1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
// Copyright 2024 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! This file contains all functions and structs used to handle polling operations for the fido
//! backend device.
use std::collections::VecDeque;
use std::sync::Arc;
use std::time::Duration;
use anyhow::Context;
use base::debug;
use base::error;
use base::AsRawDescriptor;
use base::Event;
use base::EventToken;
use base::RawDescriptor;
use base::Timer;
use base::TimerTrait;
use base::WaitContext;
use sync::Mutex;
use usb_util::TransferStatus;
use crate::usb::backend::fido_backend::error::Error;
use crate::usb::backend::fido_backend::error::Result;
use crate::usb::backend::fido_backend::fido_device::FidoDevice;
use crate::usb::backend::fido_backend::transfer::FidoTransfer;
use crate::usb::backend::fido_backend::transfer::FidoTransferHandle;
use crate::usb::backend::transfer::BackendTransfer;
use crate::usb::backend::transfer::GenericTransferHandle;
#[derive(EventToken)]
enum Token {
TransactionPollTimer,
TransferPollTimer,
PacketPollTimer,
Kill,
}
/// PollTimer is a wrapper around the crosvm-provided `Timer` struct with a focus on maintaining a
/// regular interval with easy `arm()` and `clear()` methods to start and stop the timer
/// transparently from the interval.
pub struct PollTimer {
name: String,
timer: Timer,
interval: Duration,
}
impl PollTimer {
pub fn new(name: String, interval: Duration) -> Result<Self> {
let timer = Timer::new().map_err(Error::CannotCreatePollTimer)?;
Ok(PollTimer {
name,
timer,
interval,
})
}
/// Arms the timer with its initialized interval.
pub fn arm(&mut self) -> Result<()> {
self.timer
.reset_oneshot(self.interval)
.map_err(|error| Error::CannotArmPollTimer {
name: self.name.clone(),
error,
})
}
/// Clears the timer, disarming it.
pub fn clear(&mut self) -> Result<()> {
self.timer
.clear()
.map_err(|error| Error::CannotClearPollTimer {
name: self.name.clone(),
error,
})
}
}
impl AsRawDescriptor for PollTimer {
fn as_raw_descriptor(&self) -> RawDescriptor {
self.timer.as_raw_descriptor()
}
}
/// This function is the main poll thread. It periodically wakes up to emulate a USB interrupt
/// (poll) device behavior. It takes care of three different poll timers:
/// - `PacketPollTimer`: periodically polls for available USB transfers waiting for data
/// - `TransferPollTimer`: times out USB transfers that stay pending for too long without data
/// - `TransactionPollTimer`: puts the security key device to sleep when transactions time out
pub fn poll_for_pending_packets(
device: Arc<Mutex<FidoDevice>>,
pending_in_transfers: Arc<
Mutex<VecDeque<(FidoTransferHandle, Arc<Mutex<Option<FidoTransfer>>>)>>,
>,
kill_evt: Event,
) -> Result<()> {
let device_lock = device.lock();
let wait_ctx: WaitContext<Token> = WaitContext::build_with(&[
(&device_lock.guest_key.lock().timer, Token::PacketPollTimer),
(&device_lock.transfer_timer, Token::TransferPollTimer),
(
&device_lock.transaction_manager.lock().transaction_timer,
Token::TransactionPollTimer,
),
(&kill_evt, Token::Kill),
])
.context("poll worker context failed")
.map_err(Error::WaitContextFailed)?;
drop(device_lock);
loop {
let events = wait_ctx
.wait()
.context("wait failed")
.map_err(Error::WaitContextFailed)?;
for event in events.iter().filter(|e| e.is_readable) {
match event.token {
// This timer checks that we have u2f host packets pending, waiting to be sent to
// the guest, and that we have a valid USB transfer from the guest waiting for
// data.
Token::PacketPollTimer => {
handle_packet_poll(&device, &pending_in_transfers)?;
// If there are still transfers waiting in the queue we continue polling.
if packet_timer_needs_rearm(&device, &pending_in_transfers) {
device.lock().guest_key.lock().timer.arm()?;
}
}
// This timer takes care of expiring USB transfers from the guest as they time out
// waiting for data from the host. It is the equivalent of a USB interrupt poll
// thread.
Token::TransferPollTimer => {
let mut transfers_lock = pending_in_transfers.lock();
transfers_lock.retain(process_pending_transfer);
// If the device has died, we need to tell the first pending transfer
// that the device has been lost at the xhci level, so we can safely detach the
// device from the guest.
if device.lock().is_device_lost {
let (_, transfer_opt) = match transfers_lock.pop_front() {
Some(tuple) => tuple,
None => {
// No pending transfers waiting for data, so we do nothing.
continue;
}
};
signal_device_lost(transfer_opt.lock().take());
return Ok(());
}
// If we still have pending transfers waiting, we keep polling, otherwise we
// stop.
if transfers_lock.len() > 0 {
device.lock().transfer_timer.arm()?;
} else {
device.lock().transfer_timer.clear()?;
}
}
// This timer takes care of timing out u2f transactions that haven't seen any
// activity from either guest or host for a long-enough time.
Token::TransactionPollTimer => {
// If transactions aren't expired, re-arm
if !device
.lock()
.transaction_manager
.lock()
.expire_transactions()
{
device
.lock()
.transaction_manager
.lock()
.transaction_timer
.arm()?;
}
}
Token::Kill => {
debug!("Fido poll thread exited succesfully.");
return Ok(());
}
}
}
}
}
/// Handles polling for available data to send back to the guest.
fn handle_packet_poll(
device: &Arc<Mutex<FidoDevice>>,
pending_in_transfers: &Arc<
Mutex<VecDeque<(FidoTransferHandle, Arc<Mutex<Option<FidoTransfer>>>)>>,
>,
) -> Result<()> {
if device.lock().is_device_lost {
// Rather than erroring here, we just return Ok as the case of a device being lost is
// handled by the transfer timer.
return Ok(());
}
let mut transfers_lock = pending_in_transfers.lock();
// Process and remove expired or cancelled transfers
transfers_lock.retain(process_pending_transfer);
if transfers_lock.is_empty() {
// We cannot do anything, the active transfers got pruned.
// Return Ok() and let the poll thread handle the missing packets.
return Ok(());
}
// Fetch first available transfer from the pending list and its fail handle.
let (_, transfer_opt) = match transfers_lock.pop_front() {
Some(tuple) => tuple,
None => {
// No pending transfers waiting for data, so we do nothing.
return Ok(());
}
};
drop(transfers_lock);
let mut transfer_lock = transfer_opt.lock();
let transfer = transfer_lock.take();
// Obtain the next packet from the guest key and send it to the guest
match device
.lock()
.guest_key
.lock()
.return_data_to_guest(transfer)?
{
None => {
// The transfer was successful, nothing to do.
Ok(())
}
transfer => {
// We received our transfer back, it means there's no data available to return to the
// guest.
*transfer_lock = transfer;
drop(transfer_lock);
let cancel_handle = FidoTransferHandle {
weak_transfer: Arc::downgrade(&transfer_opt),
};
// Put the transfer back into the pending queue, we can try again later.
pending_in_transfers
.lock()
.push_front((cancel_handle, transfer_opt));
Ok(())
}
}
}
/// Filter functions used to check for expired or canceled transfers. It is called over each
/// USB transfer waiting in the pending queue. Returns true if the given transfer is still valid,
/// otherwise false.
fn process_pending_transfer(
transfer_handle_pair: &(FidoTransferHandle, Arc<Mutex<Option<FidoTransfer>>>),
) -> bool {
let mut lock = transfer_handle_pair.1.lock();
let transfer = match lock.take() {
Some(t) => {
// The transfer has already been cancelled. We report back to the xhci level and remove
// it.
if t.status() == TransferStatus::Cancelled {
t.complete_transfer();
return false;
}
// The transfer has expired, we cancel it and report back to the xhci level.
if t.timeout_expired() {
if let Err(e) = transfer_handle_pair.0.cancel() {
error!("Failed to properly cancel IN transfer, dropping the request: {e:#}");
return false;
}
t.complete_transfer();
return false;
}
Some(t)
}
None => {
// Transfer has already been removed so we can skip it.
return false;
}
};
*lock = transfer;
true
}
/// Signals to the current transfer that the underlying device has been lost and the xhci layer
/// should recover by detaching the FIDO backend.
fn signal_device_lost(transfer_opt: Option<FidoTransfer>) {
if let Some(mut transfer) = transfer_opt {
transfer.signal_device_lost();
transfer.complete_transfer();
}
}
/// Checks whether we should re-arm the packet poll timer or not.
fn packet_timer_needs_rearm(
device: &Arc<Mutex<FidoDevice>>,
pending_in_transfers: &Arc<
Mutex<VecDeque<(FidoTransferHandle, Arc<Mutex<Option<FidoTransfer>>>)>>,
>,
) -> bool {
let transfers_lock = pending_in_transfers.lock();
if transfers_lock.is_empty() {
// If there are no transfers pending, it means that some packet got stuck or lost,
// so we just reset the entire device state since no one is waiting for a
// response from the xhci level anyway.
device.lock().guest_key.lock().reset();
return false;
}
true
}