1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
// Copyright 2020 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use std::io;
use std::os::fd::AsRawFd;
use std::sync::Arc;
use base::sys::fallocate;
use base::sys::FallocateMode;
use base::AsRawDescriptor;
use base::VolatileSlice;
use remain::sorted;
use thiserror::Error as ThisError;
use super::fd_executor;
use super::fd_executor::EpollReactor;
use super::fd_executor::RegisteredSource;
use crate::common_executor::RawExecutor;
use crate::mem::BackingMemory;
use crate::AsyncError;
use crate::AsyncResult;
use crate::MemRegion;
#[sorted]
#[derive(ThisError, Debug)]
pub enum Error {
/// An error occurred attempting to register a waker with the executor.
#[error("An error occurred attempting to register a waker with the executor: {0}.")]
AddingWaker(fd_executor::Error),
/// Failed to discard a block
#[error("Failed to discard a block: {0}")]
Discard(base::Error),
/// An executor error occurred.
#[error("An executor error occurred: {0}")]
Executor(fd_executor::Error),
/// An error occurred when executing fallocate synchronously.
#[error("An error occurred when executing fallocate synchronously: {0}")]
Fallocate(base::Error),
/// An error occurred when executing fdatasync synchronously.
#[error("An error occurred when executing fdatasync synchronously: {0}")]
Fdatasync(base::Error),
/// An error occurred when executing fsync synchronously.
#[error("An error occurred when executing fsync synchronously: {0}")]
Fsync(base::Error),
/// An error occurred when reading the FD.
#[error("An error occurred when reading the FD: {0}.")]
Read(base::Error),
/// Can't seek file.
#[error("An error occurred when seeking the FD: {0}.")]
Seeking(base::Error),
/// An error occurred when writing the FD.
#[error("An error occurred when writing the FD: {0}.")]
Write(base::Error),
}
pub type Result<T> = std::result::Result<T, Error>;
impl From<Error> for io::Error {
fn from(e: Error) -> Self {
use Error::*;
match e {
AddingWaker(e) => e.into(),
Executor(e) => e.into(),
Discard(e) => e.into(),
Fallocate(e) => e.into(),
Fdatasync(e) => e.into(),
Fsync(e) => e.into(),
Read(e) => e.into(),
Seeking(e) => e.into(),
Write(e) => e.into(),
}
}
}
impl From<Error> for AsyncError {
fn from(e: Error) -> AsyncError {
AsyncError::SysVariants(e.into())
}
}
/// Async wrapper for an IO source that uses the FD executor to drive async operations.
pub struct PollSource<F> {
registered_source: RegisteredSource<F>,
}
impl<F: AsRawDescriptor> PollSource<F> {
/// Create a new `PollSource` from the given IO source.
pub fn new(f: F, ex: &Arc<RawExecutor<EpollReactor>>) -> Result<Self> {
RegisteredSource::new(ex, f)
.map({
|f| PollSource {
registered_source: f,
}
})
.map_err(Error::Executor)
}
}
impl<F: AsRawDescriptor> PollSource<F> {
/// Reads from the iosource at `file_offset` and fill the given `vec`.
pub async fn read_to_vec(
&self,
file_offset: Option<u64>,
mut vec: Vec<u8>,
) -> AsyncResult<(usize, Vec<u8>)> {
loop {
let res = if let Some(offset) = file_offset {
// SAFETY:
// Safe because this will only modify `vec` and we check the return value.
unsafe {
libc::pread64(
self.registered_source.duped_fd.as_raw_fd(),
vec.as_mut_ptr() as *mut libc::c_void,
vec.len(),
offset as libc::off64_t,
)
}
} else {
// SAFETY:
// Safe because this will only modify `vec` and we check the return value.
unsafe {
libc::read(
self.registered_source.duped_fd.as_raw_fd(),
vec.as_mut_ptr() as *mut libc::c_void,
vec.len(),
)
}
};
if res >= 0 {
return Ok((res as usize, vec));
}
match base::Error::last() {
e if e.errno() == libc::EWOULDBLOCK => {
let op = self
.registered_source
.wait_readable()
.map_err(Error::AddingWaker)?;
op.await.map_err(Error::Executor)?;
}
e => return Err(Error::Read(e).into()),
}
}
}
/// Reads to the given `mem` at the given offsets from the file starting at `file_offset`.
pub async fn read_to_mem(
&self,
file_offset: Option<u64>,
mem: Arc<dyn BackingMemory + Send + Sync>,
mem_offsets: impl IntoIterator<Item = MemRegion>,
) -> AsyncResult<usize> {
let mut iovecs = mem_offsets
.into_iter()
.filter_map(|mem_range| mem.get_volatile_slice(mem_range).ok())
.collect::<Vec<VolatileSlice>>();
loop {
let res = if let Some(offset) = file_offset {
// SAFETY:
// Safe because we trust the kernel not to write path the length given and the
// length is guaranteed to be valid from the pointer by
// io_slice_mut.
unsafe {
libc::preadv64(
self.registered_source.duped_fd.as_raw_fd(),
iovecs.as_mut_ptr() as *mut _,
iovecs.len() as i32,
offset as libc::off64_t,
)
}
} else {
// SAFETY:
// Safe because we trust the kernel not to write path the length given and the
// length is guaranteed to be valid from the pointer by
// io_slice_mut.
unsafe {
libc::readv(
self.registered_source.duped_fd.as_raw_fd(),
iovecs.as_mut_ptr() as *mut _,
iovecs.len() as i32,
)
}
};
if res >= 0 {
return Ok(res as usize);
}
match base::Error::last() {
e if e.errno() == libc::EWOULDBLOCK => {
let op = self
.registered_source
.wait_readable()
.map_err(Error::AddingWaker)?;
op.await.map_err(Error::Executor)?;
}
e => return Err(Error::Read(e).into()),
}
}
}
/// Wait for the FD of `self` to be readable.
pub async fn wait_readable(&self) -> AsyncResult<()> {
let op = self
.registered_source
.wait_readable()
.map_err(Error::AddingWaker)?;
op.await.map_err(Error::Executor)?;
Ok(())
}
/// Writes from the given `vec` to the file starting at `file_offset`.
pub async fn write_from_vec(
&self,
file_offset: Option<u64>,
vec: Vec<u8>,
) -> AsyncResult<(usize, Vec<u8>)> {
loop {
let res = if let Some(offset) = file_offset {
// SAFETY:
// Safe because this will not modify any memory and we check the return value.
unsafe {
libc::pwrite64(
self.registered_source.duped_fd.as_raw_fd(),
vec.as_ptr() as *const libc::c_void,
vec.len(),
offset as libc::off64_t,
)
}
} else {
// SAFETY:
// Safe because this will not modify any memory and we check the return value.
unsafe {
libc::write(
self.registered_source.duped_fd.as_raw_fd(),
vec.as_ptr() as *const libc::c_void,
vec.len(),
)
}
};
if res >= 0 {
return Ok((res as usize, vec));
}
match base::Error::last() {
e if e.errno() == libc::EWOULDBLOCK => {
let op = self
.registered_source
.wait_writable()
.map_err(Error::AddingWaker)?;
op.await.map_err(Error::Executor)?;
}
e => return Err(Error::Write(e).into()),
}
}
}
/// Writes from the given `mem` from the given offsets to the file starting at `file_offset`.
pub async fn write_from_mem(
&self,
file_offset: Option<u64>,
mem: Arc<dyn BackingMemory + Send + Sync>,
mem_offsets: impl IntoIterator<Item = MemRegion>,
) -> AsyncResult<usize> {
let iovecs = mem_offsets
.into_iter()
.map(|mem_range| mem.get_volatile_slice(mem_range))
.filter_map(|r| r.ok())
.collect::<Vec<VolatileSlice>>();
loop {
let res = if let Some(offset) = file_offset {
// SAFETY:
// Safe because we trust the kernel not to write path the length given and the
// length is guaranteed to be valid from the pointer by
// io_slice_mut.
unsafe {
libc::pwritev64(
self.registered_source.duped_fd.as_raw_fd(),
iovecs.as_ptr() as *mut _,
iovecs.len() as i32,
offset as libc::off64_t,
)
}
} else {
// SAFETY:
// Safe because we trust the kernel not to write path the length given and the
// length is guaranteed to be valid from the pointer by
// io_slice_mut.
unsafe {
libc::writev(
self.registered_source.duped_fd.as_raw_fd(),
iovecs.as_ptr() as *mut _,
iovecs.len() as i32,
)
}
};
if res >= 0 {
return Ok(res as usize);
}
match base::Error::last() {
e if e.errno() == libc::EWOULDBLOCK => {
let op = self
.registered_source
.wait_writable()
.map_err(Error::AddingWaker)?;
op.await.map_err(Error::Executor)?;
}
e => return Err(Error::Write(e).into()),
}
}
}
/// # Safety
///
/// Sync all completed write operations to the backing storage.
pub async fn fsync(&self) -> AsyncResult<()> {
// SAFETY: the duped_fd is valid and return value is checked.
let ret = unsafe { libc::fsync(self.registered_source.duped_fd.as_raw_fd()) };
if ret == 0 {
Ok(())
} else {
Err(Error::Fsync(base::Error::last()).into())
}
}
/// punch_hole
pub async fn punch_hole(&self, file_offset: u64, len: u64) -> AsyncResult<()> {
Ok(fallocate(
&self.registered_source.duped_fd,
FallocateMode::PunchHole,
file_offset,
len,
)
.map_err(Error::Fallocate)?)
}
/// write_zeroes_at
pub async fn write_zeroes_at(&self, file_offset: u64, len: u64) -> AsyncResult<()> {
Ok(fallocate(
&self.registered_source.duped_fd,
FallocateMode::ZeroRange,
file_offset,
len,
)
.map_err(Error::Fallocate)?)
}
/// Sync all data of completed write operations to the backing storage, avoiding updating extra
/// metadata.
pub async fn fdatasync(&self) -> AsyncResult<()> {
// SAFETY: the duped_fd is valid and return value is checked.
let ret = unsafe { libc::fdatasync(self.registered_source.duped_fd.as_raw_fd()) };
if ret == 0 {
Ok(())
} else {
Err(Error::Fdatasync(base::Error::last()).into())
}
}
/// Yields the underlying IO source.
pub fn into_source(self) -> F {
self.registered_source.source
}
/// Provides a mutable ref to the underlying IO source.
pub fn as_source_mut(&mut self) -> &mut F {
&mut self.registered_source.source
}
/// Provides a ref to the underlying IO source.
pub fn as_source(&self) -> &F {
&self.registered_source.source
}
}
// NOTE: Prefer adding tests to io_source.rs if not backend specific.
#[cfg(test)]
mod tests {
use std::fs::File;
use super::*;
use crate::ExecutorTrait;
#[test]
fn memory_leak() {
// This test needs to run under ASAN to detect memory leaks.
async fn owns_poll_source(source: PollSource<File>) {
let _ = source.wait_readable().await;
}
let (rx, _tx) = base::pipe().unwrap();
let ex = RawExecutor::<EpollReactor>::new().unwrap();
let source = PollSource::new(rx, &ex).unwrap();
ex.spawn_local(owns_poll_source(source)).detach();
// Drop `ex` without running. This would cause a memory leak if PollSource owned a strong
// reference to the executor because it owns a reference to the future that owns PollSource
// (via its Runnable). The strong reference prevents the drop impl from running, which would
// otherwise poll the future and have it return with an error.
}
}