1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
// Copyright 2021 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use std::cell::RefCell;
use std::collections::BTreeMap;
use std::collections::BTreeSet;
use std::io;
use std::io::Write;
use std::mem::size_of;
#[cfg(windows)]
use std::num::NonZeroU32;
use std::rc::Rc;
use std::result;
use std::sync::atomic::AtomicU64;
use std::sync::atomic::Ordering;
use std::sync::Arc;
use std::time::Duration;

use anyhow::Context;
use base::debug;
use base::error;
use base::info;
use base::warn;
use base::AsRawDescriptor;
use base::Error as SysError;
use base::Event;
use base::RawDescriptor;
use base::Result as SysResult;
use base::Timer;
use base::Tube;
use base::TubeError;
use base::WorkerThread;
use cros_async::sync::RwLock as AsyncRwLock;
use cros_async::AsyncError;
use cros_async::AsyncTube;
use cros_async::EventAsync;
use cros_async::Executor;
use cros_async::ExecutorKind;
use cros_async::TimerAsync;
use data_model::Le16;
use data_model::Le32;
use data_model::Le64;
use disk::AsyncDisk;
use disk::DiskFile;
use futures::channel::mpsc;
use futures::channel::oneshot;
use futures::pin_mut;
use futures::stream::FuturesUnordered;
use futures::stream::StreamExt;
use futures::FutureExt;
use remain::sorted;
use thiserror::Error as ThisError;
use virtio_sys::virtio_config::VIRTIO_F_RING_PACKED;
use vm_control::DiskControlCommand;
use vm_control::DiskControlResult;
use vm_memory::GuestMemory;
use zerocopy::AsBytes;

use crate::virtio::async_utils;
use crate::virtio::block::sys::*;
use crate::virtio::block::DiskOption;
use crate::virtio::copy_config;
use crate::virtio::device_constants::block::virtio_blk_config;
use crate::virtio::device_constants::block::virtio_blk_discard_write_zeroes;
use crate::virtio::device_constants::block::virtio_blk_req_header;
use crate::virtio::device_constants::block::VIRTIO_BLK_DISCARD_WRITE_ZEROES_FLAG_UNMAP;
use crate::virtio::device_constants::block::VIRTIO_BLK_F_BLK_SIZE;
use crate::virtio::device_constants::block::VIRTIO_BLK_F_DISCARD;
use crate::virtio::device_constants::block::VIRTIO_BLK_F_FLUSH;
use crate::virtio::device_constants::block::VIRTIO_BLK_F_MQ;
use crate::virtio::device_constants::block::VIRTIO_BLK_F_RO;
use crate::virtio::device_constants::block::VIRTIO_BLK_F_SEG_MAX;
use crate::virtio::device_constants::block::VIRTIO_BLK_F_WRITE_ZEROES;
use crate::virtio::device_constants::block::VIRTIO_BLK_S_IOERR;
use crate::virtio::device_constants::block::VIRTIO_BLK_S_OK;
use crate::virtio::device_constants::block::VIRTIO_BLK_S_UNSUPP;
use crate::virtio::device_constants::block::VIRTIO_BLK_T_DISCARD;
use crate::virtio::device_constants::block::VIRTIO_BLK_T_FLUSH;
use crate::virtio::device_constants::block::VIRTIO_BLK_T_GET_ID;
use crate::virtio::device_constants::block::VIRTIO_BLK_T_IN;
use crate::virtio::device_constants::block::VIRTIO_BLK_T_OUT;
use crate::virtio::device_constants::block::VIRTIO_BLK_T_WRITE_ZEROES;
use crate::virtio::DescriptorChain;
use crate::virtio::DeviceType;
use crate::virtio::Interrupt;
use crate::virtio::Queue;
use crate::virtio::Reader;
use crate::virtio::VirtioDevice;
use crate::virtio::Writer;
use crate::PciAddress;

const DEFAULT_QUEUE_SIZE: u16 = 256;
const DEFAULT_NUM_QUEUES: u16 = 16;

const SECTOR_SHIFT: u8 = 9;
const SECTOR_SIZE: u64 = 0x01 << SECTOR_SHIFT;

const MAX_DISCARD_SECTORS: u32 = u32::MAX;
const MAX_WRITE_ZEROES_SECTORS: u32 = u32::MAX;
// Arbitrary limits for number of discard/write zeroes segments.
const MAX_DISCARD_SEG: u32 = 32;
const MAX_WRITE_ZEROES_SEG: u32 = 32;
// Hard-coded to 64 KiB (in 512-byte sectors) for now,
// but this should probably be based on cluster size for qcow.
const DISCARD_SECTOR_ALIGNMENT: u32 = 128;

#[sorted]
#[derive(ThisError, Debug)]
enum ExecuteError {
    #[error("failed to copy ID string: {0}")]
    CopyId(io::Error),
    #[error("failed to perform discard or write zeroes; sector={sector} num_sectors={num_sectors} flags={flags}; {ioerr:?}")]
    DiscardWriteZeroes {
        ioerr: Option<disk::Error>,
        sector: u64,
        num_sectors: u32,
        flags: u32,
    },
    #[error("failed to flush: {0}")]
    Flush(disk::Error),
    #[error("not enough space in descriptor chain to write status")]
    MissingStatus,
    #[error("out of range")]
    OutOfRange,
    #[error("failed to read message: {0}")]
    Read(io::Error),
    #[error("io error reading {length} bytes from sector {sector}: {desc_error}")]
    ReadIo {
        length: usize,
        sector: u64,
        desc_error: disk::Error,
    },
    #[error("read only; request_type={request_type}")]
    ReadOnly { request_type: u32 },
    #[error("failed to recieve command message: {0}")]
    ReceivingCommand(TubeError),
    #[error("failed to send command response: {0}")]
    SendingResponse(TubeError),
    #[error("couldn't reset the timer: {0}")]
    TimerReset(base::Error),
    #[error("unsupported ({0})")]
    Unsupported(u32),
    #[error("io error writing {length} bytes from sector {sector}: {desc_error}")]
    WriteIo {
        length: usize,
        sector: u64,
        desc_error: disk::Error,
    },
    #[error("failed to write request status: {0}")]
    WriteStatus(io::Error),
}

enum LogLevel {
    Debug,
    Error,
}

impl ExecuteError {
    fn status(&self) -> u8 {
        match self {
            ExecuteError::CopyId(_) => VIRTIO_BLK_S_IOERR,
            ExecuteError::DiscardWriteZeroes { .. } => VIRTIO_BLK_S_IOERR,
            ExecuteError::Flush(_) => VIRTIO_BLK_S_IOERR,
            ExecuteError::MissingStatus => VIRTIO_BLK_S_IOERR,
            ExecuteError::OutOfRange { .. } => VIRTIO_BLK_S_IOERR,
            ExecuteError::Read(_) => VIRTIO_BLK_S_IOERR,
            ExecuteError::ReadIo { .. } => VIRTIO_BLK_S_IOERR,
            ExecuteError::ReadOnly { .. } => VIRTIO_BLK_S_IOERR,
            ExecuteError::ReceivingCommand(_) => VIRTIO_BLK_S_IOERR,
            ExecuteError::SendingResponse(_) => VIRTIO_BLK_S_IOERR,
            ExecuteError::TimerReset(_) => VIRTIO_BLK_S_IOERR,
            ExecuteError::WriteIo { .. } => VIRTIO_BLK_S_IOERR,
            ExecuteError::WriteStatus(_) => VIRTIO_BLK_S_IOERR,
            ExecuteError::Unsupported(_) => VIRTIO_BLK_S_UNSUPP,
        }
    }

    fn log_level(&self) -> LogLevel {
        match self {
            // Since there is no feature bit for the guest to detect support for
            // VIRTIO_BLK_T_GET_ID, the driver has to try executing the request to see if it works.
            ExecuteError::Unsupported(VIRTIO_BLK_T_GET_ID) => LogLevel::Debug,
            // Log disk I/O errors at debug level to avoid flooding the logs.
            ExecuteError::ReadIo { .. }
            | ExecuteError::WriteIo { .. }
            | ExecuteError::Flush { .. }
            | ExecuteError::DiscardWriteZeroes { .. } => LogLevel::Debug,
            // Log all other failures as errors.
            _ => LogLevel::Error,
        }
    }
}

/// Errors that happen in block outside of executing a request.
/// This includes errors during resize and flush operations.
#[sorted]
#[derive(ThisError, Debug)]
enum ControlError {
    #[error("couldn't get a value from a timer for flushing: {0}")]
    FlushTimer(AsyncError),
    #[error("failed to fsync the disk: {0}")]
    FsyncDisk(disk::Error),
}

/// Maximum length of the virtio-block ID string field.
const ID_LEN: usize = 20;

/// Virtio block device identifier.
/// This is an ASCII string terminated by a \0, unless all 20 bytes are used,
/// in which case the \0 terminator is omitted.
type BlockId = [u8; ID_LEN];

/// Tracks the state of an anynchronous disk.
struct DiskState {
    disk_image: Box<dyn AsyncDisk>,
    read_only: bool,
    sparse: bool,
    id: Option<BlockId>,
    /// A DiskState is owned by each worker's executor and cannot be shared by workers, thus
    /// `worker_shared_state` holds the state shared by workers in Arc.
    worker_shared_state: Arc<AsyncRwLock<WorkerSharedState>>,
}

/// Disk state which can be modified by other worker threads
struct WorkerSharedState {
    disk_size: Arc<AtomicU64>,
}

async fn process_one_request(
    avail_desc: &mut DescriptorChain,
    disk_state: &AsyncRwLock<DiskState>,
    flush_timer: &RefCell<TimerAsync<Timer>>,
    flush_timer_armed: &RefCell<bool>,
) -> result::Result<usize, ExecuteError> {
    let reader = &mut avail_desc.reader;
    let writer = &mut avail_desc.writer;

    // The last byte of the buffer is virtio_blk_req::status.
    // Split it into a separate Writer so that status_writer is the final byte and
    // the original writer is left with just the actual block I/O data.
    let available_bytes = writer.available_bytes();
    let status_offset = available_bytes
        .checked_sub(1)
        .ok_or(ExecuteError::MissingStatus)?;
    let mut status_writer = writer.split_at(status_offset);

    let status = match BlockAsync::execute_request(
        reader,
        writer,
        disk_state,
        flush_timer,
        flush_timer_armed,
    )
    .await
    {
        Ok(()) => VIRTIO_BLK_S_OK,
        Err(e) => {
            match e.log_level() {
                LogLevel::Debug => debug!("failed executing disk request: {:#}", e),
                LogLevel::Error => error!("failed executing disk request: {:#}", e),
            }
            e.status()
        }
    };

    status_writer
        .write_all(&[status])
        .map_err(ExecuteError::WriteStatus)?;
    Ok(available_bytes)
}

/// Process one descriptor chain asynchronously.
async fn process_one_chain(
    queue: &RefCell<Queue>,
    mut avail_desc: DescriptorChain,
    disk_state: &AsyncRwLock<DiskState>,
    flush_timer: &RefCell<TimerAsync<Timer>>,
    flush_timer_armed: &RefCell<bool>,
) {
    let len = match process_one_request(&mut avail_desc, disk_state, flush_timer, flush_timer_armed)
        .await
    {
        Ok(len) => len,
        Err(e) => {
            error!("block: failed to handle request: {:#}", e);
            0
        }
    };

    let mut queue = queue.borrow_mut();
    queue.add_used(avail_desc, len as u32);
    queue.trigger_interrupt();
}

// There is one async task running `handle_queue` per virtio queue in use.
// Receives messages from the guest and queues a task to complete the operations with the async
// executor.
async fn handle_queue(
    disk_state: Rc<AsyncRwLock<DiskState>>,
    queue: Queue,
    evt: EventAsync,
    flush_timer: Rc<RefCell<TimerAsync<Timer>>>,
    flush_timer_armed: Rc<RefCell<bool>>,
    mut stop_rx: oneshot::Receiver<()>,
) -> Queue {
    let queue = RefCell::new(queue);
    let mut background_tasks = FuturesUnordered::new();
    let evt_future = evt.next_val().fuse();
    pin_mut!(evt_future);
    loop {
        // Wait for the next signal from `evt` and process `background_tasks` in the meantime.
        //
        // NOTE: We can't call `evt.next_val()` directly in the `select!` expression. That would
        // create a new future each time, which, in the completion-based async backends like
        // io_uring, means we'd submit a new syscall each time (i.e. a race condition on the
        // eventfd).
        futures::select! {
            _ = background_tasks.next() => continue,
            res = evt_future => {
                evt_future.set(evt.next_val().fuse());
                if let Err(e) = res {
                    error!("Failed to read the next queue event: {:#}", e);
                    continue;
                }
            }
            _ = stop_rx => {
                // Process all the descriptors we've already popped from the queue so that we leave
                // the queue in a consistent state.
                background_tasks.collect::<()>().await;
                return queue.into_inner();
            }
        };
        while let Some(descriptor_chain) = queue.borrow_mut().pop() {
            background_tasks.push(process_one_chain(
                &queue,
                descriptor_chain,
                &disk_state,
                &flush_timer,
                &flush_timer_armed,
            ));
        }
    }
}

async fn handle_command_tube(
    command_tube: &Option<AsyncTube>,
    interrupt: &RefCell<Option<Interrupt>>,
    disk_state: Rc<AsyncRwLock<DiskState>>,
) -> Result<(), ExecuteError> {
    let command_tube = match command_tube {
        Some(c) => c,
        None => {
            futures::future::pending::<()>().await;
            return Ok(());
        }
    };
    loop {
        match command_tube.next().await {
            Ok(command) => {
                let resp = match command {
                    DiskControlCommand::Resize { new_size } => resize(&disk_state, new_size).await,
                };

                let resp_clone = resp.clone();
                command_tube
                    .send(resp_clone)
                    .await
                    .map_err(ExecuteError::SendingResponse)?;
                if let DiskControlResult::Ok = resp {
                    if let Some(interrupt) = &*interrupt.borrow() {
                        interrupt.signal_config_changed();
                    }
                }
            }
            Err(e) => return Err(ExecuteError::ReceivingCommand(e)),
        }
    }
}

async fn resize(disk_state: &AsyncRwLock<DiskState>, new_size: u64) -> DiskControlResult {
    // Acquire exclusive, mutable access to the state so the virtqueue task won't be able to read
    // the state while resizing.
    let disk_state = disk_state.lock().await;
    // Prevent any other worker threads won't be able to do IO.
    let worker_shared_state = Arc::clone(&disk_state.worker_shared_state);
    let worker_shared_state = worker_shared_state.lock().await;

    if disk_state.read_only {
        error!("Attempted to resize read-only block device");
        return DiskControlResult::Err(SysError::new(libc::EROFS));
    }

    info!("Resizing block device to {} bytes", new_size);

    if let Err(e) = disk_state.disk_image.set_len(new_size) {
        error!("Resizing disk failed! {:#}", e);
        return DiskControlResult::Err(SysError::new(libc::EIO));
    }

    // Allocate new space if the disk image is not sparse.
    if !disk_state.sparse {
        if let Err(e) = disk_state.disk_image.allocate(0, new_size) {
            error!("Allocating disk space after resize failed! {:#}", e);
            return DiskControlResult::Err(SysError::new(libc::EIO));
        }
    }

    if let Ok(new_disk_size) = disk_state.disk_image.get_len() {
        worker_shared_state
            .disk_size
            .store(new_disk_size, Ordering::Release);
    }
    DiskControlResult::Ok
}

/// Periodically flushes the disk when the given timer fires.
async fn flush_disk(
    disk_state: Rc<AsyncRwLock<DiskState>>,
    timer: TimerAsync<Timer>,
    armed: Rc<RefCell<bool>>,
) -> Result<(), ControlError> {
    loop {
        timer.wait().await.map_err(ControlError::FlushTimer)?;
        if !*armed.borrow() {
            continue;
        }

        // Reset armed before calling fsync to guarantee that IO requests that started after we call
        // fsync will be committed eventually.
        *armed.borrow_mut() = false;

        disk_state
            .read_lock()
            .await
            .disk_image
            .fsync()
            .await
            .map_err(ControlError::FsyncDisk)?;
    }
}

enum WorkerCmd {
    StartQueue {
        index: usize,
        queue: Queue,
    },
    StopQueue {
        index: usize,
        // Once the queue is stopped, it will be sent back over `response_tx`.
        // `None` indicates that there was no queue at the given index.
        response_tx: oneshot::Sender<Option<Queue>>,
    },
    // Stop all queues without recovering the queues' state and without completing any queued up
    // work .
    AbortQueues {
        // Once the queues are stopped, a `()` value will be sent back over `response_tx`.
        response_tx: oneshot::Sender<()>,
    },
}

// The main worker thread. Initialized the asynchronous worker tasks and passes them to the executor
// to be processed.
//
// `disk_state` is wrapped by `AsyncRwLock`, which provides both shared and exclusive locks. It's
// because the state can be read from the virtqueue task while the control task is processing a
// resizing command.
async fn run_worker(
    ex: &Executor,
    disk_state: &Rc<AsyncRwLock<DiskState>>,
    control_tube: &Option<AsyncTube>,
    mut worker_rx: mpsc::UnboundedReceiver<WorkerCmd>,
    kill_evt: Event,
) -> anyhow::Result<()> {
    // One flush timer per disk.
    let timer = Timer::new().expect("Failed to create a timer");
    let flush_timer_armed = Rc::new(RefCell::new(false));

    // Handles control requests.
    let control_interrupt = RefCell::new(None);
    let control = handle_command_tube(control_tube, &control_interrupt, disk_state.clone()).fuse();
    pin_mut!(control);

    // Handle all the queues in one sub-select call.
    let flush_timer = Rc::new(RefCell::new(
        TimerAsync::new(
            // Call try_clone() to share the same underlying FD with the `flush_disk` task.
            timer.try_clone().expect("Failed to clone flush_timer"),
            ex,
        )
        .expect("Failed to create an async timer"),
    ));

    // Flushes the disk periodically.
    let flush_timer2 = TimerAsync::new(timer, ex).expect("Failed to create an async timer");
    let disk_flush = flush_disk(disk_state.clone(), flush_timer2, flush_timer_armed.clone()).fuse();
    pin_mut!(disk_flush);

    // Exit if the kill event is triggered.
    let kill = async_utils::await_and_exit(ex, kill_evt).fuse();
    pin_mut!(kill);

    // Process any requests to resample the irq value.
    let resample_future = std::future::pending::<anyhow::Result<()>>()
        .fuse()
        .left_future();
    pin_mut!(resample_future);

    // Running queue handlers.
    let mut queue_handlers = FuturesUnordered::new();
    // Async stop functions for queue handlers, by queue index.
    let mut queue_handler_stop_fns = std::collections::BTreeMap::new();

    loop {
        futures::select! {
            _ = queue_handlers.next() => continue,
            r = disk_flush => return r.context("failed to flush a disk"),
            r = control => return r.context("failed to handle a control request"),
            r = resample_future => return r.context("failed to resample an irq value"),
            r = kill => return r.context("failed to wait on the kill event"),
            worker_cmd = worker_rx.next() => {
                match worker_cmd {
                    None => anyhow::bail!("worker control channel unexpectedly closed"),
                    Some(WorkerCmd::StartQueue{index, queue}) => {
                        if matches!(&*resample_future, futures::future::Either::Left(_)) {
                            resample_future.set(
                                async_utils::handle_irq_resample(ex, queue.interrupt().clone())
                                    .fuse()
                                    .right_future(),
                            );
                        }
                        if control_interrupt.borrow().is_none() {
                            *control_interrupt.borrow_mut() = Some(queue.interrupt().clone());
                        }

                        let (tx, rx) = oneshot::channel();
                        let kick_evt = queue.event().try_clone().expect("Failed to clone queue event");
                        let (handle_queue_future, remote_handle) = handle_queue(
                            Rc::clone(disk_state),
                            queue,
                            EventAsync::new(kick_evt, ex).expect("Failed to create async event for queue"),
                            Rc::clone(&flush_timer),
                            Rc::clone(&flush_timer_armed),
                            rx,
                        ).remote_handle();
                        let old_stop_fn = queue_handler_stop_fns.insert(index, move || {
                            // Ask the handler to stop.
                            tx.send(()).unwrap_or_else(|_| panic!("queue handler channel closed early"));
                            // Wait for its return value.
                            remote_handle
                        });

                        // If there was already a handler for this index, stop it before adding the
                        // new handler future.
                        if let Some(stop_fn) = old_stop_fn {
                            warn!("Starting new queue handler without stopping old handler");
                            // Unfortunately we can't just do `stop_fn().await` because the actual
                            // work we are waiting on is in `queue_handlers`. So, run both.
                            let mut fut = stop_fn().fuse();
                            loop {
                                futures::select! {
                                    _ = queue_handlers.next() => continue,
                                    _queue = fut => break,
                                }
                            }
                        }

                        queue_handlers.push(handle_queue_future);
                    }
                    Some(WorkerCmd::StopQueue{index, response_tx}) => {
                        match queue_handler_stop_fns.remove(&index) {
                            Some(stop_fn) => {
                                // NOTE: This await is blocking the select loop. If we want to
                                // support stopping queues concurrently, then it needs to be moved.
                                // For now, keep it simple.
                                //
                                // Unfortunately we can't just do `stop_fn().await` because the
                                // actual work we are waiting on is in `queue_handlers`. So, run
                                // both.
                                let mut fut = stop_fn().fuse();
                                let queue = loop {
                                    futures::select! {
                                        _ = queue_handlers.next() => continue,
                                        queue = fut => break queue,
                                    }
                                };

                                // If this is the last queue, drop references to the interrupt so
                                // that, when queues are started up again, we'll use the new
                                // interrupt passed with the first queue.
                                if queue_handlers.is_empty() {
                                    resample_future.set(std::future::pending().fuse().left_future());
                                    *control_interrupt.borrow_mut() = None;
                                }

                                let _ = response_tx.send(Some(queue));
                            }
                            None => { let _ = response_tx.send(None); },
                        }

                    }
                    Some(WorkerCmd::AbortQueues{response_tx}) => {
                        queue_handlers.clear();
                        queue_handler_stop_fns.clear();

                        resample_future.set(std::future::pending().fuse().left_future());
                        *control_interrupt.borrow_mut() = None;

                        let _ = response_tx.send(());
                    }
                }
            }
        };
    }
}

/// Virtio device for exposing block level read/write operations on a host file.
pub struct BlockAsync {
    // We need to make boot_index public bc the field is used by the main crate to determine boot
    // order
    boot_index: Option<usize>,
    // `None` iff `self.worker_per_queue == false` and the worker thread is running.
    disk_image: Option<Box<dyn DiskFile>>,
    disk_size: Arc<AtomicU64>,
    avail_features: u64,
    read_only: bool,
    sparse: bool,
    seg_max: u32,
    block_size: u32,
    id: Option<BlockId>,
    control_tube: Option<Tube>,
    queue_sizes: Vec<u16>,
    pub(super) executor_kind: ExecutorKind,
    // If `worker_per_queue == true`, `worker_threads` contains the worker for each running queue
    // by index. Otherwise, contains the monolithic worker for all queues at index 0.
    //
    // Once a thread is started, we never stop it, except when `BlockAsync` itself is dropped. That
    // is because we cannot easily convert the `AsyncDisk` back to a `DiskFile` when backed by
    // Overlapped I/O on Windows because the file becomes permanently associated with the IOCP
    // instance of the async executor.
    worker_threads: BTreeMap<usize, (WorkerThread<()>, mpsc::UnboundedSender<WorkerCmd>)>,
    shared_state: Arc<AsyncRwLock<WorkerSharedState>>,
    // Whether to run worker threads in parallel for each queue
    worker_per_queue: bool,
    // Indices of running queues.
    // TODO: The worker already tracks this. Only need it here to stop queues on sleep. Maybe add a
    // worker cmd to stop all at once, then we can delete this field.
    activated_queues: BTreeSet<usize>,
    #[cfg(windows)]
    pub(super) io_concurrency: u32,
    pci_address: Option<PciAddress>,
}

impl BlockAsync {
    /// Create a new virtio block device that operates on the given AsyncDisk.
    pub fn new(
        base_features: u64,
        disk_image: Box<dyn DiskFile>,
        disk_option: &DiskOption,
        control_tube: Option<Tube>,
        queue_size: Option<u16>,
        num_queues: Option<u16>,
    ) -> SysResult<BlockAsync> {
        let read_only = disk_option.read_only;
        let sparse = disk_option.sparse;
        let block_size = disk_option.block_size;
        let packed_queue = disk_option.packed_queue;
        let id = disk_option.id;
        let mut worker_per_queue = disk_option.multiple_workers;
        // Automatically disable multiple workers if the disk image can't be cloned.
        if worker_per_queue && disk_image.try_clone().is_err() {
            base::warn!("multiple workers requested, but not supported by disk image type");
            worker_per_queue = false;
        }
        let executor_kind = disk_option.async_executor.unwrap_or_default();
        let boot_index = disk_option.bootindex;
        #[cfg(windows)]
        let io_concurrency = disk_option.io_concurrency.get();

        if block_size % SECTOR_SIZE as u32 != 0 {
            error!(
                "Block size {} is not a multiple of {}.",
                block_size, SECTOR_SIZE,
            );
            return Err(SysError::new(libc::EINVAL));
        }
        let disk_size = disk_image.get_len()?;
        if disk_size % block_size as u64 != 0 {
            warn!(
                "Disk size {} is not a multiple of block size {}; \
                 the remainder will not be visible to the guest.",
                disk_size, block_size,
            );
        }
        let num_queues = num_queues.unwrap_or(DEFAULT_NUM_QUEUES);
        let multi_queue = match num_queues {
            0 => panic!("Number of queues cannot be zero for a block device"),
            1 => false,
            _ => true,
        };
        let q_size = queue_size.unwrap_or(DEFAULT_QUEUE_SIZE);
        if !q_size.is_power_of_two() {
            error!("queue size {} is not a power of 2.", q_size);
            return Err(SysError::new(libc::EINVAL));
        }
        let queue_sizes = vec![q_size; num_queues as usize];

        let avail_features =
            Self::build_avail_features(base_features, read_only, sparse, multi_queue, packed_queue);

        let seg_max = get_seg_max(q_size);

        let disk_size = Arc::new(AtomicU64::new(disk_size));
        let shared_state = Arc::new(AsyncRwLock::new(WorkerSharedState {
            disk_size: disk_size.clone(),
        }));

        Ok(BlockAsync {
            disk_image: Some(disk_image),
            disk_size,
            avail_features,
            read_only,
            sparse,
            seg_max,
            block_size,
            id,
            queue_sizes,
            worker_threads: BTreeMap::new(),
            shared_state,
            worker_per_queue,
            control_tube,
            executor_kind,
            activated_queues: BTreeSet::new(),
            boot_index,
            #[cfg(windows)]
            io_concurrency,
            pci_address: disk_option.pci_address,
        })
    }

    /// Returns the feature flags given the specified attributes.
    fn build_avail_features(
        base_features: u64,
        read_only: bool,
        sparse: bool,
        multi_queue: bool,
        packed_queue: bool,
    ) -> u64 {
        let mut avail_features = base_features;
        if read_only {
            avail_features |= 1 << VIRTIO_BLK_F_RO;
        } else {
            if sparse {
                avail_features |= 1 << VIRTIO_BLK_F_DISCARD;
            }
            avail_features |= 1 << VIRTIO_BLK_F_FLUSH;
            avail_features |= 1 << VIRTIO_BLK_F_WRITE_ZEROES;
        }
        avail_features |= 1 << VIRTIO_BLK_F_SEG_MAX;
        avail_features |= 1 << VIRTIO_BLK_F_BLK_SIZE;
        if multi_queue {
            avail_features |= 1 << VIRTIO_BLK_F_MQ;
        }
        if packed_queue {
            avail_features |= 1 << VIRTIO_F_RING_PACKED;
        }
        avail_features
    }

    // Execute a single block device request.
    // `writer` includes the data region only; the status byte is not included.
    // It is up to the caller to convert the result of this function into a status byte
    // and write it to the expected location in guest memory.
    async fn execute_request(
        reader: &mut Reader,
        writer: &mut Writer,
        disk_state: &AsyncRwLock<DiskState>,
        flush_timer: &RefCell<TimerAsync<Timer>>,
        flush_timer_armed: &RefCell<bool>,
    ) -> result::Result<(), ExecuteError> {
        // Acquire immutable access to prevent tasks from resizing disk.
        let disk_state = disk_state.read_lock().await;
        // Acquire immutable access to prevent other worker threads from resizing disk.
        let worker_shared_state = disk_state.worker_shared_state.read_lock().await;

        let req_header: virtio_blk_req_header = reader.read_obj().map_err(ExecuteError::Read)?;

        let req_type = req_header.req_type.to_native();
        let sector = req_header.sector.to_native();

        if disk_state.read_only && req_type != VIRTIO_BLK_T_IN && req_type != VIRTIO_BLK_T_GET_ID {
            return Err(ExecuteError::ReadOnly {
                request_type: req_type,
            });
        }

        /// Check that a request accesses only data within the disk's current size.
        /// All parameters are in units of bytes.
        fn check_range(
            io_start: u64,
            io_length: u64,
            disk_size: u64,
        ) -> result::Result<(), ExecuteError> {
            let io_end = io_start
                .checked_add(io_length)
                .ok_or(ExecuteError::OutOfRange)?;
            if io_end > disk_size {
                Err(ExecuteError::OutOfRange)
            } else {
                Ok(())
            }
        }

        let disk_size = worker_shared_state.disk_size.load(Ordering::Relaxed);
        match req_type {
            VIRTIO_BLK_T_IN => {
                let data_len = writer.available_bytes();
                if data_len == 0 {
                    return Ok(());
                }
                let offset = sector
                    .checked_shl(u32::from(SECTOR_SHIFT))
                    .ok_or(ExecuteError::OutOfRange)?;
                check_range(offset, data_len as u64, disk_size)?;
                let disk_image = &disk_state.disk_image;
                writer
                    .write_all_from_at_fut(&**disk_image, data_len, offset)
                    .await
                    .map_err(|desc_error| ExecuteError::ReadIo {
                        length: data_len,
                        sector,
                        desc_error,
                    })?;
            }
            VIRTIO_BLK_T_OUT => {
                let data_len = reader.available_bytes();
                if data_len == 0 {
                    return Ok(());
                }
                let offset = sector
                    .checked_shl(u32::from(SECTOR_SHIFT))
                    .ok_or(ExecuteError::OutOfRange)?;
                check_range(offset, data_len as u64, disk_size)?;
                let disk_image = &disk_state.disk_image;
                reader
                    .read_exact_to_at_fut(&**disk_image, data_len, offset)
                    .await
                    .map_err(|desc_error| ExecuteError::WriteIo {
                        length: data_len,
                        sector,
                        desc_error,
                    })?;

                if !*flush_timer_armed.borrow() {
                    *flush_timer_armed.borrow_mut() = true;

                    let flush_delay = Duration::from_secs(60);
                    flush_timer
                        .borrow_mut()
                        .reset_oneshot(flush_delay)
                        .map_err(ExecuteError::TimerReset)?;
                }
            }
            VIRTIO_BLK_T_DISCARD | VIRTIO_BLK_T_WRITE_ZEROES => {
                if req_type == VIRTIO_BLK_T_DISCARD && !disk_state.sparse {
                    // Discard is a hint; if this is a non-sparse disk, just ignore it.
                    return Ok(());
                }

                while reader.available_bytes() >= size_of::<virtio_blk_discard_write_zeroes>() {
                    let seg: virtio_blk_discard_write_zeroes =
                        reader.read_obj().map_err(ExecuteError::Read)?;

                    let sector = seg.sector.to_native();
                    let num_sectors = seg.num_sectors.to_native();
                    let flags = seg.flags.to_native();

                    let valid_flags = if req_type == VIRTIO_BLK_T_WRITE_ZEROES {
                        VIRTIO_BLK_DISCARD_WRITE_ZEROES_FLAG_UNMAP
                    } else {
                        0
                    };

                    if (flags & !valid_flags) != 0 {
                        return Err(ExecuteError::DiscardWriteZeroes {
                            ioerr: None,
                            sector,
                            num_sectors,
                            flags,
                        });
                    }

                    let offset = sector
                        .checked_shl(u32::from(SECTOR_SHIFT))
                        .ok_or(ExecuteError::OutOfRange)?;
                    let length = u64::from(num_sectors)
                        .checked_shl(u32::from(SECTOR_SHIFT))
                        .ok_or(ExecuteError::OutOfRange)?;
                    check_range(offset, length, disk_size)?;

                    if req_type == VIRTIO_BLK_T_DISCARD {
                        // Since Discard is just a hint and some filesystems may not implement
                        // FALLOC_FL_PUNCH_HOLE, ignore punch_hole errors.
                        let _ = disk_state.disk_image.punch_hole(offset, length).await;
                    } else {
                        disk_state
                            .disk_image
                            .write_zeroes_at(offset, length)
                            .await
                            .map_err(|e| ExecuteError::DiscardWriteZeroes {
                                ioerr: Some(e),
                                sector,
                                num_sectors,
                                flags,
                            })?;
                    }
                }
            }
            VIRTIO_BLK_T_FLUSH => {
                disk_state
                    .disk_image
                    .fdatasync()
                    .await
                    .map_err(ExecuteError::Flush)?;

                if *flush_timer_armed.borrow() {
                    flush_timer
                        .borrow_mut()
                        .clear()
                        .map_err(ExecuteError::TimerReset)?;
                    *flush_timer_armed.borrow_mut() = false;
                }
            }
            VIRTIO_BLK_T_GET_ID => {
                if let Some(id) = disk_state.id {
                    writer.write_all(&id).map_err(ExecuteError::CopyId)?;
                } else {
                    return Err(ExecuteError::Unsupported(req_type));
                }
            }
            t => return Err(ExecuteError::Unsupported(t)),
        };
        Ok(())
    }

    /// Builds and returns the config structure used to specify block features.
    fn build_config_space(
        disk_size: u64,
        seg_max: u32,
        block_size: u32,
        num_queues: u16,
    ) -> virtio_blk_config {
        virtio_blk_config {
            // If the image is not a multiple of the sector size, the tail bits are not exposed.
            capacity: Le64::from(disk_size >> SECTOR_SHIFT),
            seg_max: Le32::from(seg_max),
            blk_size: Le32::from(block_size),
            num_queues: Le16::from(num_queues),
            max_discard_sectors: Le32::from(MAX_DISCARD_SECTORS),
            discard_sector_alignment: Le32::from(DISCARD_SECTOR_ALIGNMENT),
            max_write_zeroes_sectors: Le32::from(MAX_WRITE_ZEROES_SECTORS),
            write_zeroes_may_unmap: 1,
            max_discard_seg: Le32::from(MAX_DISCARD_SEG),
            max_write_zeroes_seg: Le32::from(MAX_WRITE_ZEROES_SEG),
            ..Default::default()
        }
    }

    /// Get the worker for a queue, starting it if necessary.
    // NOTE: Can't use `BTreeMap::entry` because it requires an exclusive ref for the whole branch.
    #[allow(clippy::map_entry)]
    fn start_worker(
        &mut self,
        idx: usize,
    ) -> anyhow::Result<&(WorkerThread<()>, mpsc::UnboundedSender<WorkerCmd>)> {
        let key = if self.worker_per_queue { idx } else { 0 };
        if self.worker_threads.contains_key(&key) {
            return Ok(self.worker_threads.get(&key).unwrap());
        }

        let ex = self.create_executor();
        let control_tube = self.control_tube.take();
        let disk_image = if self.worker_per_queue {
            self.disk_image
                .as_ref()
                .context("Failed to ref a disk image")?
                .try_clone()
                .context("Failed to clone a disk image")?
        } else {
            self.disk_image
                .take()
                .context("Failed to take a disk image")?
        };
        let read_only = self.read_only;
        let sparse = self.sparse;
        let id = self.id;
        let worker_shared_state = self.shared_state.clone();

        let (worker_tx, worker_rx) = mpsc::unbounded();
        let worker_thread = WorkerThread::start("virtio_blk", move |kill_evt| {
            let async_control =
                control_tube.map(|c| AsyncTube::new(&ex, c).expect("failed to create async tube"));

            let async_image = match disk_image.to_async_disk(&ex) {
                Ok(d) => d,
                Err(e) => panic!("Failed to create async disk {:#}", e),
            };

            let disk_state = Rc::new(AsyncRwLock::new(DiskState {
                disk_image: async_image,
                read_only,
                sparse,
                id,
                worker_shared_state,
            }));

            if let Err(err_string) = ex
                .run_until(async {
                    let r = run_worker(&ex, &disk_state, &async_control, worker_rx, kill_evt).await;
                    // Flush any in-memory disk image state to file.
                    if let Err(e) = disk_state.lock().await.disk_image.flush().await {
                        error!("failed to flush disk image when stopping worker: {e:?}");
                    }
                    r
                })
                .expect("run_until failed")
            {
                error!("{:#}", err_string);
            }
        });
        match self.worker_threads.entry(key) {
            std::collections::btree_map::Entry::Occupied(_) => unreachable!(),
            std::collections::btree_map::Entry::Vacant(e) => {
                Ok(e.insert((worker_thread, worker_tx)))
            }
        }
    }

    pub fn start_queue(
        &mut self,
        idx: usize,
        queue: Queue,
        _mem: GuestMemory,
    ) -> anyhow::Result<()> {
        let (_, worker_tx) = self.start_worker(idx)?;
        worker_tx
            .unbounded_send(WorkerCmd::StartQueue { index: idx, queue })
            .expect("worker channel closed early");
        self.activated_queues.insert(idx);
        Ok(())
    }

    pub fn stop_queue(&mut self, idx: usize) -> anyhow::Result<Queue> {
        // TODO: Consider stopping the worker thread if this is the last queue managed by it. Then,
        // simplify `virtio_sleep` and/or `reset` methods.
        let (_, worker_tx) = self
            .worker_threads
            .get(if self.worker_per_queue { &idx } else { &0 })
            .context("worker not found")?;
        let (response_tx, response_rx) = oneshot::channel();
        worker_tx
            .unbounded_send(WorkerCmd::StopQueue {
                index: idx,
                response_tx,
            })
            .expect("worker channel closed early");
        let queue = cros_async::block_on(async {
            response_rx
                .await
                .expect("response_rx closed early")
                .context("queue not found")
        })?;
        self.activated_queues.remove(&idx);
        Ok(queue)
    }
}

impl VirtioDevice for BlockAsync {
    fn keep_rds(&self) -> Vec<RawDescriptor> {
        let mut keep_rds = Vec::new();

        if let Some(disk_image) = &self.disk_image {
            keep_rds.extend(disk_image.as_raw_descriptors());
        }

        if let Some(control_tube) = &self.control_tube {
            keep_rds.push(control_tube.as_raw_descriptor());
        }

        keep_rds
    }

    fn features(&self) -> u64 {
        self.avail_features
    }

    fn device_type(&self) -> DeviceType {
        DeviceType::Block
    }

    fn queue_max_sizes(&self) -> &[u16] {
        &self.queue_sizes
    }

    fn read_config(&self, offset: u64, data: &mut [u8]) {
        let config_space = {
            let disk_size = self.disk_size.load(Ordering::Acquire);
            Self::build_config_space(
                disk_size,
                self.seg_max,
                self.block_size,
                self.queue_sizes.len() as u16,
            )
        };
        copy_config(data, 0, config_space.as_bytes(), offset);
    }

    fn activate(
        &mut self,
        mem: GuestMemory,
        _interrupt: Interrupt,
        queues: BTreeMap<usize, Queue>,
    ) -> anyhow::Result<()> {
        for (i, q) in queues {
            self.start_queue(i, q, mem.clone())?;
        }
        Ok(())
    }

    fn reset(&mut self) -> anyhow::Result<()> {
        for (_, (_, worker_tx)) in self.worker_threads.iter_mut() {
            let (response_tx, response_rx) = oneshot::channel();
            worker_tx
                .unbounded_send(WorkerCmd::AbortQueues { response_tx })
                .expect("worker channel closed early");
            cros_async::block_on(async { response_rx.await.expect("response_rx closed early") });
        }
        self.activated_queues.clear();
        Ok(())
    }

    fn virtio_sleep(&mut self) -> anyhow::Result<Option<BTreeMap<usize, Queue>>> {
        // Reclaim the queues from workers.
        let mut queues = BTreeMap::new();
        for index in self.activated_queues.clone() {
            queues.insert(index, self.stop_queue(index)?);
        }
        if queues.is_empty() {
            return Ok(None); // Not activated.
        }
        Ok(Some(queues))
    }

    fn virtio_wake(
        &mut self,
        queues_state: Option<(GuestMemory, Interrupt, BTreeMap<usize, Queue>)>,
    ) -> anyhow::Result<()> {
        if let Some((mem, _interrupt, queues)) = queues_state {
            for (i, q) in queues {
                self.start_queue(i, q, mem.clone())?
            }
        }
        Ok(())
    }

    fn virtio_snapshot(&mut self) -> anyhow::Result<serde_json::Value> {
        // `virtio_sleep` ensures there is no pending state, except for the `Queue`s, which are
        // handled at a higher layer.
        Ok(serde_json::Value::Null)
    }

    fn virtio_restore(&mut self, data: serde_json::Value) -> anyhow::Result<()> {
        anyhow::ensure!(
            data == serde_json::Value::Null,
            "unexpected snapshot data: should be null, got {}",
            data,
        );
        Ok(())
    }

    fn pci_address(&self) -> Option<PciAddress> {
        self.pci_address
    }

    fn bootorder_fw_cfg(&self, pci_slot: u8) -> Option<(Vec<u8>, usize)> {
        self.boot_index
            .map(|s| (format!("scsi@{}/disk@0,0", pci_slot).as_bytes().to_vec(), s))
    }
}

#[cfg(test)]
mod tests {
    use std::fs::File;
    use std::mem::size_of_val;
    use std::sync::atomic::AtomicU64;

    use data_model::Le32;
    use data_model::Le64;
    use disk::SingleFileDisk;
    use hypervisor::ProtectionType;
    use tempfile::tempfile;
    use tempfile::TempDir;
    use vm_memory::GuestAddress;

    use super::*;
    use crate::suspendable_virtio_tests;
    use crate::virtio::base_features;
    use crate::virtio::descriptor_utils::create_descriptor_chain;
    use crate::virtio::descriptor_utils::DescriptorType;
    use crate::virtio::QueueConfig;

    #[test]
    fn read_size() {
        let f = tempfile().unwrap();
        f.set_len(0x1000).unwrap();

        let features = base_features(ProtectionType::Unprotected);
        let disk_option = DiskOption::default();
        let b = BlockAsync::new(features, Box::new(f), &disk_option, None, None, None).unwrap();
        let mut num_sectors = [0u8; 4];
        b.read_config(0, &mut num_sectors);
        // size is 0x1000, so num_sectors is 8 (4096/512).
        assert_eq!([0x08, 0x00, 0x00, 0x00], num_sectors);
        let mut msw_sectors = [0u8; 4];
        b.read_config(4, &mut msw_sectors);
        // size is 0x1000, so msw_sectors is 0.
        assert_eq!([0x00, 0x00, 0x00, 0x00], msw_sectors);
    }

    #[test]
    fn read_block_size() {
        let f = tempfile().unwrap();
        f.set_len(0x1000).unwrap();

        let features = base_features(ProtectionType::Unprotected);
        let disk_option = DiskOption {
            block_size: 4096,
            sparse: false,
            ..Default::default()
        };
        let b = BlockAsync::new(features, Box::new(f), &disk_option, None, None, None).unwrap();
        let mut blk_size = [0u8; 4];
        b.read_config(20, &mut blk_size);
        // blk_size should be 4096 (0x1000).
        assert_eq!([0x00, 0x10, 0x00, 0x00], blk_size);
    }

    #[test]
    fn read_features() {
        let tempdir = TempDir::new().unwrap();
        let mut path = tempdir.path().to_owned();
        path.push("disk_image");

        // Feature bits 0-23 and 50-127 are specific for the device type, but
        // at the moment crosvm only supports 64 bits of feature bits.
        const DEVICE_FEATURE_BITS: u64 = 0xffffff;

        // read-write block device
        {
            let f = File::create(&path).unwrap();
            let features = base_features(ProtectionType::Unprotected);
            let disk_option = DiskOption::default();
            let b = BlockAsync::new(features, Box::new(f), &disk_option, None, None, None).unwrap();
            // writable device should set VIRTIO_BLK_F_FLUSH + VIRTIO_BLK_F_DISCARD
            // + VIRTIO_BLK_F_WRITE_ZEROES + VIRTIO_BLK_F_BLK_SIZE + VIRTIO_BLK_F_SEG_MAX
            // + VIRTIO_BLK_F_MQ
            assert_eq!(0x7244, b.features() & DEVICE_FEATURE_BITS);
        }

        // read-write block device, non-sparse
        {
            let f = File::create(&path).unwrap();
            let features = base_features(ProtectionType::Unprotected);
            let disk_option = DiskOption {
                sparse: false,
                ..Default::default()
            };
            let b = BlockAsync::new(features, Box::new(f), &disk_option, None, None, None).unwrap();
            // writable device should set VIRTIO_F_FLUSH + VIRTIO_BLK_F_RO
            // + VIRTIO_BLK_F_BLK_SIZE + VIRTIO_BLK_F_SEG_MAX + VIRTIO_BLK_F_MQ
            assert_eq!(0x5244, b.features() & DEVICE_FEATURE_BITS);
        }

        // read-only block device
        {
            let f = File::create(&path).unwrap();
            let features = base_features(ProtectionType::Unprotected);
            let disk_option = DiskOption {
                read_only: true,
                ..Default::default()
            };
            let b = BlockAsync::new(features, Box::new(f), &disk_option, None, None, None).unwrap();
            // read-only device should set VIRTIO_BLK_F_RO
            // + VIRTIO_BLK_F_BLK_SIZE + VIRTIO_BLK_F_SEG_MAX + VIRTIO_BLK_F_MQ
            assert_eq!(0x1064, b.features() & DEVICE_FEATURE_BITS);
        }
    }

    #[test]
    fn check_pci_adress_configurability() {
        let f = tempfile().unwrap();

        let features = base_features(ProtectionType::Unprotected);
        let disk_option = DiskOption {
            pci_address: Some(PciAddress {
                bus: 0,
                dev: 1,
                func: 1,
            }),
            ..Default::default()
        };
        let b = BlockAsync::new(features, Box::new(f), &disk_option, None, None, None).unwrap();

        assert_eq!(b.pci_address(), disk_option.pci_address);
    }

    #[test]
    fn check_runtime_blk_queue_configurability() {
        let tempdir = TempDir::new().unwrap();
        let mut path = tempdir.path().to_owned();
        path.push("disk_image");
        let features = base_features(ProtectionType::Unprotected);

        // Default case
        let f = File::create(&path).unwrap();
        let disk_option = DiskOption::default();
        let b = BlockAsync::new(features, Box::new(f), &disk_option, None, None, None).unwrap();
        assert_eq!(
            [DEFAULT_QUEUE_SIZE; DEFAULT_NUM_QUEUES as usize],
            b.queue_max_sizes()
        );

        // Single queue of size 128
        let f = File::create(&path).unwrap();
        let disk_option = DiskOption::default();
        let b = BlockAsync::new(
            features,
            Box::new(f),
            &disk_option,
            None,
            Some(128),
            Some(1),
        )
        .unwrap();
        assert_eq!([128; 1], b.queue_max_sizes());
        // Single queue device should not set VIRTIO_BLK_F_MQ
        assert_eq!(0, b.features() & (1 << VIRTIO_BLK_F_MQ) as u64);
    }

    #[test]
    fn read_last_sector() {
        let ex = Executor::new().expect("creating an executor failed");

        let f = tempfile().unwrap();
        let disk_size = 0x1000;
        f.set_len(disk_size).unwrap();
        let af = SingleFileDisk::new(f, &ex).expect("Failed to create SFD");

        let mem = Rc::new(
            GuestMemory::new(&[(GuestAddress(0u64), 4 * 1024 * 1024)])
                .expect("Creating guest memory failed."),
        );

        let req_hdr = virtio_blk_req_header {
            req_type: Le32::from(VIRTIO_BLK_T_IN),
            reserved: Le32::from(0),
            sector: Le64::from(7), // Disk is 8 sectors long, so this is the last valid sector.
        };
        mem.write_obj_at_addr(req_hdr, GuestAddress(0x1000))
            .expect("writing req failed");

        let mut avail_desc = create_descriptor_chain(
            &mem,
            GuestAddress(0x100),  // Place descriptor chain at 0x100.
            GuestAddress(0x1000), // Describe buffer at 0x1000.
            vec![
                // Request header
                (DescriptorType::Readable, size_of_val(&req_hdr) as u32),
                // I/O buffer (1 sector of data)
                (DescriptorType::Writable, 512),
                // Request status
                (DescriptorType::Writable, 1),
            ],
            0,
        )
        .expect("create_descriptor_chain failed");

        let timer = Timer::new().expect("Failed to create a timer");
        let flush_timer = Rc::new(RefCell::new(
            TimerAsync::new(timer, &ex).expect("Failed to create an async timer"),
        ));
        let flush_timer_armed = Rc::new(RefCell::new(false));

        let disk_state = Rc::new(AsyncRwLock::new(DiskState {
            disk_image: Box::new(af),
            read_only: false,
            sparse: true,
            id: None,
            worker_shared_state: Arc::new(AsyncRwLock::new(WorkerSharedState {
                disk_size: Arc::new(AtomicU64::new(disk_size)),
            })),
        }));

        let fut = process_one_request(
            &mut avail_desc,
            &disk_state,
            &flush_timer,
            &flush_timer_armed,
        );

        ex.run_until(fut)
            .expect("running executor failed")
            .expect("execute failed");

        let status_offset = GuestAddress((0x1000 + size_of_val(&req_hdr) + 512) as u64);
        let status = mem.read_obj_from_addr::<u8>(status_offset).unwrap();
        assert_eq!(status, VIRTIO_BLK_S_OK);
    }

    #[test]
    fn read_beyond_last_sector() {
        let f = tempfile().unwrap();
        let disk_size = 0x1000;
        f.set_len(disk_size).unwrap();
        let mem = Rc::new(
            GuestMemory::new(&[(GuestAddress(0u64), 4 * 1024 * 1024)])
                .expect("Creating guest memory failed."),
        );

        let req_hdr = virtio_blk_req_header {
            req_type: Le32::from(VIRTIO_BLK_T_IN),
            reserved: Le32::from(0),
            sector: Le64::from(7), // Disk is 8 sectors long, so this is the last valid sector.
        };
        mem.write_obj_at_addr(req_hdr, GuestAddress(0x1000))
            .expect("writing req failed");

        let mut avail_desc = create_descriptor_chain(
            &mem,
            GuestAddress(0x100),  // Place descriptor chain at 0x100.
            GuestAddress(0x1000), // Describe buffer at 0x1000.
            vec![
                // Request header
                (DescriptorType::Readable, size_of_val(&req_hdr) as u32),
                // I/O buffer (2 sectors of data - overlap the end of the disk).
                (DescriptorType::Writable, 512 * 2),
                // Request status
                (DescriptorType::Writable, 1),
            ],
            0,
        )
        .expect("create_descriptor_chain failed");

        let ex = Executor::new().expect("creating an executor failed");

        let af = SingleFileDisk::new(f, &ex).expect("Failed to create SFD");
        let timer = Timer::new().expect("Failed to create a timer");
        let flush_timer = Rc::new(RefCell::new(
            TimerAsync::new(timer, &ex).expect("Failed to create an async timer"),
        ));
        let flush_timer_armed = Rc::new(RefCell::new(false));
        let disk_state = Rc::new(AsyncRwLock::new(DiskState {
            disk_image: Box::new(af),
            read_only: false,
            sparse: true,
            id: None,
            worker_shared_state: Arc::new(AsyncRwLock::new(WorkerSharedState {
                disk_size: Arc::new(AtomicU64::new(disk_size)),
            })),
        }));

        let fut = process_one_request(
            &mut avail_desc,
            &disk_state,
            &flush_timer,
            &flush_timer_armed,
        );

        ex.run_until(fut)
            .expect("running executor failed")
            .expect("execute failed");

        let status_offset = GuestAddress((0x1000 + size_of_val(&req_hdr) + 512 * 2) as u64);
        let status = mem.read_obj_from_addr::<u8>(status_offset).unwrap();
        assert_eq!(status, VIRTIO_BLK_S_IOERR);
    }

    #[test]
    fn get_id() {
        let ex = Executor::new().expect("creating an executor failed");

        let f = tempfile().unwrap();
        let disk_size = 0x1000;
        f.set_len(disk_size).unwrap();

        let mem = GuestMemory::new(&[(GuestAddress(0u64), 4 * 1024 * 1024)])
            .expect("Creating guest memory failed.");

        let req_hdr = virtio_blk_req_header {
            req_type: Le32::from(VIRTIO_BLK_T_GET_ID),
            reserved: Le32::from(0),
            sector: Le64::from(0),
        };
        mem.write_obj_at_addr(req_hdr, GuestAddress(0x1000))
            .expect("writing req failed");

        let mut avail_desc = create_descriptor_chain(
            &mem,
            GuestAddress(0x100),  // Place descriptor chain at 0x100.
            GuestAddress(0x1000), // Describe buffer at 0x1000.
            vec![
                // Request header
                (DescriptorType::Readable, size_of_val(&req_hdr) as u32),
                // I/O buffer (20 bytes for serial)
                (DescriptorType::Writable, 20),
                // Request status
                (DescriptorType::Writable, 1),
            ],
            0,
        )
        .expect("create_descriptor_chain failed");

        let af = SingleFileDisk::new(f, &ex).expect("Failed to create SFD");
        let timer = Timer::new().expect("Failed to create a timer");
        let flush_timer = Rc::new(RefCell::new(
            TimerAsync::new(timer, &ex).expect("Failed to create an async timer"),
        ));
        let flush_timer_armed = Rc::new(RefCell::new(false));

        let id = b"a20-byteserialnumber";

        let disk_state = Rc::new(AsyncRwLock::new(DiskState {
            disk_image: Box::new(af),
            read_only: false,
            sparse: true,
            id: Some(*id),
            worker_shared_state: Arc::new(AsyncRwLock::new(WorkerSharedState {
                disk_size: Arc::new(AtomicU64::new(disk_size)),
            })),
        }));

        let fut = process_one_request(
            &mut avail_desc,
            &disk_state,
            &flush_timer,
            &flush_timer_armed,
        );

        ex.run_until(fut)
            .expect("running executor failed")
            .expect("execute failed");

        let status_offset = GuestAddress((0x1000 + size_of_val(&req_hdr) + 512) as u64);
        let status = mem.read_obj_from_addr::<u8>(status_offset).unwrap();
        assert_eq!(status, VIRTIO_BLK_S_OK);

        let id_offset = GuestAddress(0x1000 + size_of_val(&req_hdr) as u64);
        let returned_id = mem.read_obj_from_addr::<[u8; 20]>(id_offset).unwrap();
        assert_eq!(returned_id, *id);
    }

    #[test]
    fn reset_and_reactivate_single_worker() {
        reset_and_reactivate(false, None);
    }

    #[test]
    fn reset_and_reactivate_multiple_workers() {
        reset_and_reactivate(true, None);
    }

    #[test]
    #[cfg(windows)]
    fn reset_and_reactivate_overrlapped_io() {
        reset_and_reactivate(
            false,
            Some(
                cros_async::sys::windows::ExecutorKindSys::Overlapped { concurrency: None }.into(),
            ),
        );
    }

    fn reset_and_reactivate(
        enables_multiple_workers: bool,
        async_executor: Option<cros_async::ExecutorKind>,
    ) {
        // Create an empty disk image
        let f = tempfile::NamedTempFile::new().unwrap();
        f.as_file().set_len(0x1000).unwrap();
        // Close the file so that it is possible for the disk implementation to take exclusive
        // access when opening it.
        let path: tempfile::TempPath = f.into_temp_path();

        // Create an empty guest memory
        let mem = GuestMemory::new(&[(GuestAddress(0u64), 4 * 1024 * 1024)])
            .expect("Creating guest memory failed.");

        // Create a control tube.
        // NOTE: We don't want to drop the vmm half of the tube. That would cause the worker thread
        // will immediately fail, which isn't what we want to test in this case.
        let (_control_tube, control_tube_device) = Tube::pair().unwrap();

        // Create a BlockAsync to test
        let features = base_features(ProtectionType::Unprotected);
        let id = b"Block serial number\0";
        let disk_option = DiskOption {
            path: path.to_path_buf(),
            read_only: true,
            id: Some(*id),
            sparse: false,
            multiple_workers: enables_multiple_workers,
            async_executor,
            ..Default::default()
        };
        let disk_image = disk_option.open().unwrap();
        let mut b = BlockAsync::new(
            features,
            disk_image,
            &disk_option,
            Some(control_tube_device),
            None,
            None,
        )
        .unwrap();

        let interrupt = Interrupt::new_for_test();

        // activate with queues of an arbitrary size.
        let mut q0 = QueueConfig::new(DEFAULT_QUEUE_SIZE, 0);
        q0.set_ready(true);
        let q0 = q0
            .activate(&mem, Event::new().unwrap(), interrupt.clone())
            .expect("QueueConfig::activate");

        let mut q1 = QueueConfig::new(DEFAULT_QUEUE_SIZE, 0);
        q1.set_ready(true);
        let q1 = q1
            .activate(&mem, Event::new().unwrap(), interrupt.clone())
            .expect("QueueConfig::activate");

        b.activate(mem.clone(), interrupt, BTreeMap::from([(0, q0), (1, q1)]))
            .expect("activate should succeed");
        // assert resources are consumed
        if !enables_multiple_workers {
            assert!(
                b.disk_image.is_none(),
                "BlockAsync should not have a disk image"
            );
        }
        assert!(
            b.control_tube.is_none(),
            "BlockAsync should not have a control tube"
        );
        assert_eq!(
            b.worker_threads.len(),
            if enables_multiple_workers { 2 } else { 1 }
        );

        // reset and assert resources are still not back (should be in the worker thread)
        assert!(b.reset().is_ok(), "reset should succeed");
        if !enables_multiple_workers {
            assert!(
                b.disk_image.is_none(),
                "BlockAsync should not have a disk image"
            );
        }
        assert!(
            b.control_tube.is_none(),
            "BlockAsync should not have a control tube"
        );
        assert_eq!(
            b.worker_threads.len(),
            if enables_multiple_workers { 2 } else { 1 }
        );
        assert_eq!(b.id, Some(*b"Block serial number\0"));

        // re-activate should succeed
        let interrupt = Interrupt::new_for_test();
        let mut q0 = QueueConfig::new(DEFAULT_QUEUE_SIZE, 0);
        q0.set_ready(true);
        let q0 = q0
            .activate(&mem, Event::new().unwrap(), interrupt.clone())
            .expect("QueueConfig::activate");

        let mut q1 = QueueConfig::new(DEFAULT_QUEUE_SIZE, 0);
        q1.set_ready(true);
        let q1 = q1
            .activate(&mem, Event::new().unwrap(), interrupt.clone())
            .expect("QueueConfig::activate");

        b.activate(mem, interrupt, BTreeMap::from([(0, q0), (1, q1)]))
            .expect("re-activate should succeed");
    }

    #[test]
    fn resize_with_single_worker() {
        resize(false);
    }

    #[test]
    fn resize_with_multiple_workers() {
        // Test resize handled by one worker affect the whole state
        resize(true);
    }

    fn resize(enables_multiple_workers: bool) {
        // disk image size constants
        let original_size = 0x1000;
        let resized_size = 0x2000;

        // Create an empty disk image
        let f = tempfile().unwrap();
        f.set_len(original_size).unwrap();
        let disk_image: Box<dyn DiskFile> = Box::new(f);
        assert_eq!(disk_image.get_len().unwrap(), original_size);

        // Create an empty guest memory
        let mem = GuestMemory::new(&[(GuestAddress(0u64), 4 * 1024 * 1024)])
            .expect("Creating guest memory failed.");

        // Create a control tube
        let (control_tube, control_tube_device) = Tube::pair().unwrap();

        // Create a BlockAsync to test
        let features = base_features(ProtectionType::Unprotected);
        let disk_option = DiskOption {
            multiple_workers: enables_multiple_workers,
            ..Default::default()
        };
        let mut b = BlockAsync::new(
            features,
            disk_image.try_clone().unwrap(),
            &disk_option,
            Some(control_tube_device),
            None,
            None,
        )
        .unwrap();

        let interrupt = Interrupt::new_for_test();

        // activate with queues of an arbitrary size.
        let mut q0 = QueueConfig::new(DEFAULT_QUEUE_SIZE, 0);
        q0.set_ready(true);
        let q0 = q0
            .activate(&mem, Event::new().unwrap(), interrupt.clone())
            .expect("QueueConfig::activate");

        let mut q1 = QueueConfig::new(DEFAULT_QUEUE_SIZE, 0);
        q1.set_ready(true);
        let q1 = q1
            .activate(&mem, Event::new().unwrap(), interrupt.clone())
            .expect("QueueConfig::activate");

        b.activate(mem, interrupt.clone(), BTreeMap::from([(0, q0), (1, q1)]))
            .expect("activate should succeed");

        // assert the original size first
        assert_eq!(
            b.disk_size.load(Ordering::Acquire),
            original_size,
            "disk_size should be the original size first"
        );
        let mut capacity = [0u8; 8];
        b.read_config(0, &mut capacity);
        assert_eq!(
            capacity,
            // original_size (0x1000) >> SECTOR_SHIFT (9) = 0x8
            [0x8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00],
            "read_config should read the original capacity first"
        );

        // assert resize works
        control_tube
            .send(&DiskControlCommand::Resize {
                new_size: resized_size,
            })
            .unwrap();
        assert_eq!(
            control_tube.recv::<DiskControlResult>().unwrap(),
            DiskControlResult::Ok,
            "resize command should succeed"
        );
        assert_eq!(
            b.disk_size.load(Ordering::Acquire),
            resized_size,
            "disk_size should be resized to the new size"
        );
        assert_eq!(
            disk_image.get_len().unwrap(),
            resized_size,
            "underlying disk image should be resized to the new size"
        );
        let mut capacity = [0u8; 8];
        b.read_config(0, &mut capacity);
        assert_eq!(
            capacity,
            // resized_size (0x2000) >> SECTOR_SHIFT (9) = 0x10
            [0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00],
            "read_config should read the resized capacity"
        );
        assert_eq!(
            interrupt
                    .get_interrupt_evt()
                    // Wait a bit until the blk signals the interrupt
                    .wait_timeout(Duration::from_millis(300)),
            Ok(base::EventWaitResult::Signaled),
            "interrupt should be signaled"
        );
        assert_eq!(
            interrupt.read_interrupt_status(),
            crate::virtio::INTERRUPT_STATUS_CONFIG_CHANGED as u8,
            "INTERRUPT_STATUS_CONFIG_CHANGED should be signaled"
        );
    }

    #[test]
    fn run_worker_threads() {
        // Create an empty duplicable disk image
        let f = tempfile().unwrap();
        f.set_len(0x1000).unwrap();
        let disk_image: Box<dyn DiskFile> = Box::new(f);

        // Create an empty guest memory
        let mem = GuestMemory::new(&[(GuestAddress(0u64), 4 * 1024 * 1024)])
            .expect("Creating guest memory failed.");

        // Create a BlockAsync to test with single worker thread
        let features = base_features(ProtectionType::Unprotected);
        let disk_option = DiskOption::default();
        let mut b = BlockAsync::new(
            features,
            disk_image.try_clone().unwrap(),
            &disk_option,
            None,
            None,
            None,
        )
        .unwrap();

        // activate with queues of an arbitrary size.
        let interrupt = Interrupt::new_for_test();
        let mut q0 = QueueConfig::new(DEFAULT_QUEUE_SIZE, 0);
        q0.set_ready(true);
        let q0 = q0
            .activate(&mem, Event::new().unwrap(), interrupt.clone())
            .expect("QueueConfig::activate");

        let mut q1 = QueueConfig::new(DEFAULT_QUEUE_SIZE, 0);
        q1.set_ready(true);
        let q1 = q1
            .activate(&mem, Event::new().unwrap(), interrupt.clone())
            .expect("QueueConfig::activate");

        b.activate(mem.clone(), interrupt, BTreeMap::from([(0, q0), (1, q1)]))
            .expect("activate should succeed");

        assert_eq!(b.worker_threads.len(), 1, "1 threads should be spawned.");
        drop(b);

        // Create a BlockAsync to test with multiple worker threads
        let features = base_features(ProtectionType::Unprotected);
        let disk_option = DiskOption {
            read_only: true,
            sparse: false,
            multiple_workers: true,
            ..DiskOption::default()
        };
        let mut b = BlockAsync::new(features, disk_image, &disk_option, None, None, None).unwrap();

        // activate should succeed
        let interrupt = Interrupt::new_for_test();
        let mut q0 = QueueConfig::new(DEFAULT_QUEUE_SIZE, 0);
        q0.set_ready(true);
        let q0 = q0
            .activate(&mem, Event::new().unwrap(), interrupt.clone())
            .expect("QueueConfig::activate");

        let mut q1 = QueueConfig::new(DEFAULT_QUEUE_SIZE, 0);
        q1.set_ready(true);
        let q1 = q1
            .activate(&mem, Event::new().unwrap(), interrupt.clone())
            .expect("QueueConfig::activate");

        b.activate(mem, interrupt, BTreeMap::from([(0, q0), (1, q1)]))
            .expect("activate should succeed");

        assert_eq!(b.worker_threads.len(), 2, "2 threads should be spawned.");
    }

    struct BlockContext {}

    fn modify_device(_block_context: &mut BlockContext, b: &mut BlockAsync) {
        b.avail_features = !b.avail_features;
    }

    fn create_device() -> (BlockContext, BlockAsync) {
        // Create an empty disk image
        let f = tempfile().unwrap();
        f.set_len(0x1000).unwrap();
        let disk_image: Box<dyn DiskFile> = Box::new(f);

        // Create a BlockAsync to test
        let features = base_features(ProtectionType::Unprotected);
        let id = b"Block serial number\0";
        let disk_option = DiskOption {
            read_only: true,
            id: Some(*id),
            sparse: false,
            multiple_workers: true,
            ..Default::default()
        };
        (
            BlockContext {},
            BlockAsync::new(
                features,
                disk_image.try_clone().unwrap(),
                &disk_option,
                None,
                None,
                None,
            )
            .unwrap(),
        )
    }

    #[cfg(any(target_os = "android", target_os = "linux"))]
    suspendable_virtio_tests!(asyncblock, create_device, 2, modify_device);
}