1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
// Copyright 2020 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use std::cmp::min;
use std::fs::File;
use std::intrinsics::copy_nonoverlapping;
use std::io;
use std::mem::size_of;
use std::ptr::read_unaligned;
use std::ptr::read_volatile;
use std::ptr::write_unaligned;
use std::ptr::write_volatile;
use std::sync::atomic::fence;
use std::sync::atomic::Ordering;
use std::sync::OnceLock;
use remain::sorted;
use serde::Deserialize;
use serde::Serialize;
use zerocopy::AsBytes;
use zerocopy::FromBytes;
use crate::descriptor::AsRawDescriptor;
use crate::descriptor::SafeDescriptor;
use crate::platform::MemoryMapping as PlatformMmap;
use crate::SharedMemory;
use crate::VolatileMemory;
use crate::VolatileMemoryError;
use crate::VolatileMemoryResult;
use crate::VolatileSlice;
static CACHELINE_SIZE: OnceLock<usize> = OnceLock::new();
#[allow(unused_assignments)]
fn get_cacheline_size_once() -> usize {
let mut assume_reason: &str = "unknown";
cfg_if::cfg_if! {
if #[cfg(all(any(target_os = "android", target_os = "linux"), not(target_env = "musl")))] {
// TODO: Remove once available in libc bindings
#[cfg(target_os = "android")]
const _SC_LEVEL1_DCACHE_LINESIZE: i32 = 0x0094;
#[cfg(target_os = "linux")]
use libc::_SC_LEVEL1_DCACHE_LINESIZE;
// SAFETY:
// Safe because we check the return value for errors or unsupported requests
let linesize = unsafe { libc::sysconf(_SC_LEVEL1_DCACHE_LINESIZE) };
if linesize > 0 {
return linesize as usize;
} else {
assume_reason = "sysconf cacheline size query failed";
}
} else {
assume_reason = "cacheline size query not implemented for platform/arch";
}
}
let assumed_size = 64;
log::debug!(
"assuming cacheline_size={}; reason: {}.",
assumed_size,
assume_reason
);
assumed_size
}
/// Returns the system's effective cacheline size (e.g. the granularity at which arch-specific
/// cacheline management, such as with the clflush instruction, is expected to occur).
#[inline(always)]
fn get_cacheline_size() -> usize {
let size = *CACHELINE_SIZE.get_or_init(get_cacheline_size_once);
assert!(size > 0);
size
}
#[sorted]
#[derive(Debug, thiserror::Error)]
pub enum Error {
#[error("`add_fd_mapping` is unsupported")]
AddFdMappingIsUnsupported,
#[error("requested memory out of range")]
InvalidAddress,
#[error("requested alignment is incompatible")]
InvalidAlignment,
#[error("invalid argument provided when creating mapping")]
InvalidArgument,
#[error("requested offset is out of range of off_t")]
InvalidOffset,
#[error("requested memory range spans past the end of the region: offset={0} count={1} region_size={2}")]
InvalidRange(usize, usize, usize),
#[error("operation is not implemented on platform/architecture: {0}")]
NotImplemented(&'static str),
#[error("requested memory is not page aligned")]
NotPageAligned,
#[error("failed to read from file to memory: {0}")]
ReadToMemory(#[source] io::Error),
#[error("`remove_mapping` is unsupported")]
RemoveMappingIsUnsupported,
#[error("system call failed while creating the mapping: {0}")]
StdSyscallFailed(io::Error),
#[error("mmap related system call failed: {0}")]
SystemCallFailed(#[source] crate::Error),
#[error("failed to write from memory to file: {0}")]
WriteFromMemory(#[source] io::Error),
}
pub type Result<T> = std::result::Result<T, Error>;
/// Memory access type for anonymous shared memory mapping.
#[derive(Copy, Clone, Default, Eq, PartialEq, Serialize, Deserialize, Debug)]
pub struct Protection {
pub(crate) read: bool,
pub(crate) write: bool,
}
impl Protection {
/// Returns Protection allowing read/write access.
#[inline(always)]
pub fn read_write() -> Protection {
Protection {
read: true,
write: true,
}
}
/// Returns Protection allowing read access.
#[inline(always)]
pub fn read() -> Protection {
Protection {
read: true,
..Default::default()
}
}
/// Returns Protection allowing write access.
#[inline(always)]
pub fn write() -> Protection {
Protection {
write: true,
..Default::default()
}
}
/// Set read events.
#[inline(always)]
pub fn set_read(self) -> Protection {
Protection { read: true, ..self }
}
/// Set write events.
#[inline(always)]
pub fn set_write(self) -> Protection {
Protection {
write: true,
..self
}
}
/// Returns true if all access allowed by |other| is also allowed by |self|.
#[inline(always)]
pub fn allows(&self, other: &Protection) -> bool {
self.read >= other.read && self.write >= other.write
}
}
/// See [MemoryMapping](crate::platform::MemoryMapping) for struct- and method-level
/// documentation.
#[derive(Debug)]
pub struct MemoryMapping {
pub(crate) mapping: PlatformMmap,
// File backed mappings on Windows need to keep the underlying file open while the mapping is
// open.
// This will be a None in non-windows case. The variable will not be read so the '^_'.
//
// TODO(b:230902713) There was a concern about relying on the kernel's refcounting to keep the
// file object's locks (e.g. exclusive read/write) in place. We need to revisit/validate that
// concern.
pub(crate) _file_descriptor: Option<SafeDescriptor>,
}
#[inline(always)]
unsafe fn flush_one(_addr: *const u8) -> Result<()> {
cfg_if::cfg_if! {
if #[cfg(target_arch = "x86_64")] {
// As per table 11-7 of the SDM, processors are not required to
// snoop UC mappings, so flush the target to memory.
// SAFETY: assumes that the caller has supplied a valid address.
unsafe { core::arch::x86_64::_mm_clflush(_addr) };
Ok(())
} else if #[cfg(target_arch = "aarch64")] {
// Data cache clean by VA to PoC.
std::arch::asm!("DC CVAC, {x}", x = in(reg) _addr);
Ok(())
} else if #[cfg(target_arch = "arm")] {
Err(Error::NotImplemented("Userspace cannot flush to PoC"))
} else {
Err(Error::NotImplemented("Cache flush not implemented"))
}
}
}
impl MemoryMapping {
pub fn write_slice(&self, buf: &[u8], offset: usize) -> Result<usize> {
match self.mapping.size().checked_sub(offset) {
Some(size_past_offset) => {
let bytes_copied = min(size_past_offset, buf.len());
// SAFETY:
// The bytes_copied equation above ensures we don't copy bytes out of range of
// either buf or this slice. We also know that the buffers do not overlap because
// slices can never occupy the same memory as a volatile slice.
unsafe {
copy_nonoverlapping(buf.as_ptr(), self.as_ptr().add(offset), bytes_copied);
}
Ok(bytes_copied)
}
None => Err(Error::InvalidAddress),
}
}
pub fn read_slice(&self, buf: &mut [u8], offset: usize) -> Result<usize> {
match self.size().checked_sub(offset) {
Some(size_past_offset) => {
let bytes_copied = min(size_past_offset, buf.len());
// SAFETY:
// The bytes_copied equation above ensures we don't copy bytes out of range of
// either buf or this slice. We also know that the buffers do not overlap because
// slices can never occupy the same memory as a volatile slice.
unsafe {
copy_nonoverlapping(self.as_ptr().add(offset), buf.as_mut_ptr(), bytes_copied);
}
Ok(bytes_copied)
}
None => Err(Error::InvalidAddress),
}
}
/// Writes an object to the memory region at the specified offset.
/// Returns Ok(()) if the object fits, or Err if it extends past the end.
///
/// This method is for writing to regular memory. If writing to a mapped
/// I/O region, use [`MemoryMapping::write_obj_volatile`].
///
/// # Examples
/// * Write a u64 at offset 16.
///
/// ```
/// # use base::MemoryMappingBuilder;
/// # use base::SharedMemory;
/// # let shm = SharedMemory::new("test", 1024).unwrap();
/// # let mut mem_map = MemoryMappingBuilder::new(1024).from_shared_memory(&shm).build().unwrap();
/// let res = mem_map.write_obj(55u64, 16);
/// assert!(res.is_ok());
/// ```
pub fn write_obj<T: AsBytes>(&self, val: T, offset: usize) -> Result<()> {
self.mapping.range_end(offset, size_of::<T>())?;
// SAFETY:
// This is safe because we checked the bounds above.
unsafe {
write_unaligned(self.as_ptr().add(offset) as *mut T, val);
}
Ok(())
}
/// Reads on object from the memory region at the given offset.
/// Reading from a volatile area isn't strictly safe as it could change
/// mid-read. However, as long as the type T is plain old data and can
/// handle random initialization, everything will be OK.
///
/// This method is for reading from regular memory. If reading from a
/// mapped I/O region, use [`MemoryMapping::read_obj_volatile`].
///
/// # Examples
/// * Read a u64 written to offset 32.
///
/// ```
/// # use base::MemoryMappingBuilder;
/// # let mut mem_map = MemoryMappingBuilder::new(1024).build().unwrap();
/// let res = mem_map.write_obj(55u64, 32);
/// assert!(res.is_ok());
/// let num: u64 = mem_map.read_obj(32).unwrap();
/// assert_eq!(55, num);
/// ```
pub fn read_obj<T: FromBytes>(&self, offset: usize) -> Result<T> {
self.mapping.range_end(offset, size_of::<T>())?;
// SAFETY:
// This is safe because by definition Copy types can have their bits set arbitrarily and
// still be valid.
unsafe {
Ok(read_unaligned(
self.as_ptr().add(offset) as *const u8 as *const T
))
}
}
/// Writes an object to the memory region at the specified offset.
/// Returns Ok(()) if the object fits, or Err if it extends past the end.
///
/// The write operation will be volatile, i.e. it will not be reordered by
/// the compiler and is suitable for I/O, but must be aligned. When writing
/// to regular memory, prefer [`MemoryMapping::write_obj`].
///
/// # Examples
/// * Write a u32 at offset 16.
///
/// ```
/// # use base::MemoryMappingBuilder;
/// # use base::SharedMemory;
/// # let shm = SharedMemory::new("test", 1024).unwrap();
/// # let mut mem_map = MemoryMappingBuilder::new(1024).from_shared_memory(&shm).build().unwrap();
/// let res = mem_map.write_obj_volatile(0xf00u32, 16);
/// assert!(res.is_ok());
/// ```
pub fn write_obj_volatile<T: AsBytes>(&self, val: T, offset: usize) -> Result<()> {
self.mapping.range_end(offset, size_of::<T>())?;
// Make sure writes to memory have been committed before performing I/O that could
// potentially depend on them.
fence(Ordering::SeqCst);
// SAFETY:
// This is safe because we checked the bounds above.
unsafe {
write_volatile(self.as_ptr().add(offset) as *mut T, val);
}
Ok(())
}
/// Reads on object from the memory region at the given offset.
/// Reading from a volatile area isn't strictly safe as it could change
/// mid-read. However, as long as the type T is plain old data and can
/// handle random initialization, everything will be OK.
///
/// The read operation will be volatile, i.e. it will not be reordered by
/// the compiler and is suitable for I/O, but must be aligned. When reading
/// from regular memory, prefer [`MemoryMapping::read_obj`].
///
/// # Examples
/// * Read a u32 written to offset 16.
///
/// ```
/// # use base::MemoryMappingBuilder;
/// # use base::SharedMemory;
/// # let shm = SharedMemory::new("test", 1024).unwrap();
/// # let mut mem_map = MemoryMappingBuilder::new(1024).from_shared_memory(&shm).build().unwrap();
/// let res = mem_map.write_obj(0xf00u32, 16);
/// assert!(res.is_ok());
/// let num: u32 = mem_map.read_obj_volatile(16).unwrap();
/// assert_eq!(0xf00, num);
/// ```
pub fn read_obj_volatile<T: FromBytes>(&self, offset: usize) -> Result<T> {
self.mapping.range_end(offset, size_of::<T>())?;
// SAFETY:
// This is safe because by definition Copy types can have their bits set arbitrarily and
// still be valid.
unsafe {
Ok(read_volatile(
self.as_ptr().add(offset) as *const u8 as *const T
))
}
}
pub fn msync(&self) -> Result<()> {
self.mapping.msync()
}
/// Flush a region of the MemoryMapping from the system's caching hierarchy.
/// There are several uses for flushing:
///
/// * Cached memory which the guest may be reading through an uncached mapping:
///
/// Guest reads via an uncached mapping can bypass the cache and directly access main
/// memory. This is outside the memory model of Rust, which means that even with proper
/// synchronization, guest reads via an uncached mapping might not see updates from the
/// host. As such, it is necessary to perform architectural cache maintainance to flush the
/// host writes to main memory.
///
/// Note that this does not support writable uncached guest mappings, as doing so
/// requires invalidating the cache, not flushing the cache.
///
/// * Uncached memory which the guest may be writing through a cached mapping:
///
/// Guest writes via a cached mapping of a host's uncached memory may never make it to
/// system/device memory prior to being read. In such cases, explicit flushing of the cached
/// writes is necessary, since other managers of the host's uncached mapping (e.g. DRM) see
/// no need to flush, as they believe all writes would explicitly bypass the caches.
///
/// Currently only supported on x86_64 and aarch64. Cannot be supported on 32-bit arm.
pub fn flush_region(&self, offset: usize, len: usize) -> Result<()> {
let addr: *const u8 = self.as_ptr();
let size = self.size();
// disallow overflow/wrapping ranges and subregion extending beyond mapped range
if usize::MAX - size < addr as usize || offset >= size || size - offset < len {
return Err(Error::InvalidRange(offset, len, size));
}
// SAFETY:
// Safe because already validated that `next` will be an address in the mapping:
// * mapped region is non-wrapping
// * subregion is bounded within the mapped region
let mut next: *const u8 = unsafe { addr.add(offset) };
let cacheline_size = get_cacheline_size();
let cacheline_count = len.div_ceil(cacheline_size);
for _ in 0..cacheline_count {
// SAFETY:
// Safe because `next` is guaranteed to be within the mapped region (see earlier
// validations), and flushing the cache doesn't affect any rust safety properties.
unsafe { flush_one(next)? };
// SAFETY:
// Safe because we never use next if it goes out of the mapped region or overflows its
// storage type (based on earlier validations and the loop bounds).
next = unsafe { next.add(cacheline_size) };
}
Ok(())
}
/// Flush all backing memory for a mapping in an arch-specific manner (see `flush_region()`).
pub fn flush_all(&self) -> Result<()> {
self.flush_region(0, self.size())
}
}
pub struct MemoryMappingBuilder<'a> {
pub(crate) descriptor: Option<&'a dyn AsRawDescriptor>,
pub(crate) is_file_descriptor: bool,
#[cfg_attr(target_os = "macos", allow(unused))]
pub(crate) size: usize,
pub(crate) offset: Option<u64>,
pub(crate) align: Option<u64>,
pub(crate) protection: Option<Protection>,
#[cfg_attr(target_os = "macos", allow(unused))]
#[cfg_attr(windows, allow(unused))]
pub(crate) populate: bool,
}
/// Builds a MemoryMapping object from the specified arguments.
impl<'a> MemoryMappingBuilder<'a> {
/// Creates a new builder specifying size of the memory region in bytes.
pub fn new(size: usize) -> MemoryMappingBuilder<'a> {
MemoryMappingBuilder {
descriptor: None,
size,
is_file_descriptor: false,
offset: None,
align: None,
protection: None,
populate: false,
}
}
/// Build the memory mapping given the specified File to mapped memory
///
/// Default: Create a new memory mapping.
///
/// Note: this is a forward looking interface to accomodate platforms that
/// require special handling for file backed mappings.
#[allow(clippy::wrong_self_convention, unused_mut)]
pub fn from_file(mut self, file: &'a File) -> MemoryMappingBuilder {
// On Windows, files require special handling (next day shipping if possible).
self.is_file_descriptor = true;
self.descriptor = Some(file as &dyn AsRawDescriptor);
self
}
/// Build the memory mapping given the specified SharedMemory to mapped memory
///
/// Default: Create a new memory mapping.
pub fn from_shared_memory(mut self, shm: &'a SharedMemory) -> MemoryMappingBuilder {
self.descriptor = Some(shm as &dyn AsRawDescriptor);
self
}
/// Offset in bytes from the beginning of the mapping to start the mmap.
///
/// Default: No offset
pub fn offset(mut self, offset: u64) -> MemoryMappingBuilder<'a> {
self.offset = Some(offset);
self
}
/// Protection (e.g. readable/writable) of the memory region.
///
/// Default: Read/write
pub fn protection(mut self, protection: Protection) -> MemoryMappingBuilder<'a> {
self.protection = Some(protection);
self
}
/// Alignment of the memory region mapping in bytes.
///
/// Default: No alignment
pub fn align(mut self, alignment: u64) -> MemoryMappingBuilder<'a> {
self.align = Some(alignment);
self
}
}
impl VolatileMemory for MemoryMapping {
fn get_slice(&self, offset: usize, count: usize) -> VolatileMemoryResult<VolatileSlice> {
let mem_end = offset
.checked_add(count)
.ok_or(VolatileMemoryError::Overflow {
base: offset,
offset: count,
})?;
if mem_end > self.size() {
return Err(VolatileMemoryError::OutOfBounds { addr: mem_end });
}
let new_addr =
(self.as_ptr() as usize)
.checked_add(offset)
.ok_or(VolatileMemoryError::Overflow {
base: self.as_ptr() as usize,
offset,
})?;
// SAFETY:
// Safe because we checked that offset + count was within our range and we only ever hand
// out volatile accessors.
Ok(unsafe { VolatileSlice::from_raw_parts(new_addr as *mut u8, count) })
}
}
/// A range of memory that can be msynced, for abstracting over different types of memory mappings.
///
/// # Safety
/// Safe when implementers guarantee `ptr`..`ptr+size` is an mmaped region owned by this object that
/// can't be unmapped during the `MappedRegion`'s lifetime.
pub unsafe trait MappedRegion: Send + Sync {
// SAFETY:
/// Returns a pointer to the beginning of the memory region. Should only be
/// used for passing this region to ioctls for setting guest memory.
fn as_ptr(&self) -> *mut u8;
/// Returns the size of the memory region in bytes.
fn size(&self) -> usize;
/// Maps `size` bytes starting at `fd_offset` bytes from within the given `fd`
/// at `offset` bytes from the start of the region with `prot` protections.
/// `offset` must be page aligned.
///
/// # Arguments
/// * `offset` - Page aligned offset into the arena in bytes.
/// * `size` - Size of memory region in bytes.
/// * `fd` - File descriptor to mmap from.
/// * `fd_offset` - Offset in bytes from the beginning of `fd` to start the mmap.
/// * `prot` - Protection (e.g. readable/writable) of the memory region.
fn add_fd_mapping(
&mut self,
_offset: usize,
_size: usize,
_fd: &dyn AsRawDescriptor,
_fd_offset: u64,
_prot: Protection,
) -> Result<()> {
Err(Error::AddFdMappingIsUnsupported)
}
/// Remove `size`-byte mapping starting at `offset`.
fn remove_mapping(&mut self, _offset: usize, _size: usize) -> Result<()> {
Err(Error::RemoveMappingIsUnsupported)
}
}
// SAFETY:
// Safe because it exclusively forwards calls to a safe implementation.
unsafe impl MappedRegion for MemoryMapping {
fn as_ptr(&self) -> *mut u8 {
self.mapping.as_ptr()
}
fn size(&self) -> usize {
self.mapping.size()
}
}
#[derive(Debug, PartialEq, Eq)]
pub struct ExternalMapping {
pub ptr: u64,
pub size: usize,
}
// SAFETY:
// `ptr`..`ptr+size` is an mmaped region and is owned by this object. Caller
// needs to ensure that the region is not unmapped during the `MappedRegion`'s
// lifetime.
unsafe impl MappedRegion for ExternalMapping {
/// used for passing this region to ioctls for setting guest memory.
fn as_ptr(&self) -> *mut u8 {
self.ptr as *mut u8
}
/// Returns the size of the memory region in bytes.
fn size(&self) -> usize {
self.size
}
}