base/mmap.rs
1// Copyright 2020 The ChromiumOS Authors
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5use std::cmp::min;
6use std::fs::File;
7use std::io;
8use std::mem::size_of;
9use std::ptr::copy_nonoverlapping;
10use std::ptr::read_unaligned;
11use std::ptr::read_volatile;
12use std::ptr::write_unaligned;
13use std::ptr::write_volatile;
14use std::sync::atomic::fence;
15use std::sync::atomic::Ordering;
16use std::sync::OnceLock;
17
18use remain::sorted;
19use serde::Deserialize;
20use serde::Serialize;
21use zerocopy::FromBytes;
22use zerocopy::Immutable;
23use zerocopy::IntoBytes;
24
25use crate::descriptor::AsRawDescriptor;
26use crate::descriptor::SafeDescriptor;
27use crate::platform::MemoryMapping as PlatformMmap;
28use crate::SharedMemory;
29use crate::VolatileMemory;
30use crate::VolatileMemoryError;
31use crate::VolatileMemoryResult;
32use crate::VolatileSlice;
33
34static CACHELINE_SIZE: OnceLock<usize> = OnceLock::new();
35
36#[allow(unused_assignments)]
37fn get_cacheline_size_once() -> usize {
38 let mut assume_reason: &str = "unknown";
39 cfg_if::cfg_if! {
40 if #[cfg(all(any(target_os = "android", target_os = "linux"), not(target_env = "musl")))] {
41 // TODO: Remove once available in libc bindings
42 #[cfg(target_os = "android")]
43 const _SC_LEVEL1_DCACHE_LINESIZE: i32 = 0x0094;
44 #[cfg(target_os = "linux")]
45 use libc::_SC_LEVEL1_DCACHE_LINESIZE;
46
47 // SAFETY:
48 // Safe because we check the return value for errors or unsupported requests
49 let linesize = unsafe { libc::sysconf(_SC_LEVEL1_DCACHE_LINESIZE) };
50 if linesize > 0 {
51 return linesize as usize;
52 } else {
53 assume_reason = "sysconf cacheline size query failed";
54 }
55 } else {
56 assume_reason = "cacheline size query not implemented for platform/arch";
57 }
58 }
59
60 let assumed_size = 64;
61 log::debug!(
62 "assuming cacheline_size={}; reason: {}.",
63 assumed_size,
64 assume_reason
65 );
66 assumed_size
67}
68
69/// Returns the system's effective cacheline size (e.g. the granularity at which arch-specific
70/// cacheline management, such as with the clflush instruction, is expected to occur).
71#[inline(always)]
72fn get_cacheline_size() -> usize {
73 let size = *CACHELINE_SIZE.get_or_init(get_cacheline_size_once);
74 assert!(size > 0);
75 size
76}
77
78#[sorted]
79#[derive(Debug, thiserror::Error)]
80pub enum Error {
81 #[error("`add_fd_mapping` is unsupported")]
82 AddFdMappingIsUnsupported,
83 #[error("requested memory out of range")]
84 InvalidAddress,
85 #[error("requested alignment is incompatible")]
86 InvalidAlignment,
87 #[error("invalid argument provided when creating mapping")]
88 InvalidArgument,
89 #[error("requested offset is out of range of off_t")]
90 InvalidOffset,
91 #[error("requested memory range spans past the end of the region: offset={0} count={1} region_size={2}")]
92 InvalidRange(usize, usize, usize),
93 #[error("operation is not implemented on platform/architecture: {0}")]
94 NotImplemented(&'static str),
95 #[error("requested memory is not page aligned")]
96 NotPageAligned,
97 #[error("failed to read from file to memory: {0}")]
98 ReadToMemory(#[source] io::Error),
99 #[error("`remove_mapping` is unsupported")]
100 RemoveMappingIsUnsupported,
101 #[error("system call failed while creating the mapping: {0}")]
102 StdSyscallFailed(io::Error),
103 #[error("mmap related system call failed: {0}")]
104 SystemCallFailed(#[source] crate::Error),
105 #[error("failed to write from memory to file: {0}")]
106 WriteFromMemory(#[source] io::Error),
107}
108pub type Result<T> = std::result::Result<T, Error>;
109
110/// Memory access type for anonymous shared memory mapping.
111#[derive(Copy, Clone, Default, Eq, PartialEq, Serialize, Deserialize, Debug)]
112pub struct Protection {
113 pub(crate) read: bool,
114 pub(crate) write: bool,
115}
116
117impl Protection {
118 /// Returns Protection allowing read/write access.
119 #[inline(always)]
120 pub fn read_write() -> Protection {
121 Protection {
122 read: true,
123 write: true,
124 }
125 }
126
127 /// Returns Protection allowing read access.
128 #[inline(always)]
129 pub fn read() -> Protection {
130 Protection {
131 read: true,
132 ..Default::default()
133 }
134 }
135
136 /// Returns Protection allowing write access.
137 #[inline(always)]
138 pub fn write() -> Protection {
139 Protection {
140 write: true,
141 ..Default::default()
142 }
143 }
144
145 /// Set read events.
146 #[inline(always)]
147 pub fn set_read(self) -> Protection {
148 Protection { read: true, ..self }
149 }
150
151 /// Set write events.
152 #[inline(always)]
153 pub fn set_write(self) -> Protection {
154 Protection {
155 write: true,
156 ..self
157 }
158 }
159
160 /// Returns true if all access allowed by |other| is also allowed by |self|.
161 #[inline(always)]
162 pub fn allows(&self, other: &Protection) -> bool {
163 self.read >= other.read && self.write >= other.write
164 }
165}
166
167/// See [MemoryMapping](crate::platform::MemoryMapping) for struct- and method-level
168/// documentation.
169#[derive(Debug)]
170pub struct MemoryMapping {
171 pub(crate) mapping: PlatformMmap,
172
173 // File backed mappings on Windows need to keep the underlying file open while the mapping is
174 // open.
175 // This will be a None in non-windows case. The variable will not be read so the '^_'.
176 //
177 // TODO(b:230902713) There was a concern about relying on the kernel's refcounting to keep the
178 // file object's locks (e.g. exclusive read/write) in place. We need to revisit/validate that
179 // concern.
180 pub(crate) _file_descriptor: Option<SafeDescriptor>,
181}
182
183#[inline(always)]
184unsafe fn flush_one(_addr: *const u8) -> Result<()> {
185 cfg_if::cfg_if! {
186 if #[cfg(target_arch = "x86_64")] {
187 // As per table 11-7 of the SDM, processors are not required to
188 // snoop UC mappings, so flush the target to memory.
189 // SAFETY: assumes that the caller has supplied a valid address.
190 unsafe { core::arch::x86_64::_mm_clflush(_addr) };
191 Ok(())
192 } else if #[cfg(target_arch = "aarch64")] {
193 // Data cache clean by VA to PoC.
194 std::arch::asm!("DC CVAC, {x}", x = in(reg) _addr);
195 Ok(())
196 } else {
197 Err(Error::NotImplemented("Cache flush not implemented"))
198 }
199 }
200}
201
202impl MemoryMapping {
203 pub fn write_slice(&self, buf: &[u8], offset: usize) -> Result<usize> {
204 match self.mapping.size().checked_sub(offset) {
205 Some(size_past_offset) => {
206 let bytes_copied = min(size_past_offset, buf.len());
207 // SAFETY:
208 // The bytes_copied equation above ensures we don't copy bytes out of range of
209 // either buf or this slice. We also know that the buffers do not overlap because
210 // slices can never occupy the same memory as a volatile slice.
211 unsafe {
212 copy_nonoverlapping(buf.as_ptr(), self.as_ptr().add(offset), bytes_copied);
213 }
214 Ok(bytes_copied)
215 }
216 None => Err(Error::InvalidAddress),
217 }
218 }
219
220 pub fn read_slice(&self, buf: &mut [u8], offset: usize) -> Result<usize> {
221 match self.size().checked_sub(offset) {
222 Some(size_past_offset) => {
223 let bytes_copied = min(size_past_offset, buf.len());
224 // SAFETY:
225 // The bytes_copied equation above ensures we don't copy bytes out of range of
226 // either buf or this slice. We also know that the buffers do not overlap because
227 // slices can never occupy the same memory as a volatile slice.
228 unsafe {
229 copy_nonoverlapping(self.as_ptr().add(offset), buf.as_mut_ptr(), bytes_copied);
230 }
231 Ok(bytes_copied)
232 }
233 None => Err(Error::InvalidAddress),
234 }
235 }
236
237 /// Writes an object to the memory region at the specified offset.
238 /// Returns Ok(()) if the object fits, or Err if it extends past the end.
239 ///
240 /// This method is for writing to regular memory. If writing to a mapped
241 /// I/O region, use [`MemoryMapping::write_obj_volatile`].
242 ///
243 /// # Examples
244 /// * Write a u64 at offset 16.
245 ///
246 /// ```
247 /// # use base::MemoryMappingBuilder;
248 /// # use base::SharedMemory;
249 /// # let shm = SharedMemory::new("test", 1024).unwrap();
250 /// # let mut mem_map = MemoryMappingBuilder::new(1024).from_shared_memory(&shm).build().unwrap();
251 /// let res = mem_map.write_obj(55u64, 16);
252 /// assert!(res.is_ok());
253 /// ```
254 pub fn write_obj<T: IntoBytes + Immutable>(&self, val: T, offset: usize) -> Result<()> {
255 self.mapping.range_end(offset, size_of::<T>())?;
256 // SAFETY:
257 // This is safe because we checked the bounds above.
258 unsafe {
259 write_unaligned(self.as_ptr().add(offset) as *mut T, val);
260 }
261 Ok(())
262 }
263
264 /// Reads on object from the memory region at the given offset.
265 /// Reading from a volatile area isn't strictly safe as it could change
266 /// mid-read. However, as long as the type T is plain old data and can
267 /// handle random initialization, everything will be OK.
268 ///
269 /// This method is for reading from regular memory. If reading from a
270 /// mapped I/O region, use [`MemoryMapping::read_obj_volatile`].
271 ///
272 /// # Examples
273 /// * Read a u64 written to offset 32.
274 ///
275 /// ```
276 /// # use base::MemoryMappingBuilder;
277 /// # let mut mem_map = MemoryMappingBuilder::new(1024).build().unwrap();
278 /// let res = mem_map.write_obj(55u64, 32);
279 /// assert!(res.is_ok());
280 /// let num: u64 = mem_map.read_obj(32).unwrap();
281 /// assert_eq!(55, num);
282 /// ```
283 pub fn read_obj<T: FromBytes>(&self, offset: usize) -> Result<T> {
284 self.mapping.range_end(offset, size_of::<T>())?;
285 // SAFETY:
286 // This is safe because by definition Copy types can have their bits set arbitrarily and
287 // still be valid.
288 unsafe {
289 Ok(read_unaligned(
290 self.as_ptr().add(offset) as *const u8 as *const T
291 ))
292 }
293 }
294
295 /// Writes an object to the memory region at the specified offset.
296 /// Returns Ok(()) if the object fits, or Err if it extends past the end.
297 ///
298 /// The write operation will be volatile, i.e. it will not be reordered by
299 /// the compiler and is suitable for I/O, but must be aligned. When writing
300 /// to regular memory, prefer [`MemoryMapping::write_obj`].
301 ///
302 /// # Examples
303 /// * Write a u32 at offset 16.
304 ///
305 /// ```
306 /// # use base::MemoryMappingBuilder;
307 /// # use base::SharedMemory;
308 /// # let shm = SharedMemory::new("test", 1024).unwrap();
309 /// # let mut mem_map = MemoryMappingBuilder::new(1024).from_shared_memory(&shm).build().unwrap();
310 /// let res = mem_map.write_obj_volatile(0xf00u32, 16);
311 /// assert!(res.is_ok());
312 /// ```
313 pub fn write_obj_volatile<T: IntoBytes + Immutable>(
314 &self,
315 val: T,
316 offset: usize,
317 ) -> Result<()> {
318 self.mapping.range_end(offset, size_of::<T>())?;
319 // Make sure writes to memory have been committed before performing I/O that could
320 // potentially depend on them.
321 fence(Ordering::SeqCst);
322 // SAFETY:
323 // This is safe because we checked the bounds above.
324 unsafe {
325 write_volatile(self.as_ptr().add(offset) as *mut T, val);
326 }
327 Ok(())
328 }
329
330 /// Reads on object from the memory region at the given offset.
331 /// Reading from a volatile area isn't strictly safe as it could change
332 /// mid-read. However, as long as the type T is plain old data and can
333 /// handle random initialization, everything will be OK.
334 ///
335 /// The read operation will be volatile, i.e. it will not be reordered by
336 /// the compiler and is suitable for I/O, but must be aligned. When reading
337 /// from regular memory, prefer [`MemoryMapping::read_obj`].
338 ///
339 /// # Examples
340 /// * Read a u32 written to offset 16.
341 ///
342 /// ```
343 /// # use base::MemoryMappingBuilder;
344 /// # use base::SharedMemory;
345 /// # let shm = SharedMemory::new("test", 1024).unwrap();
346 /// # let mut mem_map = MemoryMappingBuilder::new(1024).from_shared_memory(&shm).build().unwrap();
347 /// let res = mem_map.write_obj(0xf00u32, 16);
348 /// assert!(res.is_ok());
349 /// let num: u32 = mem_map.read_obj_volatile(16).unwrap();
350 /// assert_eq!(0xf00, num);
351 /// ```
352 pub fn read_obj_volatile<T: FromBytes>(&self, offset: usize) -> Result<T> {
353 self.mapping.range_end(offset, size_of::<T>())?;
354 // SAFETY:
355 // This is safe because by definition Copy types can have their bits set arbitrarily and
356 // still be valid.
357 unsafe {
358 Ok(read_volatile(
359 self.as_ptr().add(offset) as *const u8 as *const T
360 ))
361 }
362 }
363
364 pub fn msync(&self) -> Result<()> {
365 self.mapping.msync()
366 }
367
368 /// Flush a region of the MemoryMapping from the system's caching hierarchy.
369 /// There are several uses for flushing:
370 ///
371 /// * Cached memory which the guest may be reading through an uncached mapping:
372 ///
373 /// Guest reads via an uncached mapping can bypass the cache and directly access main
374 /// memory. This is outside the memory model of Rust, which means that even with proper
375 /// synchronization, guest reads via an uncached mapping might not see updates from the
376 /// host. As such, it is necessary to perform architectural cache maintainance to flush the
377 /// host writes to main memory.
378 ///
379 /// Note that this does not support writable uncached guest mappings, as doing so
380 /// requires invalidating the cache, not flushing the cache.
381 ///
382 /// * Uncached memory which the guest may be writing through a cached mapping:
383 ///
384 /// Guest writes via a cached mapping of a host's uncached memory may never make it to
385 /// system/device memory prior to being read. In such cases, explicit flushing of the cached
386 /// writes is necessary, since other managers of the host's uncached mapping (e.g. DRM) see
387 /// no need to flush, as they believe all writes would explicitly bypass the caches.
388 ///
389 /// Currently only supported on x86_64 and aarch64. Cannot be supported on 32-bit arm.
390 pub fn flush_region(&self, offset: usize, len: usize) -> Result<()> {
391 let addr: *const u8 = self.as_ptr();
392 let size = self.size();
393
394 // disallow overflow/wrapping ranges and subregion extending beyond mapped range
395 if usize::MAX - size < addr as usize || offset >= size || size - offset < len {
396 return Err(Error::InvalidRange(offset, len, size));
397 }
398
399 // SAFETY:
400 // Safe because already validated that `next` will be an address in the mapping:
401 // * mapped region is non-wrapping
402 // * subregion is bounded within the mapped region
403 let mut next: *const u8 = unsafe { addr.add(offset) };
404
405 let cacheline_size = get_cacheline_size();
406 let cacheline_count = len.div_ceil(cacheline_size);
407
408 for _ in 0..cacheline_count {
409 // SAFETY:
410 // Safe because `next` is guaranteed to be within the mapped region (see earlier
411 // validations), and flushing the cache doesn't affect any rust safety properties.
412 unsafe { flush_one(next)? };
413
414 // SAFETY:
415 // Safe because we never use next if it goes out of the mapped region or overflows its
416 // storage type (based on earlier validations and the loop bounds).
417 next = unsafe { next.add(cacheline_size) };
418 }
419 Ok(())
420 }
421
422 /// Flush all backing memory for a mapping in an arch-specific manner (see `flush_region()`).
423 pub fn flush_all(&self) -> Result<()> {
424 self.flush_region(0, self.size())
425 }
426}
427
428pub struct MemoryMappingBuilder<'a> {
429 pub(crate) descriptor: Option<&'a dyn AsRawDescriptor>,
430 pub(crate) is_file_descriptor: bool,
431 #[cfg_attr(target_os = "macos", allow(unused))]
432 pub(crate) size: usize,
433 pub(crate) offset: Option<u64>,
434 pub(crate) align: Option<u64>,
435 pub(crate) protection: Option<Protection>,
436 #[cfg_attr(target_os = "macos", allow(unused))]
437 #[cfg_attr(windows, allow(unused))]
438 pub(crate) populate: bool,
439}
440
441/// Builds a MemoryMapping object from the specified arguments.
442impl<'a> MemoryMappingBuilder<'a> {
443 /// Creates a new builder specifying size of the memory region in bytes.
444 pub fn new(size: usize) -> MemoryMappingBuilder<'a> {
445 MemoryMappingBuilder {
446 descriptor: None,
447 size,
448 is_file_descriptor: false,
449 offset: None,
450 align: None,
451 protection: None,
452 populate: false,
453 }
454 }
455
456 /// Build the memory mapping given the specified File to mapped memory
457 ///
458 /// Default: Create a new memory mapping.
459 ///
460 /// Note: this is a forward looking interface to accomodate platforms that
461 /// require special handling for file backed mappings.
462 #[allow(clippy::wrong_self_convention, unused_mut)]
463 pub fn from_file(mut self, file: &'a File) -> MemoryMappingBuilder<'a> {
464 // On Windows, files require special handling (next day shipping if possible).
465 self.is_file_descriptor = true;
466
467 self.descriptor = Some(file as &dyn AsRawDescriptor);
468 self
469 }
470
471 /// Build the memory mapping given the specified SharedMemory to mapped memory
472 ///
473 /// Default: Create a new memory mapping.
474 pub fn from_shared_memory(mut self, shm: &'a SharedMemory) -> MemoryMappingBuilder<'a> {
475 self.descriptor = Some(shm as &dyn AsRawDescriptor);
476 self
477 }
478
479 /// Offset in bytes from the beginning of the mapping to start the mmap.
480 ///
481 /// Default: No offset
482 pub fn offset(mut self, offset: u64) -> MemoryMappingBuilder<'a> {
483 self.offset = Some(offset);
484 self
485 }
486
487 /// Protection (e.g. readable/writable) of the memory region.
488 ///
489 /// Default: Read/write
490 pub fn protection(mut self, protection: Protection) -> MemoryMappingBuilder<'a> {
491 self.protection = Some(protection);
492 self
493 }
494
495 /// Alignment of the memory region mapping in bytes.
496 ///
497 /// Default: No alignment
498 pub fn align(mut self, alignment: u64) -> MemoryMappingBuilder<'a> {
499 self.align = Some(alignment);
500 self
501 }
502}
503
504impl VolatileMemory for MemoryMapping {
505 fn get_slice(&self, offset: usize, count: usize) -> VolatileMemoryResult<VolatileSlice> {
506 let mem_end = offset
507 .checked_add(count)
508 .ok_or(VolatileMemoryError::Overflow {
509 base: offset,
510 offset: count,
511 })?;
512
513 if mem_end > self.size() {
514 return Err(VolatileMemoryError::OutOfBounds { addr: mem_end });
515 }
516
517 let new_addr =
518 (self.as_ptr() as usize)
519 .checked_add(offset)
520 .ok_or(VolatileMemoryError::Overflow {
521 base: self.as_ptr() as usize,
522 offset,
523 })?;
524
525 // SAFETY:
526 // Safe because we checked that offset + count was within our range and we only ever hand
527 // out volatile accessors.
528 Ok(unsafe { VolatileSlice::from_raw_parts(new_addr as *mut u8, count) })
529 }
530}
531
532/// A range of memory that can be msynced, for abstracting over different types of memory mappings.
533///
534/// # Safety
535/// Safe when implementers guarantee `ptr`..`ptr+size` is an mmaped region owned by this object that
536/// can't be unmapped during the `MappedRegion`'s lifetime.
537pub unsafe trait MappedRegion: Send + Sync {
538 // SAFETY:
539 /// Returns a pointer to the beginning of the memory region. Should only be
540 /// used for passing this region to ioctls for setting guest memory.
541 fn as_ptr(&self) -> *mut u8;
542
543 /// Returns the size of the memory region in bytes.
544 fn size(&self) -> usize;
545
546 /// Maps `size` bytes starting at `fd_offset` bytes from within the given `fd`
547 /// at `offset` bytes from the start of the region with `prot` protections.
548 /// `offset` must be page aligned.
549 ///
550 /// # Arguments
551 /// * `offset` - Page aligned offset into the arena in bytes.
552 /// * `size` - Size of memory region in bytes.
553 /// * `fd` - File descriptor to mmap from.
554 /// * `fd_offset` - Offset in bytes from the beginning of `fd` to start the mmap.
555 /// * `prot` - Protection (e.g. readable/writable) of the memory region.
556 fn add_fd_mapping(
557 &mut self,
558 _offset: usize,
559 _size: usize,
560 _fd: &dyn AsRawDescriptor,
561 _fd_offset: u64,
562 _prot: Protection,
563 ) -> Result<()> {
564 Err(Error::AddFdMappingIsUnsupported)
565 }
566
567 /// Remove `size`-byte mapping starting at `offset`.
568 fn remove_mapping(&mut self, _offset: usize, _size: usize) -> Result<()> {
569 Err(Error::RemoveMappingIsUnsupported)
570 }
571}
572
573// SAFETY:
574// Safe because it exclusively forwards calls to a safe implementation.
575unsafe impl MappedRegion for MemoryMapping {
576 fn as_ptr(&self) -> *mut u8 {
577 self.mapping.as_ptr()
578 }
579
580 fn size(&self) -> usize {
581 self.mapping.size()
582 }
583}
584
585#[derive(Debug, PartialEq, Eq)]
586pub struct ExternalMapping {
587 pub ptr: u64,
588 pub size: usize,
589}
590
591// SAFETY:
592// `ptr`..`ptr+size` is an mmaped region and is owned by this object. Caller
593// needs to ensure that the region is not unmapped during the `MappedRegion`'s
594// lifetime.
595unsafe impl MappedRegion for ExternalMapping {
596 /// used for passing this region to ioctls for setting guest memory.
597 fn as_ptr(&self) -> *mut u8 {
598 self.ptr as *mut u8
599 }
600
601 /// Returns the size of the memory region in bytes.
602 fn size(&self) -> usize {
603 self.size
604 }
605}