use std::cmp::max;
use std::cmp::Reverse;
use std::collections::BTreeMap;
use std::collections::BTreeSet;
use std::fs;
use std::path::Path;
use std::path::PathBuf;
use std::str::FromStr;
use std::sync::Arc;
use acpi_tables::aml::Aml;
use base::debug;
use base::error;
use base::pagesize;
use base::warn;
use base::AsRawDescriptor;
use base::AsRawDescriptors;
use base::Event;
use base::EventToken;
use base::MemoryMapping;
use base::Protection;
use base::RawDescriptor;
use base::Tube;
use base::WaitContext;
use base::WorkerThread;
use hypervisor::MemCacheType;
use resources::AddressRange;
use resources::Alloc;
use resources::AllocOptions;
use resources::MmioType;
use resources::SystemAllocator;
use sync::Mutex;
use vfio_sys::vfio::VFIO_PCI_ACPI_NTFY_IRQ_INDEX;
use vfio_sys::*;
use vm_control::api::VmMemoryClient;
use vm_control::HotPlugDeviceInfo;
use vm_control::HotPlugDeviceType;
use vm_control::VmMemoryDestination;
use vm_control::VmMemoryRegionId;
use vm_control::VmMemorySource;
use vm_control::VmRequest;
use vm_control::VmResponse;
use crate::pci::acpi::DeviceVcfgRegister;
use crate::pci::acpi::DsmMethod;
use crate::pci::acpi::PowerResourceMethod;
use crate::pci::acpi::SHM_OFFSET;
use crate::pci::msi::MsiConfig;
use crate::pci::msi::MsiStatus;
use crate::pci::msi::PCI_MSI_FLAGS;
use crate::pci::msi::PCI_MSI_FLAGS_64BIT;
use crate::pci::msi::PCI_MSI_FLAGS_MASKBIT;
use crate::pci::msi::PCI_MSI_NEXT_POINTER;
use crate::pci::msix::MsixConfig;
use crate::pci::msix::MsixStatus;
use crate::pci::msix::BITS_PER_PBA_ENTRY;
use crate::pci::msix::MSIX_PBA_ENTRIES_MODULO;
use crate::pci::msix::MSIX_TABLE_ENTRIES_MODULO;
use crate::pci::pci_device::BarRange;
use crate::pci::pci_device::Error as PciDeviceError;
use crate::pci::pci_device::PciDevice;
use crate::pci::pci_device::PreferredIrq;
use crate::pci::pm::PciPmCap;
use crate::pci::pm::PmConfig;
use crate::pci::pm::PM_CAP_LENGTH;
use crate::pci::PciAddress;
use crate::pci::PciBarConfiguration;
use crate::pci::PciBarIndex;
use crate::pci::PciBarPrefetchable;
use crate::pci::PciBarRegionType;
use crate::pci::PciCapabilityID;
use crate::pci::PciClassCode;
use crate::pci::PciId;
use crate::pci::PciInterruptPin;
use crate::pci::PCI_VCFG_DSM;
use crate::pci::PCI_VCFG_NOTY;
use crate::pci::PCI_VCFG_PM;
use crate::pci::PCI_VENDOR_ID_INTEL;
use crate::vfio::VfioDevice;
use crate::vfio::VfioError;
use crate::vfio::VfioIrqType;
use crate::vfio::VfioPciConfig;
use crate::IrqLevelEvent;
use crate::Suspendable;
const PCI_VENDOR_ID: u32 = 0x0;
const PCI_DEVICE_ID: u32 = 0x2;
const PCI_COMMAND: u32 = 0x4;
const PCI_COMMAND_MEMORY: u8 = 0x2;
const PCI_BASE_CLASS_CODE: u32 = 0x0B;
const PCI_INTERRUPT_NUM: u32 = 0x3C;
const PCI_INTERRUPT_PIN: u32 = 0x3D;
const PCI_CAPABILITY_LIST: u32 = 0x34;
const PCI_CAP_ID_MSI: u8 = 0x05;
const PCI_CAP_ID_MSIX: u8 = 0x11;
const PCI_CAP_ID_PM: u8 = 0x01;
const PCI_CONFIG_SPACE_SIZE: u32 = 0x100;
const PCIE_CONFIG_SPACE_SIZE: u32 = 0x1000;
const PCI_EXT_CAP_ID_CAC: u16 = 0x0C;
const PCI_EXT_CAP_ID_ARI: u16 = 0x0E;
const PCI_EXT_CAP_ID_SRIOV: u16 = 0x10;
const PCI_EXT_CAP_ID_REBAR: u16 = 0x15;
struct VfioPmCap {
offset: u32,
capabilities: u32,
config: PmConfig,
}
impl VfioPmCap {
fn new(config: &VfioPciConfig, cap_start: u32) -> Self {
let mut capabilities: u32 = config.read_config(cap_start);
capabilities |= (PciPmCap::default_cap() as u32) << 16;
VfioPmCap {
offset: cap_start,
capabilities,
config: PmConfig::new(false),
}
}
pub fn should_trigger_pme(&mut self) -> bool {
self.config.should_trigger_pme()
}
fn is_pm_reg(&self, offset: u32) -> bool {
(offset >= self.offset) && (offset < self.offset + PM_CAP_LENGTH as u32)
}
pub fn read(&self, offset: u32) -> u32 {
let offset = offset - self.offset;
if offset == 0 {
self.capabilities
} else {
let mut data = 0;
self.config.read(&mut data);
data
}
}
pub fn write(&mut self, offset: u64, data: &[u8]) {
let offset = offset - self.offset as u64;
if offset >= std::mem::size_of::<u32>() as u64 {
let offset = offset - std::mem::size_of::<u32>() as u64;
self.config.write(offset, data);
}
}
}
enum VfioMsiChange {
Disable,
Enable,
FunctionChanged,
}
struct VfioMsiCap {
config: MsiConfig,
offset: u32,
}
impl VfioMsiCap {
fn new(
config: &VfioPciConfig,
msi_cap_start: u32,
vm_socket_irq: Tube,
device_id: u32,
device_name: String,
) -> Self {
let msi_ctl: u16 = config.read_config(msi_cap_start + PCI_MSI_FLAGS);
let is_64bit = (msi_ctl & PCI_MSI_FLAGS_64BIT) != 0;
let mask_cap = (msi_ctl & PCI_MSI_FLAGS_MASKBIT) != 0;
VfioMsiCap {
config: MsiConfig::new(is_64bit, mask_cap, vm_socket_irq, device_id, device_name),
offset: msi_cap_start,
}
}
fn is_msi_reg(&self, index: u64, len: usize) -> bool {
self.config.is_msi_reg(self.offset, index, len)
}
fn write_msi_reg(&mut self, index: u64, data: &[u8]) -> Option<VfioMsiChange> {
let offset = index as u32 - self.offset;
match self.config.write_msi_capability(offset, data) {
MsiStatus::Enabled => Some(VfioMsiChange::Enable),
MsiStatus::Disabled => Some(VfioMsiChange::Disable),
MsiStatus::NothingToDo => None,
}
}
fn get_msi_irqfd(&self) -> Option<&Event> {
self.config.get_irqfd()
}
fn destroy(&mut self) {
self.config.destroy()
}
}
const PCI_MSIX_FLAGS: u32 = 0x02; const PCI_MSIX_FLAGS_QSIZE: u16 = 0x07FF; const PCI_MSIX_TABLE: u32 = 0x04; const PCI_MSIX_TABLE_BIR: u32 = 0x07; const PCI_MSIX_TABLE_OFFSET: u32 = 0xFFFFFFF8; const PCI_MSIX_PBA: u32 = 0x08; const PCI_MSIX_PBA_BIR: u32 = 0x07; const PCI_MSIX_PBA_OFFSET: u32 = 0xFFFFFFF8; struct VfioMsixCap {
config: MsixConfig,
offset: u32,
table_size: u16,
table_pci_bar: PciBarIndex,
table_offset: u64,
table_size_bytes: u64,
pba_pci_bar: PciBarIndex,
pba_offset: u64,
pba_size_bytes: u64,
msix_interrupt_evt: Vec<Event>,
}
impl VfioMsixCap {
fn new(
config: &VfioPciConfig,
msix_cap_start: u32,
vm_socket_irq: Tube,
pci_id: u32,
device_name: String,
) -> Self {
let msix_ctl: u16 = config.read_config(msix_cap_start + PCI_MSIX_FLAGS);
let table: u32 = config.read_config(msix_cap_start + PCI_MSIX_TABLE);
let table_pci_bar = (table & PCI_MSIX_TABLE_BIR) as PciBarIndex;
let table_offset = (table & PCI_MSIX_TABLE_OFFSET) as u64;
let pba: u32 = config.read_config(msix_cap_start + PCI_MSIX_PBA);
let pba_pci_bar = (pba & PCI_MSIX_PBA_BIR) as PciBarIndex;
let pba_offset = (pba & PCI_MSIX_PBA_OFFSET) as u64;
let mut table_size = (msix_ctl & PCI_MSIX_FLAGS_QSIZE) as u64 + 1;
if table_pci_bar == pba_pci_bar
&& pba_offset > table_offset
&& (table_offset + table_size * MSIX_TABLE_ENTRIES_MODULO) > pba_offset
{
table_size = (pba_offset - table_offset) / MSIX_TABLE_ENTRIES_MODULO;
}
let table_size_bytes = table_size * MSIX_TABLE_ENTRIES_MODULO;
let pba_size_bytes = ((table_size + BITS_PER_PBA_ENTRY as u64 - 1)
/ BITS_PER_PBA_ENTRY as u64)
* MSIX_PBA_ENTRIES_MODULO;
let mut msix_interrupt_evt = Vec::new();
for _ in 0..table_size {
msix_interrupt_evt.push(Event::new().expect("failed to create msix interrupt"));
}
VfioMsixCap {
config: MsixConfig::new(table_size as u16, vm_socket_irq, pci_id, device_name),
offset: msix_cap_start,
table_size: table_size as u16,
table_pci_bar,
table_offset,
table_size_bytes,
pba_pci_bar,
pba_offset,
pba_size_bytes,
msix_interrupt_evt,
}
}
fn is_msix_control_reg(&self, offset: u32, size: u32) -> bool {
let control_start = self.offset + PCI_MSIX_FLAGS;
let control_end = control_start + 2;
offset < control_end && offset + size > control_start
}
fn read_msix_control(&self, data: &mut u32) {
*data = self.config.read_msix_capability(*data);
}
fn write_msix_control(&mut self, data: &[u8]) -> Option<VfioMsiChange> {
let old_enabled = self.config.enabled();
let old_masked = self.config.masked();
self.config
.write_msix_capability(PCI_MSIX_FLAGS.into(), data);
let new_enabled = self.config.enabled();
let new_masked = self.config.masked();
if !old_enabled && new_enabled {
Some(VfioMsiChange::Enable)
} else if old_enabled && !new_enabled {
Some(VfioMsiChange::Disable)
} else if new_enabled && old_masked != new_masked {
Some(VfioMsiChange::FunctionChanged)
} else {
None
}
}
fn is_msix_table(&self, bar_index: PciBarIndex, offset: u64) -> bool {
bar_index == self.table_pci_bar
&& offset >= self.table_offset
&& offset < self.table_offset + self.table_size_bytes
}
fn get_msix_table(&self, bar_index: PciBarIndex) -> Option<AddressRange> {
if bar_index == self.table_pci_bar {
AddressRange::from_start_and_size(self.table_offset, self.table_size_bytes)
} else {
None
}
}
fn read_table(&self, offset: u64, data: &mut [u8]) {
let offset = offset - self.table_offset;
self.config.read_msix_table(offset, data);
}
fn write_table(&mut self, offset: u64, data: &[u8]) -> MsixStatus {
let offset = offset - self.table_offset;
self.config.write_msix_table(offset, data)
}
fn is_msix_pba(&self, bar_index: PciBarIndex, offset: u64) -> bool {
bar_index == self.pba_pci_bar
&& offset >= self.pba_offset
&& offset < self.pba_offset + self.pba_size_bytes
}
fn get_msix_pba(&self, bar_index: PciBarIndex) -> Option<AddressRange> {
if bar_index == self.pba_pci_bar {
AddressRange::from_start_and_size(self.pba_offset, self.pba_size_bytes)
} else {
None
}
}
fn read_pba(&self, offset: u64, data: &mut [u8]) {
let offset = offset - self.pba_offset;
self.config.read_pba_entries(offset, data);
}
fn write_pba(&mut self, offset: u64, data: &[u8]) {
let offset = offset - self.pba_offset;
self.config.write_pba_entries(offset, data);
}
fn get_msix_irqfd(&self, index: usize) -> Option<&Event> {
let irqfd = self.config.get_irqfd(index);
if let Some(fd) = irqfd {
if self.msix_vector_masked(index) {
Some(&self.msix_interrupt_evt[index])
} else {
Some(fd)
}
} else {
None
}
}
fn get_msix_irqfds(&self) -> Vec<Option<&Event>> {
let mut irqfds = Vec::new();
for i in 0..self.table_size {
irqfds.push(self.get_msix_irqfd(i as usize));
}
irqfds
}
fn table_size(&self) -> usize {
self.table_size.into()
}
fn clone_msix_evt(&self) -> Vec<Event> {
self.msix_interrupt_evt
.iter()
.map(|irq| irq.try_clone().unwrap())
.collect()
}
fn msix_vector_masked(&self, index: usize) -> bool {
!self.config.enabled() || self.config.masked() || self.config.table_masked(index)
}
fn trigger(&mut self, index: usize) {
self.config.trigger(index as u16);
}
fn destroy(&mut self) {
self.config.destroy()
}
}
struct VfioResourceAllocator {
regions: BTreeSet<AddressRange>,
}
impl VfioResourceAllocator {
fn new(pool: AddressRange) -> Result<Self, PciDeviceError> {
if pool.is_empty() {
return Err(PciDeviceError::SizeZero);
}
let mut regions = BTreeSet::new();
regions.insert(pool);
Ok(VfioResourceAllocator { regions })
}
fn internal_allocate_from_slot(
&mut self,
slot: AddressRange,
range: AddressRange,
) -> Result<u64, PciDeviceError> {
let slot_was_present = self.regions.remove(&slot);
assert!(slot_was_present);
let (before, after) = slot.non_overlapping_ranges(range);
if !before.is_empty() {
self.regions.insert(before);
}
if !after.is_empty() {
self.regions.insert(after);
}
Ok(range.start)
}
fn allocate_with_align(&mut self, size: u64, alignment: u64) -> Result<u64, PciDeviceError> {
if size == 0 {
return Err(PciDeviceError::SizeZero);
}
if !alignment.is_power_of_two() {
return Err(PciDeviceError::BadAlignment);
}
let region = self.regions.iter().find(|range| {
match range.start % alignment {
0 => range.start.checked_add(size - 1),
r => range.start.checked_add(size - 1 + alignment - r),
}
.map_or(false, |end| end <= range.end)
});
match region {
Some(&slot) => {
let start = match slot.start % alignment {
0 => slot.start,
r => slot.start + alignment - r,
};
let end = start + size - 1;
let range = AddressRange::from_start_and_end(start, end);
self.internal_allocate_from_slot(slot, range)
}
None => Err(PciDeviceError::OutOfSpace),
}
}
fn allocate_at_can_overlap(&mut self, range: AddressRange) -> Result<(), PciDeviceError> {
if range.is_empty() {
return Err(PciDeviceError::SizeZero);
}
while let Some(&slot) = self
.regions
.iter()
.find(|avail_range| avail_range.overlaps(range))
{
let _address = self.internal_allocate_from_slot(slot, range)?;
}
Ok(())
}
}
struct VfioPciWorker {
address: PciAddress,
sysfs_path: PathBuf,
vm_socket: Tube,
name: String,
pm_cap: Option<Arc<Mutex<VfioPmCap>>>,
msix_cap: Option<Arc<Mutex<VfioMsixCap>>>,
}
impl VfioPciWorker {
fn run(
&mut self,
req_irq_evt: Event,
wakeup_evt: Event,
acpi_notify_evt: Event,
kill_evt: Event,
msix_evt: Vec<Event>,
is_in_low_power: Arc<Mutex<bool>>,
gpe: Option<u32>,
notification_val: Arc<Mutex<Vec<u32>>>,
) {
#[derive(EventToken, Debug)]
enum Token {
ReqIrq,
WakeUp,
AcpiNotifyEvent,
Kill,
MsixIrqi { index: usize },
}
let wait_ctx: WaitContext<Token> = match WaitContext::build_with(&[
(&req_irq_evt, Token::ReqIrq),
(&wakeup_evt, Token::WakeUp),
(&acpi_notify_evt, Token::AcpiNotifyEvent),
(&kill_evt, Token::Kill),
]) {
Ok(pc) => pc,
Err(e) => {
error!(
"{} failed creating vfio WaitContext: {}",
self.name.clone(),
e
);
return;
}
};
for (index, msix_int) in msix_evt.iter().enumerate() {
wait_ctx
.add(msix_int, Token::MsixIrqi { index })
.expect("Failed to create vfio WaitContext for msix interrupt event")
}
'wait: loop {
let events = match wait_ctx.wait() {
Ok(v) => v,
Err(e) => {
error!("{} failed polling vfio events: {}", self.name.clone(), e);
break;
}
};
for event in events.iter().filter(|e| e.is_readable) {
match event.token {
Token::MsixIrqi { index } => {
if let Some(msix_cap) = &self.msix_cap {
msix_cap.lock().trigger(index);
}
}
Token::ReqIrq => {
let device = HotPlugDeviceInfo {
device_type: HotPlugDeviceType::EndPoint,
path: self.sysfs_path.clone(),
hp_interrupt: false,
};
let request = VmRequest::HotPlugVfioCommand { device, add: false };
if self.vm_socket.send(&request).is_ok() {
if let Err(e) = self.vm_socket.recv::<VmResponse>() {
error!("{} failed to remove vfio_device: {}", self.name.clone(), e);
} else {
break 'wait;
}
}
}
Token::WakeUp => {
let _ = wakeup_evt.wait();
if *is_in_low_power.lock() {
if let Some(pm_cap) = &self.pm_cap {
if pm_cap.lock().should_trigger_pme() {
let request =
VmRequest::PciPme(self.address.pme_requester_id());
if self.vm_socket.send(&request).is_ok() {
if let Err(e) = self.vm_socket.recv::<VmResponse>() {
error!(
"{} failed to send PME: {}",
self.name.clone(),
e
);
}
}
}
}
}
}
Token::AcpiNotifyEvent => {
if let Some(gpe) = gpe {
if let Ok(val) = base::EventExt::read_count(&acpi_notify_evt) {
notification_val.lock().push(val as u32);
let request = VmRequest::Gpe {
gpe,
clear_evt: None,
};
if self.vm_socket.send(&request).is_ok() {
if let Err(e) = self.vm_socket.recv::<VmResponse>() {
error!("{} failed to send GPE: {}", self.name.clone(), e);
}
}
} else {
error!("{} failed to read acpi_notify_evt", self.name.clone());
}
}
}
Token::Kill => break 'wait,
}
}
}
}
}
fn get_next_from_extcap_header(cap_header: u32) -> u32 {
(cap_header >> 20) & 0xffc
}
fn is_skipped_ext_cap(cap_id: u16) -> bool {
matches!(
cap_id,
PCI_EXT_CAP_ID_ARI | PCI_EXT_CAP_ID_SRIOV | PCI_EXT_CAP_ID_REBAR
)
}
enum DeviceData {
IntelGfxData { opregion_index: u32 },
}
#[derive(Copy, Clone)]
struct ExtCap {
offset: u32,
size: u32,
next: u16,
is_skipped: bool,
}
pub struct VfioPciDevice {
device: Arc<VfioDevice>,
config: VfioPciConfig,
hotplug: bool,
hotplug_bus_number: Option<u8>,
preferred_address: PciAddress,
pci_address: Option<PciAddress>,
interrupt_evt: Option<IrqLevelEvent>,
acpi_notification_evt: Option<Event>,
mmio_regions: Vec<PciBarConfiguration>,
io_regions: Vec<PciBarConfiguration>,
pm_cap: Option<Arc<Mutex<VfioPmCap>>>,
msi_cap: Option<VfioMsiCap>,
msix_cap: Option<Arc<Mutex<VfioMsixCap>>>,
irq_type: Option<VfioIrqType>,
vm_memory_client: VmMemoryClient,
device_data: Option<DeviceData>,
pm_evt: Option<Event>,
is_in_low_power: Arc<Mutex<bool>>,
worker_thread: Option<WorkerThread<VfioPciWorker>>,
vm_socket_vm: Option<Tube>,
sysfs_path: PathBuf,
ext_caps: Vec<ExtCap>,
vcfg_shm_mmap: Option<MemoryMapping>,
mapped_mmio_bars: BTreeMap<PciBarIndex, (u64, Vec<VmMemoryRegionId>)>,
activated: bool,
acpi_notifier_val: Arc<Mutex<Vec<u32>>>,
gpe: Option<u32>,
base_class_code: PciClassCode,
}
impl VfioPciDevice {
pub fn new(
sysfs_path: &Path,
device: VfioDevice,
hotplug: bool,
hotplug_bus_number: Option<u8>,
guest_address: Option<PciAddress>,
vfio_device_socket_msi: Tube,
vfio_device_socket_msix: Tube,
vm_memory_client: VmMemoryClient,
vfio_device_socket_vm: Tube,
) -> Result<Self, PciDeviceError> {
let preferred_address = if let Some(bus_num) = hotplug_bus_number {
debug!("hotplug bus {}", bus_num);
PciAddress {
bus: bus_num,
dev: 0,
func: 0,
}
} else if let Some(guest_address) = guest_address {
debug!("guest PCI address {}", guest_address);
guest_address
} else {
let addr = PciAddress::from_str(device.device_name()).map_err(|e| {
PciDeviceError::PciAddressParseFailure(device.device_name().clone(), e)
})?;
debug!("parsed device PCI address {}", addr);
addr
};
let dev = Arc::new(device);
let config = VfioPciConfig::new(Arc::clone(&dev));
let mut msi_socket = Some(vfio_device_socket_msi);
let mut msix_socket = Some(vfio_device_socket_msix);
let mut msi_cap: Option<VfioMsiCap> = None;
let mut msix_cap: Option<Arc<Mutex<VfioMsixCap>>> = None;
let mut pm_cap: Option<Arc<Mutex<VfioPmCap>>> = None;
let mut is_pcie = false;
let mut cap_next: u32 = config.read_config::<u8>(PCI_CAPABILITY_LIST).into();
let vendor_id: u16 = config.read_config(PCI_VENDOR_ID);
let device_id: u16 = config.read_config(PCI_DEVICE_ID);
let base_class_code = PciClassCode::try_from(config.read_config::<u8>(PCI_BASE_CLASS_CODE))
.unwrap_or(PciClassCode::Other);
let pci_id = PciId::new(vendor_id, device_id);
while cap_next != 0 {
let cap_id: u8 = config.read_config(cap_next);
if cap_id == PCI_CAP_ID_PM {
pm_cap = Some(Arc::new(Mutex::new(VfioPmCap::new(&config, cap_next))));
} else if cap_id == PCI_CAP_ID_MSI {
if let Some(msi_socket) = msi_socket.take() {
msi_cap = Some(VfioMsiCap::new(
&config,
cap_next,
msi_socket,
pci_id.into(),
dev.device_name().to_string(),
));
}
} else if cap_id == PCI_CAP_ID_MSIX {
if let Some(msix_socket) = msix_socket.take() {
msix_cap = Some(Arc::new(Mutex::new(VfioMsixCap::new(
&config,
cap_next,
msix_socket,
pci_id.into(),
dev.device_name().to_string(),
))));
}
} else if cap_id == PciCapabilityID::PciExpress as u8 {
is_pcie = true;
}
let offset = cap_next + PCI_MSI_NEXT_POINTER;
cap_next = config.read_config::<u8>(offset).into();
}
let mut ext_caps: Vec<ExtCap> = Vec::new();
if is_pcie {
let mut ext_cap_next: u32 = PCI_CONFIG_SPACE_SIZE;
while ext_cap_next != 0 {
let ext_cap_config: u32 = config.read_config::<u32>(ext_cap_next);
if ext_cap_config == 0 {
break;
}
ext_caps.push(ExtCap {
offset: ext_cap_next,
size: 0,
next: get_next_from_extcap_header(ext_cap_config) as u16,
is_skipped: is_skipped_ext_cap((ext_cap_config & 0xffff) as u16),
});
ext_cap_next = get_next_from_extcap_header(ext_cap_config);
}
ext_caps.sort_by(|a, b| b.offset.cmp(&a.offset));
let mut next_offset: u32 = PCIE_CONFIG_SPACE_SIZE;
let mut non_skipped_next: u16 = 0;
for ext_cap in ext_caps.iter_mut() {
if !ext_cap.is_skipped {
ext_cap.next = non_skipped_next;
non_skipped_next = ext_cap.offset as u16;
} else if ext_cap.offset == PCI_CONFIG_SPACE_SIZE {
ext_cap.next = non_skipped_next;
}
ext_cap.size = next_offset - ext_cap.offset;
next_offset = ext_cap.offset;
}
ext_caps.reverse();
}
let is_intel_gfx =
base_class_code == PciClassCode::DisplayController && vendor_id == PCI_VENDOR_ID_INTEL;
let device_data = if is_intel_gfx {
Some(DeviceData::IntelGfxData {
opregion_index: u32::MAX,
})
} else {
None
};
Ok(VfioPciDevice {
device: dev,
config,
hotplug,
hotplug_bus_number,
preferred_address,
pci_address: None,
interrupt_evt: None,
acpi_notification_evt: None,
mmio_regions: Vec::new(),
io_regions: Vec::new(),
pm_cap,
msi_cap,
msix_cap,
irq_type: None,
vm_memory_client,
device_data,
pm_evt: None,
is_in_low_power: Arc::new(Mutex::new(false)),
worker_thread: None,
vm_socket_vm: Some(vfio_device_socket_vm),
sysfs_path: sysfs_path.to_path_buf(),
ext_caps,
vcfg_shm_mmap: None,
mapped_mmio_bars: BTreeMap::new(),
activated: false,
acpi_notifier_val: Arc::new(Mutex::new(Vec::new())),
gpe: None,
base_class_code,
})
}
pub fn pci_address(&self) -> Option<PciAddress> {
self.pci_address
}
pub fn is_gfx(&self) -> bool {
self.base_class_code == PciClassCode::DisplayController
}
fn is_intel_gfx(&self) -> bool {
matches!(self.device_data, Some(DeviceData::IntelGfxData { .. }))
}
fn enable_acpi_notification(&mut self) -> Result<(), PciDeviceError> {
if let Some(ref acpi_notification_evt) = self.acpi_notification_evt {
return self
.device
.acpi_notification_evt_enable(acpi_notification_evt, VFIO_PCI_ACPI_NTFY_IRQ_INDEX)
.map_err(|_| PciDeviceError::AcpiNotifySetupFailed);
}
Err(PciDeviceError::AcpiNotifySetupFailed)
}
#[allow(dead_code)]
fn disable_acpi_notification(&mut self) -> Result<(), PciDeviceError> {
if let Some(ref _acpi_notification_evt) = self.acpi_notification_evt {
return self
.device
.acpi_notification_disable(VFIO_PCI_ACPI_NTFY_IRQ_INDEX)
.map_err(|_| PciDeviceError::AcpiNotifyDeactivationFailed);
}
Err(PciDeviceError::AcpiNotifyDeactivationFailed)
}
#[allow(dead_code)]
fn test_acpi_notification(&mut self, val: u32) -> Result<(), PciDeviceError> {
if let Some(ref _acpi_notification_evt) = self.acpi_notification_evt {
return self
.device
.acpi_notification_test(VFIO_PCI_ACPI_NTFY_IRQ_INDEX, val)
.map_err(|_| PciDeviceError::AcpiNotifyTestFailed);
}
Err(PciDeviceError::AcpiNotifyTestFailed)
}
fn enable_intx(&mut self) {
if let Some(ref interrupt_evt) = self.interrupt_evt {
if let Err(e) = self.device.irq_enable(
&[Some(interrupt_evt.get_trigger())],
VFIO_PCI_INTX_IRQ_INDEX,
0,
) {
error!("{} Intx enable failed: {}", self.debug_label(), e);
return;
}
if let Err(e) = self.device.irq_mask(VFIO_PCI_INTX_IRQ_INDEX) {
error!("{} Intx mask failed: {}", self.debug_label(), e);
self.disable_intx();
return;
}
if let Err(e) = self
.device
.resample_virq_enable(interrupt_evt.get_resample(), VFIO_PCI_INTX_IRQ_INDEX)
{
error!("{} resample enable failed: {}", self.debug_label(), e);
self.disable_intx();
return;
}
if let Err(e) = self.device.irq_unmask(VFIO_PCI_INTX_IRQ_INDEX) {
error!("{} Intx unmask failed: {}", self.debug_label(), e);
self.disable_intx();
return;
}
self.irq_type = Some(VfioIrqType::Intx);
}
}
fn disable_intx(&mut self) {
if let Err(e) = self.device.irq_disable(VFIO_PCI_INTX_IRQ_INDEX) {
error!("{} Intx disable failed: {}", self.debug_label(), e);
}
self.irq_type = None;
}
fn disable_irqs(&mut self) {
match self.irq_type {
Some(VfioIrqType::Msi) => self.disable_msi(),
Some(VfioIrqType::Msix) => self.disable_msix(),
_ => (),
}
if let Some(VfioIrqType::Intx) = self.irq_type {
self.disable_intx();
}
}
fn enable_msi(&mut self) {
self.disable_irqs();
let irqfd = match &self.msi_cap {
Some(cap) => {
if let Some(fd) = cap.get_msi_irqfd() {
fd
} else {
self.enable_intx();
return;
}
}
None => {
self.enable_intx();
return;
}
};
if let Err(e) = self
.device
.irq_enable(&[Some(irqfd)], VFIO_PCI_MSI_IRQ_INDEX, 0)
{
error!("{} failed to enable msi: {}", self.debug_label(), e);
self.enable_intx();
return;
}
self.irq_type = Some(VfioIrqType::Msi);
}
fn disable_msi(&mut self) {
if let Err(e) = self.device.irq_disable(VFIO_PCI_MSI_IRQ_INDEX) {
error!("{} failed to disable msi: {}", self.debug_label(), e);
return;
}
self.irq_type = None;
self.enable_intx();
}
fn enable_msix(&mut self) {
if self.msix_cap.is_none() {
return;
}
self.disable_irqs();
let cap = self.msix_cap.as_ref().unwrap().lock();
let vector_in_use = cap.get_msix_irqfds().iter().any(|&irq| irq.is_some());
let mut failed = false;
if !vector_in_use {
let fd = Event::new().expect("failed to create event");
let table_size = cap.table_size();
let mut irqfds = vec![None; table_size];
irqfds[0] = Some(&fd);
for fd in irqfds.iter_mut().skip(1) {
*fd = None;
}
if let Err(e) = self.device.irq_enable(&irqfds, VFIO_PCI_MSIX_IRQ_INDEX, 0) {
error!("{} failed to enable msix: {}", self.debug_label(), e);
failed = true;
}
irqfds[0] = None;
if let Err(e) = self.device.irq_enable(&irqfds, VFIO_PCI_MSIX_IRQ_INDEX, 0) {
error!("{} failed to enable msix: {}", self.debug_label(), e);
failed = true;
}
} else {
let result = self
.device
.irq_enable(&cap.get_msix_irqfds(), VFIO_PCI_MSIX_IRQ_INDEX, 0);
if let Err(e) = result {
error!("{} failed to enable msix: {}", self.debug_label(), e);
failed = true;
}
}
std::mem::drop(cap);
if failed {
self.enable_intx();
return;
}
self.irq_type = Some(VfioIrqType::Msix);
}
fn disable_msix(&mut self) {
if self.msix_cap.is_none() {
return;
}
if let Err(e) = self.device.irq_disable(VFIO_PCI_MSIX_IRQ_INDEX) {
error!("{} failed to disable msix: {}", self.debug_label(), e);
return;
}
self.irq_type = None;
self.enable_intx();
}
fn msix_vectors_update(&self) -> Result<(), VfioError> {
if let Some(cap) = &self.msix_cap {
self.device
.irq_enable(&cap.lock().get_msix_irqfds(), VFIO_PCI_MSIX_IRQ_INDEX, 0)?;
}
Ok(())
}
fn msix_vector_update(&self, index: usize, irqfd: Option<&Event>) {
if let Err(e) = self
.device
.irq_enable(&[irqfd], VFIO_PCI_MSIX_IRQ_INDEX, index as u32)
{
error!(
"{} failed to update msix vector {}: {}",
self.debug_label(),
index,
e
);
}
}
fn adjust_bar_mmap(
&self,
bar_mmaps: Vec<vfio_region_sparse_mmap_area>,
remove_mmaps: &[AddressRange],
) -> Vec<vfio_region_sparse_mmap_area> {
let mut mmaps: Vec<vfio_region_sparse_mmap_area> = Vec::with_capacity(bar_mmaps.len());
let pgmask = (pagesize() as u64) - 1;
for mmap in bar_mmaps.iter() {
let mmap_range = if let Some(mmap_range) =
AddressRange::from_start_and_size(mmap.offset, mmap.size)
{
mmap_range
} else {
continue;
};
let mut to_mmap = match VfioResourceAllocator::new(mmap_range) {
Ok(a) => a,
Err(e) => {
error!("{} adjust_bar_mmap failed: {}", self.debug_label(), e);
mmaps.clear();
return mmaps;
}
};
for &(mut remove_range) in remove_mmaps.iter() {
remove_range = remove_range.intersect(mmap_range);
if !remove_range.is_empty() {
let begin = remove_range.start & !pgmask;
let end = ((remove_range.end + 1 + pgmask) & !pgmask) - 1;
let remove_range = AddressRange::from_start_and_end(begin, end);
if let Err(e) = to_mmap.allocate_at_can_overlap(remove_range) {
error!("{} adjust_bar_mmap failed: {}", self.debug_label(), e);
}
}
}
for mmap in to_mmap.regions {
mmaps.push(vfio_region_sparse_mmap_area {
offset: mmap.start,
size: mmap.end - mmap.start + 1,
});
}
}
mmaps
}
fn remove_bar_mmap_msix(
&self,
bar_index: PciBarIndex,
bar_mmaps: Vec<vfio_region_sparse_mmap_area>,
) -> Vec<vfio_region_sparse_mmap_area> {
let msix_cap = &self.msix_cap.as_ref().unwrap().lock();
let mut msix_regions = Vec::new();
if let Some(t) = msix_cap.get_msix_table(bar_index) {
msix_regions.push(t);
}
if let Some(p) = msix_cap.get_msix_pba(bar_index) {
msix_regions.push(p);
}
if msix_regions.is_empty() {
return bar_mmaps;
}
self.adjust_bar_mmap(bar_mmaps, &msix_regions)
}
fn add_bar_mmap(&self, index: PciBarIndex, bar_addr: u64) -> Vec<VmMemoryRegionId> {
let mut mmaps_ids: Vec<VmMemoryRegionId> = Vec::new();
if self.device.get_region_flags(index) & VFIO_REGION_INFO_FLAG_MMAP != 0 {
let mut mmaps = self.device.get_region_mmap(index);
if self.msix_cap.is_some() {
mmaps = self.remove_bar_mmap_msix(index, mmaps);
}
if mmaps.is_empty() {
return mmaps_ids;
}
for mmap in mmaps.iter() {
let mmap_offset = mmap.offset;
let mmap_size = mmap.size;
let guest_map_start = bar_addr + mmap_offset;
let region_offset = self.device.get_region_offset(index);
let offset = region_offset + mmap_offset;
let descriptor = match self.device.device_file().try_clone() {
Ok(device_file) => device_file.into(),
Err(_) => break,
};
match self.vm_memory_client.register_memory(
VmMemorySource::Descriptor {
descriptor,
offset,
size: mmap_size,
},
VmMemoryDestination::GuestPhysicalAddress(guest_map_start),
Protection::read_write(),
MemCacheType::CacheCoherent,
) {
Ok(id) => {
mmaps_ids.push(id);
}
Err(e) => {
error!("register_memory failed: {}", e);
break;
}
}
}
}
mmaps_ids
}
fn remove_bar_mmap(&self, mmap_ids: &[VmMemoryRegionId]) {
for mmap_id in mmap_ids {
if let Err(e) = self.vm_memory_client.unregister_memory(*mmap_id) {
error!("unregister_memory failed: {}", e);
}
}
}
fn disable_bars_mmap(&mut self) {
for (_, (_, mmap_ids)) in self.mapped_mmio_bars.iter() {
self.remove_bar_mmap(mmap_ids);
}
self.mapped_mmio_bars.clear();
}
fn commit_bars_mmap(&mut self) {
let mut needs_map = Vec::new();
for mmio_info in self.mmio_regions.iter() {
let bar_idx = mmio_info.bar_index();
let addr = mmio_info.address();
if let Some((cur_addr, ids)) = self.mapped_mmio_bars.remove(&bar_idx) {
if cur_addr == addr {
self.mapped_mmio_bars.insert(bar_idx, (cur_addr, ids));
continue;
} else {
self.remove_bar_mmap(&ids);
}
}
if addr != 0 {
needs_map.push((bar_idx, addr));
}
}
for (bar_idx, addr) in needs_map.iter() {
let ids = self.add_bar_mmap(*bar_idx, *addr);
self.mapped_mmio_bars.insert(*bar_idx, (*addr, ids));
}
}
fn close(&mut self) {
if let Some(msi) = self.msi_cap.as_mut() {
msi.destroy();
}
if let Some(msix) = &self.msix_cap {
msix.lock().destroy();
}
self.disable_bars_mmap();
self.device.close();
}
fn start_work_thread(&mut self) {
let vm_socket = match self.vm_socket_vm.take() {
Some(socket) => socket,
None => return,
};
let req_evt = match Event::new() {
Ok(evt) => {
if let Err(e) = self
.device
.irq_enable(&[Some(&evt)], VFIO_PCI_REQ_IRQ_INDEX, 0)
{
error!("{} enable req_irq failed: {}", self.debug_label(), e);
return;
}
evt
}
Err(_) => return,
};
let (self_pm_evt, pm_evt) = match Event::new().and_then(|e| Ok((e.try_clone()?, e))) {
Ok(v) => v,
Err(e) => {
error!(
"{} failed creating PM Event pair: {}",
self.debug_label(),
e
);
return;
}
};
self.pm_evt = Some(self_pm_evt);
let (self_acpi_notify_evt, acpi_notify_evt) =
match Event::new().and_then(|e| Ok((e.try_clone()?, e))) {
Ok(v) => v,
Err(e) => {
error!(
"{} failed creating ACPI Event pair: {}",
self.debug_label(),
e
);
return;
}
};
self.acpi_notification_evt = Some(self_acpi_notify_evt);
if let Err(e) = self.enable_acpi_notification() {
error!("{}: {}", self.debug_label(), e);
}
let mut msix_evt = Vec::new();
if let Some(msix_cap) = &self.msix_cap {
msix_evt = msix_cap.lock().clone_msix_evt();
}
let name = self.device.device_name().to_string();
let address = self.pci_address.expect("Unassigned PCI Address.");
let sysfs_path = self.sysfs_path.clone();
let pm_cap = self.pm_cap.clone();
let msix_cap = self.msix_cap.clone();
let is_in_low_power = self.is_in_low_power.clone();
let gpe_nr = self.gpe;
let notification_val = self.acpi_notifier_val.clone();
self.worker_thread = Some(WorkerThread::start("vfio_pci", move |kill_evt| {
let mut worker = VfioPciWorker {
address,
sysfs_path,
vm_socket,
name,
pm_cap,
msix_cap,
};
worker.run(
req_evt,
pm_evt,
acpi_notify_evt,
kill_evt,
msix_evt,
is_in_low_power,
gpe_nr,
notification_val,
);
worker
}));
self.activated = true;
}
fn collect_bars(&mut self) -> Vec<PciBarConfiguration> {
let mut i = VFIO_PCI_BAR0_REGION_INDEX;
let mut mem_bars: Vec<PciBarConfiguration> = Vec::new();
while i <= VFIO_PCI_ROM_REGION_INDEX {
let mut low: u32 = 0xffffffff;
let offset: u32 = if i == VFIO_PCI_ROM_REGION_INDEX {
0x30
} else {
0x10 + i * 4
};
self.config.write_config(low, offset);
low = self.config.read_config(offset);
let low_flag = low & 0xf;
let is_64bit = low_flag & 0x4 == 0x4;
if (low_flag & 0x1 == 0 || i == VFIO_PCI_ROM_REGION_INDEX) && low != 0 {
let mut upper: u32 = 0xffffffff;
if is_64bit {
self.config.write_config(upper, offset + 4);
upper = self.config.read_config(offset + 4);
}
low &= 0xffff_fff0;
let mut size: u64 = u64::from(upper);
size <<= 32;
size |= u64::from(low);
size = !size + 1;
let region_type = if is_64bit {
PciBarRegionType::Memory64BitRegion
} else {
PciBarRegionType::Memory32BitRegion
};
let prefetch = if low_flag & 0x8 == 0x8 {
PciBarPrefetchable::Prefetchable
} else {
PciBarPrefetchable::NotPrefetchable
};
mem_bars.push(PciBarConfiguration::new(
i as usize,
size,
region_type,
prefetch,
));
} else if low_flag & 0x1 == 0x1 {
let size = !(low & 0xffff_fffc) + 1;
self.io_regions.push(PciBarConfiguration::new(
i as usize,
size.into(),
PciBarRegionType::IoRegion,
PciBarPrefetchable::NotPrefetchable,
));
}
if is_64bit {
i += 2;
} else {
i += 1;
}
}
mem_bars
}
fn configure_barmem(&mut self, bar_info: &PciBarConfiguration, bar_addr: u64) {
let offset: u32 = bar_info.reg_index() as u32 * 4;
let mmio_region = *bar_info;
self.mmio_regions.push(mmio_region.set_address(bar_addr));
let val: u32 = self.config.read_config(offset);
let low = ((bar_addr & !0xf) as u32) | (val & 0xf);
self.config.write_config(low, offset);
if bar_info.is_64bit_memory() {
let upper = (bar_addr >> 32) as u32;
self.config.write_config(upper, offset + 4);
}
}
fn allocate_root_barmem(
&mut self,
mem_bars: &[PciBarConfiguration],
resources: &mut SystemAllocator,
) -> Result<Vec<BarRange>, PciDeviceError> {
let address = self.pci_address.unwrap();
let mut ranges: Vec<BarRange> = Vec::new();
for mem_bar in mem_bars {
let bar_size = mem_bar.size();
let mut bar_addr: u64 = 0;
if !self.hotplug {
bar_addr = resources
.allocate_mmio(
bar_size,
Alloc::PciBar {
bus: address.bus,
dev: address.dev,
func: address.func,
bar: mem_bar.bar_index() as u8,
},
"vfio_bar".to_string(),
AllocOptions::new()
.prefetchable(mem_bar.is_prefetchable())
.max_address(if mem_bar.is_64bit_memory() {
u64::MAX
} else {
u32::MAX.into()
})
.align(bar_size),
)
.map_err(|e| PciDeviceError::IoAllocationFailed(bar_size, e))?;
ranges.push(BarRange {
addr: bar_addr,
size: bar_size,
prefetchable: mem_bar.is_prefetchable(),
});
}
self.configure_barmem(mem_bar, bar_addr);
}
Ok(ranges)
}
fn allocate_nonroot_barmem(
&mut self,
mem_bars: &mut [PciBarConfiguration],
resources: &mut SystemAllocator,
) -> Result<Vec<BarRange>, PciDeviceError> {
const NON_PREFETCHABLE: usize = 0;
const PREFETCHABLE: usize = 1;
const ARRAY_SIZE: usize = 2;
let mut membars: [Vec<PciBarConfiguration>; ARRAY_SIZE] = [Vec::new(), Vec::new()];
let mut allocator: [VfioResourceAllocator; ARRAY_SIZE] = [
match VfioResourceAllocator::new(AddressRange::from_start_and_end(0, u32::MAX as u64)) {
Ok(a) => a,
Err(e) => {
error!(
"{} init nonroot VfioResourceAllocator failed: {}",
self.debug_label(),
e
);
return Err(e);
}
},
match VfioResourceAllocator::new(AddressRange::from_start_and_end(0, u64::MAX)) {
Ok(a) => a,
Err(e) => {
error!(
"{} init nonroot VfioResourceAllocator failed: {}",
self.debug_label(),
e
);
return Err(e);
}
},
];
let mut memtype: [MmioType; ARRAY_SIZE] = [MmioType::Low, MmioType::High];
let mut window_sz: [u64; ARRAY_SIZE] = [0; 2];
let mut alignment: [u64; ARRAY_SIZE] = [0x100000; 2];
mem_bars.sort_by_key(|a| Reverse(a.size()));
for mem_bar in mem_bars {
let prefetchable = mem_bar.is_prefetchable();
let is_64bit = mem_bar.is_64bit_memory();
if prefetchable && !is_64bit {
memtype[PREFETCHABLE] = MmioType::Low;
}
let i = if prefetchable {
PREFETCHABLE
} else {
NON_PREFETCHABLE
};
let bar_size = mem_bar.size();
let start = match allocator[i].allocate_with_align(bar_size, bar_size) {
Ok(s) => s,
Err(e) => {
error!(
"{} nonroot allocate_wit_align failed: {}",
self.debug_label(),
e
);
return Err(e);
}
};
window_sz[i] = max(window_sz[i], start + bar_size);
alignment[i] = max(alignment[i], bar_size);
let mem_info = (*mem_bar).set_address(start);
membars[i].push(mem_info);
}
let address = self.pci_address.unwrap();
let mut ranges: Vec<BarRange> = Vec::new();
for (index, bars) in membars.iter().enumerate() {
if bars.is_empty() {
continue;
}
let i = if index == 1 {
PREFETCHABLE
} else {
NON_PREFETCHABLE
};
let mut window_addr: u64 = 0;
if !self.hotplug {
window_sz[i] = (window_sz[i] + 0xfffff) & !0xfffff;
let alloc = if i == NON_PREFETCHABLE {
Alloc::PciBridgeWindow {
bus: address.bus,
dev: address.dev,
func: address.func,
}
} else {
Alloc::PciBridgePrefetchWindow {
bus: address.bus,
dev: address.dev,
func: address.func,
}
};
window_addr = resources
.mmio_allocator(memtype[i])
.allocate_with_align(
window_sz[i],
alloc,
"vfio_bar_window".to_string(),
alignment[i],
)
.map_err(|e| PciDeviceError::IoAllocationFailed(window_sz[i], e))?;
for mem_info in bars {
let bar_addr = window_addr + mem_info.address();
ranges.push(BarRange {
addr: bar_addr,
size: mem_info.size(),
prefetchable: mem_info.is_prefetchable(),
});
}
}
for mem_info in bars {
let bar_addr = window_addr + mem_info.address();
self.configure_barmem(mem_info, bar_addr);
}
}
Ok(ranges)
}
pub fn get_max_iova(&self) -> u64 {
self.device.get_max_addr()
}
fn get_ext_cap_by_reg(&self, reg: u32) -> Option<ExtCap> {
self.ext_caps
.iter()
.find(|ext_cap| reg >= ext_cap.offset && reg < ext_cap.offset + ext_cap.size)
.cloned()
}
fn is_skipped_reg(&self, reg: u32) -> bool {
if reg < PCI_CONFIG_SPACE_SIZE {
return false;
}
self.get_ext_cap_by_reg(reg)
.map_or(false, |cap| cap.is_skipped)
}
}
impl PciDevice for VfioPciDevice {
fn debug_label(&self) -> String {
format!("vfio {} device", self.device.device_name())
}
fn preferred_address(&self) -> Option<PciAddress> {
Some(self.preferred_address)
}
fn allocate_address(
&mut self,
resources: &mut SystemAllocator,
) -> Result<PciAddress, PciDeviceError> {
if self.pci_address.is_none() {
let mut address = self.preferred_address;
while address.func < 8 {
if resources.reserve_pci(
Alloc::PciBar {
bus: address.bus,
dev: address.dev,
func: address.func,
bar: 0,
},
self.debug_label(),
) {
self.pci_address = Some(address);
break;
} else if self.hotplug_bus_number.is_none() {
break;
} else {
address.func += 1;
}
}
}
self.pci_address.ok_or(PciDeviceError::PciAllocationFailed)
}
fn keep_rds(&self) -> Vec<RawDescriptor> {
let mut rds = self.device.keep_rds();
if let Some(ref interrupt_evt) = self.interrupt_evt {
rds.extend(interrupt_evt.as_raw_descriptors());
}
rds.push(self.vm_memory_client.as_raw_descriptor());
if let Some(vm_socket_vm) = &self.vm_socket_vm {
rds.push(vm_socket_vm.as_raw_descriptor());
}
if let Some(msi_cap) = &self.msi_cap {
rds.push(msi_cap.config.get_msi_socket());
}
if let Some(msix_cap) = &self.msix_cap {
rds.push(msix_cap.lock().config.as_raw_descriptor());
}
rds
}
fn preferred_irq(&self) -> PreferredIrq {
let pin = match self.config.read_config::<u8>(PCI_INTERRUPT_PIN) {
1 => PciInterruptPin::IntA,
2 => PciInterruptPin::IntB,
3 => PciInterruptPin::IntC,
4 => PciInterruptPin::IntD,
_ => return PreferredIrq::None,
};
let path = self.sysfs_path.join("irq");
let gsi = fs::read_to_string(path)
.map(|v| v.trim().parse::<u32>().unwrap_or(0))
.unwrap_or(0);
PreferredIrq::Fixed { pin, gsi }
}
fn assign_irq(&mut self, irq_evt: IrqLevelEvent, pin: PciInterruptPin, irq_num: u32) {
self.interrupt_evt = Some(irq_evt);
self.enable_intx();
self.config
.write_config(pin.to_mask() as u8, PCI_INTERRUPT_PIN);
self.config.write_config(irq_num as u8, PCI_INTERRUPT_NUM);
}
fn allocate_io_bars(
&mut self,
resources: &mut SystemAllocator,
) -> Result<Vec<BarRange>, PciDeviceError> {
let address = self
.pci_address
.expect("allocate_address must be called prior to allocate_device_bars");
let mut mem_bars = self.collect_bars();
let ranges = if address.bus == 0 {
self.allocate_root_barmem(&mem_bars, resources)?
} else {
self.allocate_nonroot_barmem(&mut mem_bars, resources)?
};
if self.is_intel_gfx() {
let mut cmd = self.config.read_config::<u8>(PCI_COMMAND);
cmd |= PCI_COMMAND_MEMORY;
self.config.write_config(cmd, PCI_COMMAND);
}
Ok(ranges)
}
fn allocate_device_bars(
&mut self,
resources: &mut SystemAllocator,
) -> Result<Vec<BarRange>, PciDeviceError> {
let mut ranges: Vec<BarRange> = Vec::new();
if !self.is_intel_gfx() {
return Ok(ranges);
}
if let Some((index, size)) = self.device.get_cap_type_info(
VFIO_REGION_TYPE_PCI_VENDOR_TYPE | (PCI_VENDOR_ID_INTEL as u32),
VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION,
) {
let address = self
.pci_address
.expect("allocate_address must be called prior to allocate_device_bars");
let bar_addr = resources
.allocate_mmio(
size,
Alloc::PciBar {
bus: address.bus,
dev: address.dev,
func: address.func,
bar: (index * 4) as u8,
},
"vfio_bar".to_string(),
AllocOptions::new().max_address(u32::MAX.into()),
)
.map_err(|e| PciDeviceError::IoAllocationFailed(size, e))?;
ranges.push(BarRange {
addr: bar_addr,
size,
prefetchable: false,
});
self.device_data = Some(DeviceData::IntelGfxData {
opregion_index: index,
});
self.mmio_regions.push(
PciBarConfiguration::new(
index as usize,
size,
PciBarRegionType::Memory32BitRegion,
PciBarPrefetchable::NotPrefetchable,
)
.set_address(bar_addr),
);
self.config.write_config(bar_addr as u32, 0xFC);
}
Ok(ranges)
}
fn get_bar_configuration(&self, bar_num: usize) -> Option<PciBarConfiguration> {
for region in self.mmio_regions.iter().chain(self.io_regions.iter()) {
if region.bar_index() == bar_num {
let command: u8 = self.config.read_config(PCI_COMMAND);
if (region.is_memory() && (command & PCI_COMMAND_MEMORY == 0)) || region.is_io() {
return None;
} else {
return Some(*region);
}
}
}
None
}
fn register_device_capabilities(&mut self) -> Result<(), PciDeviceError> {
Ok(())
}
fn read_config_register(&self, reg_idx: usize) -> u32 {
let reg: u32 = (reg_idx * 4) as u32;
let mut config: u32 = self.config.read_config(reg);
if reg >= PCI_CONFIG_SPACE_SIZE {
let ext_cap = self.get_ext_cap_by_reg(reg);
if let Some(ext_cap) = ext_cap {
if ext_cap.offset == reg {
config = (config & !(0xffc << 20)) | (((ext_cap.next & 0xffc) as u32) << 20);
}
if ext_cap.is_skipped {
if reg == PCI_CONFIG_SPACE_SIZE {
config = (config & (0xffc << 20)) | (PCI_EXT_CAP_ID_CAC as u32);
} else {
config = 0;
}
}
}
}
if (0x10..=0x24).contains(®) {
let bar_idx = (reg as usize - 0x10) / 4;
if let Some(bar) = self.get_bar_configuration(bar_idx) {
if bar.is_io() {
config = 0;
}
}
} else if let Some(msix_cap) = &self.msix_cap {
let msix_cap = msix_cap.lock();
if msix_cap.is_msix_control_reg(reg, 4) {
msix_cap.read_msix_control(&mut config);
}
} else if let Some(pm_cap) = &self.pm_cap {
let pm_cap = pm_cap.lock();
if pm_cap.is_pm_reg(reg) {
config = pm_cap.read(reg);
}
}
if self.is_intel_gfx() && reg == 0x50 {
config &= 0xffff00ff;
}
config
}
fn write_config_register(&mut self, reg_idx: usize, offset: u64, data: &[u8]) {
if self.worker_thread.is_none() && self.vm_socket_vm.is_some() {
self.start_work_thread();
};
let start = (reg_idx * 4) as u64 + offset;
if let Some(pm_cap) = self.pm_cap.as_mut() {
let mut pm_cap = pm_cap.lock();
if pm_cap.is_pm_reg(start as u32) {
pm_cap.write(start, data);
}
}
let mut msi_change: Option<VfioMsiChange> = None;
if let Some(msi_cap) = self.msi_cap.as_mut() {
if msi_cap.is_msi_reg(start, data.len()) {
msi_change = msi_cap.write_msi_reg(start, data);
}
}
match msi_change {
Some(VfioMsiChange::Enable) => self.enable_msi(),
Some(VfioMsiChange::Disable) => self.disable_msi(),
_ => (),
}
msi_change = None;
if let Some(msix_cap) = &self.msix_cap {
let mut msix_cap = msix_cap.lock();
if msix_cap.is_msix_control_reg(start as u32, data.len() as u32) {
msi_change = msix_cap.write_msix_control(data);
}
}
match msi_change {
Some(VfioMsiChange::Enable) => self.enable_msix(),
Some(VfioMsiChange::Disable) => self.disable_msix(),
Some(VfioMsiChange::FunctionChanged) => {
if let Err(e) = self.msix_vectors_update() {
error!("update msix vectors failed: {}", e);
}
}
_ => (),
}
if !self.is_skipped_reg(start as u32) {
self.device
.region_write(VFIO_PCI_CONFIG_REGION_INDEX as usize, data, start);
}
if start == PCI_COMMAND as u64
&& data.len() == 2
&& data[0] & PCI_COMMAND_MEMORY == PCI_COMMAND_MEMORY
{
self.commit_bars_mmap();
} else if (0x10..=0x24).contains(&start) && data.len() == 4 {
let bar_idx = (start as u32 - 0x10) / 4;
let value: [u8; 4] = [data[0], data[1], data[2], data[3]];
let val = u32::from_le_bytes(value);
let mut modify = false;
for region in self.mmio_regions.iter_mut() {
if region.bar_index() == bar_idx as usize {
let old_addr = region.address();
let new_addr = val & 0xFFFFFFF0;
if !region.is_64bit_memory() && (old_addr as u32) != new_addr {
*region = region.set_address(u64::from(new_addr));
modify = true;
} else if region.is_64bit_memory() && (old_addr as u32) != new_addr {
*region =
region.set_address(u64::from(new_addr) | ((old_addr >> 32) << 32));
modify = true;
}
break;
} else if region.is_64bit_memory()
&& ((bar_idx % 2) == 1)
&& (region.bar_index() + 1 == bar_idx as usize)
{
let old_addr = region.address();
if val != (old_addr >> 32) as u32 {
let mut new_addr = (u64::from(val)) << 32;
new_addr |= old_addr & 0xFFFFFFFF;
*region = region.set_address(new_addr);
modify = true;
}
break;
}
}
if modify {
let cmd = self.config.read_config::<u8>(PCI_COMMAND);
if cmd & PCI_COMMAND_MEMORY == PCI_COMMAND_MEMORY {
self.commit_bars_mmap();
}
}
}
}
fn read_virtual_config_register(&self, reg_idx: usize) -> u32 {
if reg_idx == PCI_VCFG_NOTY {
let mut q = self.acpi_notifier_val.lock();
let mut val = 0;
if !q.is_empty() {
val = q.remove(0);
}
drop(q);
return val;
}
warn!(
"{} read unsupported vcfg register {}",
self.debug_label(),
reg_idx
);
0xFFFF_FFFF
}
fn write_virtual_config_register(&mut self, reg_idx: usize, value: u32) {
match reg_idx {
PCI_VCFG_PM => {
match value {
0 => {
if let Some(pm_evt) =
self.pm_evt.as_ref().map(|evt| evt.try_clone().unwrap())
{
*self.is_in_low_power.lock() = true;
let _ = self.device.pm_low_power_enter_with_wakeup(pm_evt);
} else {
let _ = self.device.pm_low_power_enter();
}
}
_ => {
*self.is_in_low_power.lock() = false;
let _ = self.device.pm_low_power_exit();
}
};
}
PCI_VCFG_DSM => {
if let Some(shm) = &self.vcfg_shm_mmap {
let mut args = [0u8; 4096];
if let Err(e) = shm.read_slice(&mut args, 0) {
error!("failed to read DSM Args: {}", e);
return;
}
let res = match self.device.acpi_dsm(&args) {
Ok(r) => r,
Err(e) => {
error!("failed to call DSM: {}", e);
return;
}
};
if let Err(e) = shm.write_slice(&res, 0) {
error!("failed to write DSM result: {}", e);
return;
}
if let Err(e) = shm.msync() {
error!("failed to msync: {}", e)
}
}
}
_ => warn!(
"{} write unsupported vcfg register {}",
self.debug_label(),
reg_idx
),
};
}
fn read_bar(&mut self, bar_index: PciBarIndex, offset: u64, data: &mut [u8]) {
if let Some(msix_cap) = &self.msix_cap {
let msix_cap = msix_cap.lock();
if msix_cap.is_msix_table(bar_index, offset) {
msix_cap.read_table(offset, data);
return;
} else if msix_cap.is_msix_pba(bar_index, offset) {
msix_cap.read_pba(offset, data);
return;
}
}
self.device.region_read(bar_index, data, offset);
}
fn write_bar(&mut self, bar_index: PciBarIndex, offset: u64, data: &[u8]) {
if let Some(device_data) = &self.device_data {
match *device_data {
DeviceData::IntelGfxData { opregion_index } => {
if opregion_index == bar_index as u32 {
return;
}
}
}
}
if let Some(msix_cap) = &self.msix_cap {
let mut msix_cap = msix_cap.lock();
if msix_cap.is_msix_table(bar_index, offset) {
let behavior = msix_cap.write_table(offset, data);
if let MsixStatus::EntryChanged(index) = behavior {
let irqfd = msix_cap.get_msix_irqfd(index);
self.msix_vector_update(index, irqfd);
}
return;
} else if msix_cap.is_msix_pba(bar_index, offset) {
msix_cap.write_pba(offset, data);
return;
}
}
self.device.region_write(bar_index, data, offset);
}
fn destroy_device(&mut self) {
self.close();
}
fn generate_acpi_methods(&mut self) -> (Vec<u8>, Option<(u32, MemoryMapping)>) {
let mut amls = Vec::new();
let mut shm = None;
if let Some(pci_address) = self.pci_address {
let vcfg_offset = pci_address.to_config_address(0, 13);
if let Ok(vcfg_register) = DeviceVcfgRegister::new(vcfg_offset) {
vcfg_register.to_aml_bytes(&mut amls);
shm = vcfg_register
.create_shm_mmap()
.map(|shm| (vcfg_offset + SHM_OFFSET, shm));
self.vcfg_shm_mmap = vcfg_register.create_shm_mmap();
PowerResourceMethod {}.to_aml_bytes(&mut amls);
let acpi_path = self.sysfs_path.join("firmware_node/path");
if acpi_path.exists() {
DsmMethod {}.to_aml_bytes(&mut amls);
}
}
}
(amls, shm)
}
fn set_gpe(&mut self, resources: &mut SystemAllocator) -> Option<u32> {
if let Some(gpe_nr) = resources.allocate_gpe() {
base::debug!("set_gpe: gpe-nr {} addr {:?}", gpe_nr, self.pci_address);
self.gpe = Some(gpe_nr);
}
self.gpe
}
}
impl Suspendable for VfioPciDevice {
fn sleep(&mut self) -> anyhow::Result<()> {
if let Some(worker_thread) = self.worker_thread.take() {
let res = worker_thread.stop();
self.pci_address = Some(res.address);
self.sysfs_path = res.sysfs_path;
self.pm_cap = res.pm_cap;
self.msix_cap = res.msix_cap;
self.vm_socket_vm = Some(res.vm_socket);
}
Ok(())
}
fn wake(&mut self) -> anyhow::Result<()> {
if self.activated {
self.start_work_thread();
}
Ok(())
}
}
#[cfg(test)]
mod tests {
use resources::AddressRange;
use super::VfioResourceAllocator;
#[test]
fn no_overlap() {
let mut memory =
VfioResourceAllocator::new(AddressRange::from_start_and_end(32, 95)).unwrap();
memory
.allocate_at_can_overlap(AddressRange::from_start_and_end(0, 15))
.unwrap();
memory
.allocate_at_can_overlap(AddressRange::from_start_and_end(100, 115))
.unwrap();
let mut iter = memory.regions.iter();
assert_eq!(iter.next(), Some(&AddressRange::from_start_and_end(32, 95)));
}
#[test]
fn complete_overlap() {
let mut memory =
VfioResourceAllocator::new(AddressRange::from_start_and_end(32, 95)).unwrap();
memory
.allocate_at_can_overlap(AddressRange::from_start_and_end(48, 63))
.unwrap();
memory
.allocate_at_can_overlap(AddressRange::from_start_and_end(32, 47))
.unwrap();
let mut iter = memory.regions.iter();
assert_eq!(iter.next(), Some(&AddressRange::from_start_and_end(64, 95)));
}
#[test]
fn partial_overlap_one() {
let mut memory =
VfioResourceAllocator::new(AddressRange::from_start_and_end(32, 95)).unwrap();
memory
.allocate_at_can_overlap(AddressRange::from_start_and_end(48, 63))
.unwrap();
memory
.allocate_at_can_overlap(AddressRange::from_start_and_end(40, 55))
.unwrap();
let mut iter = memory.regions.iter();
assert_eq!(iter.next(), Some(&AddressRange::from_start_and_end(32, 39)));
assert_eq!(iter.next(), Some(&AddressRange::from_start_and_end(64, 95)));
}
#[test]
fn partial_overlap_two() {
let mut memory =
VfioResourceAllocator::new(AddressRange::from_start_and_end(32, 95)).unwrap();
memory
.allocate_at_can_overlap(AddressRange::from_start_and_end(48, 63))
.unwrap();
memory
.allocate_at_can_overlap(AddressRange::from_start_and_end(40, 71))
.unwrap();
let mut iter = memory.regions.iter();
assert_eq!(iter.next(), Some(&AddressRange::from_start_and_end(32, 39)));
assert_eq!(iter.next(), Some(&AddressRange::from_start_and_end(72, 95)));
}
#[test]
fn partial_overlap_three() {
let mut memory =
VfioResourceAllocator::new(AddressRange::from_start_and_end(32, 95)).unwrap();
memory
.allocate_at_can_overlap(AddressRange::from_start_and_end(40, 47))
.unwrap();
memory
.allocate_at_can_overlap(AddressRange::from_start_and_end(64, 71))
.unwrap();
memory
.allocate_at_can_overlap(AddressRange::from_start_and_end(36, 75))
.unwrap();
let mut iter = memory.regions.iter();
assert_eq!(iter.next(), Some(&AddressRange::from_start_and_end(32, 35)));
assert_eq!(iter.next(), Some(&AddressRange::from_start_and_end(76, 95)));
}
}