the ioapic is unable to be immediately
    /// locked, we add the irq to the delayed_ioapic_irq_events Vec (though we still read
    /// from the Event that triggered the irq event).
    fn service_irq_event(&mut self, event_index: IrqEventIndex) -> Result<()> {
        if let Some(evt) = &self.irq_events.lock()[event_index] {
            evt.event.wait()?;
            let chips = self.routes_to_chips(evt.gsi);

            for (chip, pin) in chips {
                match chip {
                    IrqSourceChip::PicPrimary | IrqSourceChip::PicSecondary => {
                        let mut pic = self.pic.lock();
                        pic.service_irq(pin as u8, true);
                        if evt.resample_event.is_none() {
                            pic.service_irq(pin as u8, false);
                        }
                    }
                    IrqSourceChip::Ioapic => {
                        if let Ok(mut ioapic) = self.ioapic.try_lock() {
                            ioapic.service_irq(pin as usize, true);
                            if evt.resample_event.is_none() {
                                ioapic.service_irq(pin as usize, false);
                            }
                        } else {
                            self.delayed_ioapic_irq_events.lock().push(event_index);
                            self.delayed_ioapic_irq_trigger.signal().unwrap();
                        }
                    }
                    _ => {}
                }
            }
        }

        Ok(())
    }

    /// Broadcast an end of interrupt. For KvmSplitIrqChip this sends the EOI to the ioapic
    fn broadcast_eoi(&self, vector: u8) -> Result<()> {
        self.ioapic.lock().end_of_interrupt(vector);
        Ok(())
    }

    /// Injects any pending interrupts for `vcpu`.
    /// For KvmSplitIrqChip this injects any PIC interrupts on vcpu_id 0.
    fn inject_interrupts(&self, vcpu: &dyn Vcpu) -> Result<()> {
        let vcpu: &KvmVcpu = vcpu
            .downcast_ref()
            .expect("KvmSplitIrqChip::add_vcpu called with non-KvmVcpu");

        let vcpu_id = vcpu.id();
        if !self.interrupt_requested(vcpu_id) || !vcpu.ready_for_interrupt() {
            return Ok(());
        }

        if let Some(vector) = self.get_external_interrupt(vcpu_id) {
            vcpu.interrupt(vector)?;
        }

        // The second interrupt request should be handled immediately, so ask vCPU to exit as soon
        // as possible.
        if self.interrupt_requested(vcpu_id) {
            vcpu.set_interrupt_window_requested(true);
        }
        Ok(())
    }

    /// Notifies the irq chip that the specified VCPU has executed a halt instruction.
    /// For KvmSplitIrqChip this is a no-op because KVM handles VCPU blocking.
    fn halted(&self, _vcpu_id: usize) {}

    /// Blocks until `vcpu` is in a runnable state or until interrupted by
    /// `IrqChip::kick_halted_vcpus`.  Returns `VcpuRunState::Runnable if vcpu is runnable, or
    /// `VcpuRunState::Interrupted` if the wait was interrupted.
    /// For KvmSplitIrqChip this is a no-op and always returns Runnable because KVM handles VCPU
    /// blocking.
    fn wait_until_runnable(&self, _vcpu: &dyn Vcpu) -> Result<VcpuRunState> {
        Ok(VcpuRunState::Runnable)
    }

    /// Makes unrunnable VCPUs return immediately from `wait_until_runnable`.
    /// For KvmSplitIrqChip this is a no-op because KVM handles VCPU blocking.
    fn kick_halted_vcpus(&self) {}

    /// Get the current MP state of the specified VCPU.
    fn get_mp_state(&self, vcpu_id: usize) -> Result<MPState> {
        match self.vcpus.lock().get(vcpu_id) {
            Some(Some(vcpu)) => Ok(MPState::from(&vcpu.get_mp_state()?)),
            _ => Err(Error::new(libc::ENOENT)),
        }
    }

    /// Set the current MP state of the specified VCPU.
    fn set_mp_state(&mut self, vcpu_id: usize, state: &MPState) -> Result<()> {
        match self.vcpus.lock().get(vcpu_id) {
            Some(Some(vcpu)) => vcpu.set_mp_state(&kvm_mp_state::from(state)),
            _ => Err(Error::new(libc::ENOENT)),
        }
    }

    /// Attempt to clone this IrqChip instance.
    fn try_clone(&self) -> Result<Self> {
        Ok(KvmSplitIrqChip {
            vm: self.vm.try_clone()?,
            vcpus: self.vcpus.clone(),
            routes: self.routes.clone(),
            pit: self.pit.clone(),
            pic: self.pic.clone(),
            ioapic: self.ioapic.clone(),
            ioapic_pins: self.ioapic_pins,
            delayed_ioapic_irq_events: self.delayed_ioapic_irq_events.clone(),
            delayed_ioapic_irq_trigger: Event::new()?,
            irq_events: self.irq_events.clone(),
        })
    }

    /// Finalize irqchip setup. Should be called once all devices have registered irq events and
    /// been added to the io_bus and mmio_bus.
    fn finalize_devices(
        &mut self,
        resources: &mut SystemAllocator,
        io_bus: &Bus,
        mmio_bus: &Bus,
    ) -> Result<()> {
        // Insert pit into io_bus
        io_bus.insert(self.pit.clone(), 0x040, 0x8).unwrap();
        io_bus.insert(self.pit.clone(), 0x061, 0x1).unwrap();

        // Insert pic into io_bus
        io_bus.insert(self.pic.clone(), 0x20, 0x2).unwrap();
        io_bus.insert(self.pic.clone(), 0xa0, 0x2).unwrap();
        io_bus.insert(self.pic.clone(), 0x4d0, 0x2).unwrap();

        // Insert ioapic into mmio_bus
        mmio_bus
            .insert(
                self.ioapic.clone(),
                IOAPIC_BASE_ADDRESS,
                IOAPIC_MEM_LENGTH_BYTES,
            )
            .unwrap();

        // At this point, all of our devices have been created and they have registered their
        // irq events, so we can clone our resample events
        let mut ioapic_resample_events: Vec<Vec<Event>> =
            (0..self.ioapic_pins).map(|_| Vec::new()).collect();
        let mut pic_resample_events: Vec<Vec<Event>> =
            (0..self.ioapic_pins).map(|_| Vec::new()).collect();

        for evt in self.irq_events.lock().iter().flatten() {
            if (evt.gsi as usize) >= self.ioapic_pins {
                continue;
            }
            if let Some(resample_evt) = &evt.resample_event {
                ioapic_resample_events[evt.gsi as usize].push(resample_evt.try_clone()?);
                pic_resample_events[evt.gsi as usize].push(resample_evt.try_clone()?);
            }
        }

        // Register resample events with the ioapic
        self.ioapic
            .lock()
            .register_resample_events(ioapic_resample_events);
        // Register resample events with the pic
        self.pic
            .lock()
            .register_resample_events(pic_resample_events);

        // Make sure all future irq numbers are beyond IO-APIC range.
        let mut irq_num = resources.allocate_irq().unwrap();
        while irq_num < self.ioapic_pins as u32 {
            irq_num = resources.allocate_irq().unwrap();
        }

        Ok(())
    }

    /// The KvmSplitIrqChip's ioapic may be locked because a vcpu thread is currently writing to
    /// the ioapic, and the ioapic may be blocking on adding MSI routes, which requires blocking
    /// socket communication back to the main thread.  Thus, we do not want the main thread to
    /// block on a locked ioapic, so any irqs that could not be serviced because the ioapic could
    /// not be immediately locked are added to the delayed_ioapic_irq_events Vec. This function
    /// processes each delayed event in the vec each time it's called. If the ioapic is still
    /// locked, we keep the queued irqs for the next time this function is called.
    fn process_delayed_irq_events(&mut self) -> Result<()> {
        self.delayed_ioapic_irq_events
            .lock()
            .retain(|&event_index| {
                if let Some(evt) = &self.irq_events.lock()[event_index] {
                    if let Ok(mut ioapic) = self.ioapic.try_lock() {
                        ioapic.service_irq(evt.gsi as usize, true);
                        if evt.resample_event.is_none() {
                            ioapic.service_irq(evt.gsi as usize, false);
                        }

                        false
                    } else {
                        true
                    }
                } else {
                    true
                }
            });

        if self.delayed_ioapic_irq_events.lock().is_empty() {
            self.delayed_ioapic_irq_trigger.wait()?;
        }

        Ok(())
    }

    fn irq_delayed_event_token(&self) -> Result<Option<Event>> {
        Ok(Some(self.delayed_ioapic_irq_trigger.try_clone()?))
    }

    fn check_capability(&self, c: IrqChipCap) -> bool {
        match c {
            IrqChipCap::TscDeadlineTimer => self
                .vm
                .get_hypervisor()
                .check_capability(HypervisorCap::TscDeadlineTimer),
            IrqChipCap::X2Apic => true,
            IrqChipCap::MpStateGetSet => true,
        }
    }
}

#[derive(Serialize, Deserialize)]
struct KvmSplitIrqChipSnapshot {
    routes: Vec<IrqRoute>,
}

impl IrqChipX86_64 for KvmSplitIrqChip {
    fn try_box_clone(&self) -> Result<Box<dyn IrqChipX86_64>> {
        Ok(Box::new(self.try_clone()?))
    }

    fn as_irq_chip(&self) -> &dyn IrqChip {
        self
    }

    fn as_irq_chip_mut(&mut self) -> &mut dyn IrqChip {
        self
    }

    /// Get the current state of the PIC
    fn get_pic_state(&self, select: PicSelect) -> Result<PicState> {
        Ok(self.pic.lock().get_pic_state(select))
    }

    /// Set the current state of the PIC
    fn set_pic_state(&mut self, select: PicSelect, state: &PicState) -> Result<()> {
        self.pic.lock().set_pic_state(select, state);
        Ok(())
    }

    /// Get the current state of the IOAPIC
    fn get_ioapic_state(&self) -> Result<IoapicState> {
        Ok(self.ioapic.lock().get_ioapic_state())
    }

    /// Set the current state of the IOAPIC
    fn set_ioapic_state(&mut self, state: &IoapicState) -> Result<()> {
        self.ioapic.lock().set_ioapic_state(state);
        Ok(())
    }

    /// Get the current state of the specified VCPU's local APIC
    fn get_lapic_state(&self, vcpu_id: usize) -> Result<LapicState> {
        match self.vcpus.lock().get(vcpu_id) {
            Some(Some(vcpu)) => Ok(LapicState::from(&vcpu.get_lapic()?)),
            _ => Err(Error::new(libc::ENOENT)),
        }
    }

    /// Set the current state of the specified VCPU's local APIC
    fn set_lapic_state(&mut self, vcpu_id: usize, state: &LapicState) -> Result<()> {
        match self.vcpus.lock().get(vcpu_id) {
            Some(Some(vcpu)) => vcpu.set_lapic(&kvm_lapic_state::from(state)),
            _ => Err(Error::new(libc::ENOENT)),
        }
    }

    /// Get the lapic frequency in Hz
    fn lapic_frequency(&self) -> u32 {
        // KVM emulates the lapic to have a bus frequency of 1GHz
        1_000_000_000
    }

    /// Retrieves the state of the PIT. Gets the pit state via the KVM API.
    fn get_pit(&self) -> Result<PitState> {
        Ok(self.pit.lock().get_pit_state())
    }

    /// Sets the state of the PIT. Sets the pit state via the KVM API.
    fn set_pit(&mut self, state: &PitState) -> Result<()> {
        self.pit.lock().set_pit_state(state);
        Ok(())
    }

    /// Returns true if the PIT uses port 0x61 for the PC speaker, false if 0x61 is unused.
    /// devices::Pit uses 0x61.
    fn pit_uses_speaker_port(&self) -> bool {
        true
    }

    fn snapshot_chip_specific(&self) -> anyhow::Result<serde_json::Value> {
        serde_json::to_value(KvmSplitIrqChipSnapshot {
            routes: self.routes.lock().clone(),
        })
        .context("failed to serialize KvmSplitIrqChip")
    }

    fn restore_chip_specific(&mut self, data: serde_json::Value) -> anyhow::Result<()> {
        let deser: KvmSplitIrqChipSnapshot =
            serde_json::from_value(data).context("failed to deserialize KvmSplitIrqChip")?;
        self.set_irq_routes(&deser.routes)?;
        Ok(())
    }
}