1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
// Copyright 2017 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use std::ffi::CStr;
use std::fs::File;
use std::io::Seek;
use std::io::SeekFrom;

use libc::c_char;
use libc::c_int;
use libc::c_long;
use libc::c_uint;
use libc::close;
use libc::fcntl;
use libc::ftruncate64;
use libc::off64_t;
use libc::syscall;
use libc::SYS_memfd_create;
use libc::F_ADD_SEALS;
use libc::F_GET_SEALS;
use libc::F_SEAL_FUTURE_WRITE;
use libc::F_SEAL_GROW;
use libc::F_SEAL_SEAL;
use libc::F_SEAL_SHRINK;
use libc::F_SEAL_WRITE;
use libc::MFD_ALLOW_SEALING;
use once_cell::sync::Lazy;

use crate::errno_result;
use crate::shm::PlatformSharedMemory;
use crate::trace;
use crate::AsRawDescriptor;
use crate::FromRawDescriptor;
use crate::Result;
use crate::SafeDescriptor;
use crate::SharedMemory;

// from <sys/memfd.h>
const MFD_CLOEXEC: c_uint = 0x0001;
const MFD_NOEXEC_SEAL: c_uint = 0x0008;

// SAFETY: It is caller's responsibility to ensure the args are valid and check the
// return value of the function.
unsafe fn memfd_create(name: *const c_char, flags: c_uint) -> c_int {
    syscall(SYS_memfd_create as c_long, name, flags) as c_int
}

/// A set of memfd seals.
///
/// An enumeration of each bit can be found at `fcntl(2)`.
#[derive(Copy, Clone, Default)]
pub struct MemfdSeals(i32);

impl MemfdSeals {
    /// Returns an empty set of memfd seals.
    #[inline]
    pub fn new() -> MemfdSeals {
        MemfdSeals(0)
    }

    /// Gets the raw bitmask of seals enumerated in `fcntl(2)`.
    #[inline]
    pub fn bitmask(self) -> i32 {
        self.0
    }

    /// True if the grow seal bit is present.
    #[inline]
    pub fn grow_seal(self) -> bool {
        self.0 & F_SEAL_GROW != 0
    }

    /// Sets the grow seal bit.
    #[inline]
    pub fn set_grow_seal(&mut self) {
        self.0 |= F_SEAL_GROW;
    }

    /// True if the shrink seal bit is present.
    #[inline]
    pub fn shrink_seal(self) -> bool {
        self.0 & F_SEAL_SHRINK != 0
    }

    /// Sets the shrink seal bit.
    #[inline]
    pub fn set_shrink_seal(&mut self) {
        self.0 |= F_SEAL_SHRINK;
    }

    /// True if the write seal bit is present.
    #[inline]
    pub fn write_seal(self) -> bool {
        self.0 & F_SEAL_WRITE != 0
    }

    /// Sets the write seal bit.
    #[inline]
    pub fn set_write_seal(&mut self) {
        self.0 |= F_SEAL_WRITE;
    }

    /// True if the future write seal bit is present.
    #[inline]
    pub fn future_write_seal(self) -> bool {
        self.0 & F_SEAL_FUTURE_WRITE != 0
    }

    /// Sets the future write seal bit.
    #[inline]
    pub fn set_future_write_seal(&mut self) {
        self.0 |= F_SEAL_FUTURE_WRITE;
    }

    /// True of the seal seal bit is present.
    #[inline]
    pub fn seal_seal(self) -> bool {
        self.0 & F_SEAL_SEAL != 0
    }

    /// Sets the seal seal bit.
    #[inline]
    pub fn set_seal_seal(&mut self) {
        self.0 |= F_SEAL_SEAL;
    }
}

static MFD_NOEXEC_SEAL_SUPPORTED: Lazy<bool> = Lazy::new(|| {
    // SAFETY: We pass a valid zero-terminated C string and check the result.
    let fd = unsafe {
        // The memfd name used here does not need to be unique, since duplicates are allowed and
        // will not cause failures.
        memfd_create(
            b"MFD_NOEXEC_SEAL_test\0".as_ptr() as *const c_char,
            MFD_CLOEXEC | MFD_ALLOW_SEALING | MFD_NOEXEC_SEAL,
        )
    };
    if fd < 0 {
        trace!("MFD_NOEXEC_SEAL is not supported");
        false
    } else {
        trace!("MFD_NOEXEC_SEAL is supported");
        // SAFETY: We know `fd` is a valid file descriptor owned by us.
        unsafe {
            close(fd);
        }
        true
    }
});

impl PlatformSharedMemory for SharedMemory {
    /// Creates a new shared memory file descriptor with the specified `size` in bytes.
    ///
    /// `name` will appear in `/proc/self/fd/<shm fd>` for the purposes of debugging. The name does
    /// not need to be unique.
    ///
    /// The file descriptor is opened with the close on exec flag and allows memfd sealing.
    ///
    /// If the `MFD_NOEXEC_SEAL` flag is supported, the resulting file will also be created with a
    /// non-executable file mode (in other words, it cannot be passed to the `exec` family of system
    /// calls).
    fn new(debug_name: &CStr, size: u64) -> Result<SharedMemory> {
        let mut flags = MFD_CLOEXEC | MFD_ALLOW_SEALING;
        if *MFD_NOEXEC_SEAL_SUPPORTED {
            flags |= MFD_NOEXEC_SEAL;
        }

        let shm_name = debug_name.as_ptr() as *const c_char;
        // SAFETY:
        // The following are safe because we give a valid C string and check the
        // results of the memfd_create call.
        let fd = unsafe { memfd_create(shm_name, flags) };
        if fd < 0 {
            return errno_result();
        }
        // SAFETY: Safe because fd is valid.
        let descriptor = unsafe { SafeDescriptor::from_raw_descriptor(fd) };

        // Set the size of the memfd.
        // SAFETY: Safe because we check the return value to ftruncate64 and all the args to the
        // function are valid.
        let ret = unsafe { ftruncate64(descriptor.as_raw_descriptor(), size as off64_t) };
        if ret < 0 {
            return errno_result();
        }

        Ok(SharedMemory { descriptor, size })
    }

    /// Creates a SharedMemory instance from a SafeDescriptor owning a reference to a
    /// shared memory descriptor. Ownership of the underlying descriptor is transferred to the
    /// new SharedMemory object.
    fn from_safe_descriptor(descriptor: SafeDescriptor, size: u64) -> Result<SharedMemory> {
        Ok(SharedMemory { descriptor, size })
    }
}

pub trait SharedMemoryLinux {
    /// Constructs a `SharedMemory` instance from a `File` that represents shared memory.
    ///
    /// The size of the resulting shared memory will be determined using `File::seek`. If the given
    /// file's size can not be determined this way, this will return an error.
    fn from_file(file: File) -> Result<SharedMemory>;

    /// Gets the memfd seals that have already been added to this.
    ///
    /// This may fail if this instance was not constructed from a memfd.
    fn get_seals(&self) -> Result<MemfdSeals>;

    /// Adds the given set of memfd seals.
    ///
    /// This may fail if this instance was not constructed from a memfd with sealing allowed or if
    /// the seal seal (`F_SEAL_SEAL`) bit was already added.
    fn add_seals(&mut self, seals: MemfdSeals) -> Result<()>;
}

impl SharedMemoryLinux for SharedMemory {
    fn from_file(mut file: File) -> Result<SharedMemory> {
        let file_size = file.seek(SeekFrom::End(0))?;
        Ok(SharedMemory {
            descriptor: file.into(),
            size: file_size,
        })
    }

    fn get_seals(&self) -> Result<MemfdSeals> {
        // SAFETY: Safe because we check the return value to fcntl and all the args to the
        // function are valid.
        let ret = unsafe { fcntl(self.descriptor.as_raw_descriptor(), F_GET_SEALS) };
        if ret < 0 {
            return errno_result();
        }
        Ok(MemfdSeals(ret))
    }

    fn add_seals(&mut self, seals: MemfdSeals) -> Result<()> {
        // SAFETY: Safe because we check the return value to fcntl and all the args to the
        // function are valid.
        let ret = unsafe { fcntl(self.descriptor.as_raw_descriptor(), F_ADD_SEALS, seals) };
        if ret < 0 {
            return errno_result();
        }
        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use std::fs::read_link;

    use libc::EINVAL;

    use crate::linux::SharedMemoryLinux;
    use crate::pagesize;
    use crate::AsRawDescriptor;
    use crate::Error;
    use crate::MemoryMappingBuilder;
    use crate::Result;
    use crate::SharedMemory;
    use crate::VolatileMemory;

    /// Reads the name from the underlying file as a `String`.
    ///
    /// If the underlying file was not created with `SharedMemory::new` or with `memfd_create`, the
    /// results are undefined. Because this returns a `String`, the name's bytes are interpreted as
    /// utf-8.
    fn read_name(shm: &SharedMemory) -> Result<String> {
        let fd_path = format!("/proc/self/fd/{}", shm.as_raw_descriptor());
        let link_name = read_link(fd_path)?;
        link_name
            .to_str()
            .map(|s| {
                s.trim_start_matches("/memfd:")
                    .trim_end_matches(" (deleted)")
                    .to_owned()
            })
            .ok_or_else(|| Error::new(EINVAL))
    }

    #[test]
    fn new() {
        const TEST_NAME: &str = "Name McCool Person";
        let shm = SharedMemory::new(TEST_NAME, 0).expect("failed to create shared memory");
        assert_eq!(read_name(&shm), Ok(TEST_NAME.to_owned()));
    }

    #[test]
    fn new_huge() {
        let shm = SharedMemory::new("test", 0x7fff_ffff_ffff_ffff)
            .expect("failed to create shared memory");
        assert_eq!(shm.size(), 0x7fff_ffff_ffff_ffff);
    }

    #[test]
    fn new_sealed() {
        let mut shm = SharedMemory::new("test", 0).expect("failed to create shared memory");
        let mut seals = shm.get_seals().expect("failed to get seals");
        assert!(!seals.seal_seal());
        seals.set_seal_seal();
        shm.add_seals(seals).expect("failed to add seals");
        seals = shm.get_seals().expect("failed to get seals");
        assert!(seals.seal_seal());
        // Adding more seals should be rejected by the kernel.
        shm.add_seals(seals).unwrap_err();
    }

    #[test]
    fn mmap_page() {
        let shm = SharedMemory::new("test", 4096).expect("failed to create shared memory");

        let mmap1 = MemoryMappingBuilder::new(shm.size() as usize)
            .from_shared_memory(&shm)
            .build()
            .expect("failed to map shared memory");
        let mmap2 = MemoryMappingBuilder::new(shm.size() as usize)
            .from_shared_memory(&shm)
            .build()
            .expect("failed to map shared memory");

        assert_ne!(
            mmap1.get_slice(0, 1).unwrap().as_ptr(),
            mmap2.get_slice(0, 1).unwrap().as_ptr()
        );

        mmap1
            .get_slice(0, 4096)
            .expect("failed to get mmap slice")
            .write_bytes(0x45);

        for i in 0..4096 {
            assert_eq!(mmap2.read_obj::<u8>(i).unwrap(), 0x45u8);
        }
    }

    #[test]
    fn mmap_page_offset() {
        let shm = SharedMemory::new("test", 2 * pagesize() as u64)
            .expect("failed to create shared memory");

        let mmap1 = MemoryMappingBuilder::new(shm.size() as usize)
            .from_shared_memory(&shm)
            .offset(pagesize() as u64)
            .build()
            .expect("failed to map shared memory");
        let mmap2 = MemoryMappingBuilder::new(shm.size() as usize)
            .from_shared_memory(&shm)
            .build()
            .expect("failed to map shared memory");

        mmap1
            .get_slice(0, pagesize())
            .expect("failed to get mmap slice")
            .write_bytes(0x45);

        for i in 0..pagesize() {
            assert_eq!(mmap2.read_obj::<u8>(i).unwrap(), 0);
        }
        for i in pagesize()..(2 * pagesize()) {
            assert_eq!(mmap2.read_obj::<u8>(i).unwrap(), 0x45u8);
        }
    }
}