1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
// Copyright 2022 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! Handles operations using platform Time Stamp Counter (TSC).
// TODO(b/213149158): Remove after uses are added.
#![allow(dead_code)]
use std::arch::x86_64::_rdtsc;
use anyhow::anyhow;
use anyhow::Result;
use base::debug;
use base::error;
use once_cell::sync::Lazy;
mod calibrate;
mod cpuid;
mod grouping;
pub use calibrate::*;
pub use cpuid::*;
fn rdtsc_safe() -> u64 {
// SAFETY:
// Safe because _rdtsc takes no arguments
unsafe { _rdtsc() }
}
// Singleton for getting the state of the host TSCs, to avoid calibrating multiple times.
static TSC_STATE: Lazy<Option<TscState>> = Lazy::new(|| match calibrate_tsc_state() {
Ok(tsc_state) => {
debug!("Using calibrated tsc frequency: {} Hz", tsc_state.frequency);
for (core, offset) in tsc_state.offsets.iter().enumerate() {
debug!("Core {} has tsc offset of {:?} ns", core, offset);
}
Some(tsc_state)
}
Err(e) => {
error!("Failed to calibrate tsc state: {:#}", e);
None
}
});
/// Returns the frequency of the host TSC. Calibration only happens once.
pub fn tsc_frequency() -> Result<u64> {
let state = TSC_STATE
.as_ref()
.ok_or(anyhow!("TSC calibration failed"))?;
Ok(state.frequency)
}
/// Returns the state of the host TSCs. Calibration only happens once.
pub fn tsc_state() -> Result<TscState> {
Ok(TSC_STATE
.as_ref()
.ok_or(anyhow!("TSC calibration failed"))?
.clone())
}
#[derive(Default, Debug)]
pub struct TscSyncMitigations {
/// Vec of per-vcpu affinities to apply to each vcpu thread. If None, no affinity should be
/// applied.
pub affinities: Vec<Option<Vec<usize>>>,
/// Vec of TSC offsets to set on each vcpu. If None, no offset should be applied.
pub offsets: Vec<Option<u64>>,
}
impl TscSyncMitigations {
fn new(num_vcpus: usize) -> Self {
TscSyncMitigations {
affinities: vec![None; num_vcpus],
offsets: vec![None; num_vcpus],
}
}
pub fn get_vcpu_affinity(&self, cpu_id: usize) -> Option<Vec<usize>> {
self.affinities.get(cpu_id).unwrap().clone()
}
pub fn get_vcpu_tsc_offset(&self, cpu_id: usize) -> Option<u64> {
*self.offsets.get(cpu_id).unwrap()
}
}
/// Given the state of the host TSCs in `tsc_state`, and the number of vcpus that are intended to
/// be run, return a set of affinities and TSC offsets to apply to those vcpus.
pub fn get_tsc_sync_mitigations(tsc_state: &TscState, num_vcpus: usize) -> TscSyncMitigations {
tsc_sync_mitigations_inner(tsc_state, num_vcpus, rdtsc_safe)
}
fn tsc_sync_mitigations_inner(
tsc_state: &TscState,
num_vcpus: usize,
rdtsc: fn() -> u64,
) -> TscSyncMitigations {
let mut mitigations = TscSyncMitigations::new(num_vcpus);
// If there's only one core grouping that means all the TSCs are in sync and no mitigations are
// needed.
if tsc_state.core_grouping.size() == 1 {
return mitigations;
}
let largest_group = tsc_state.core_grouping.largest_group();
let num_cores = tsc_state.offsets.len();
// If the largest core group is larger than the number of vcpus, just pin all vcpus to that core
// group, and no need to set offsets.
if largest_group.cores.len() >= num_vcpus {
let affinity: Vec<usize> = largest_group.cores.iter().map(|core| core.core).collect();
for i in 0..num_vcpus {
mitigations.affinities[i] = Some(affinity.clone());
}
} else {
// Otherwise, we pin each vcpu to a core and set it's offset to compensate.
let host_tsc_now = rdtsc();
for i in 0..num_vcpus {
// This handles the case where num_vcpus > num_cores, even though we try to avoid that
// in practice.
let pinned_core = i % num_cores;
mitigations.affinities[i] = Some(vec![pinned_core]);
// The guest TSC value is calculated like so:
// host_tsc + tsc_offset = guest_tsc
// If we assume that each host core has it's own error (core_offset), then it's more
// like this:
// host_tsc + core_offset + tsc_offset = guest_tsc
// We want guest_tsc to be 0 at boot, so the formula is this:
// host_tsc + core_offset + tsc_offset = 0
// and then you subtract host_tsc and core_offset from both sides and you get:
// tsc_offset = 0 - host_tsc - core_offset
mitigations.offsets[i] = Some(
0u64.wrapping_sub(host_tsc_now)
// Note: wrapping_add and casting tsc_state from an i64 to a u64 should be the
// same as using the future wrapping_add_signed function, which is only in
// nightly. This should be switched to using wrapping_add_signed once that is
// in stable.
.wrapping_add(tsc_state.offsets[pinned_core].1.wrapping_neg() as i64 as u64),
);
}
}
mitigations
}
#[cfg(test)]
mod tests {
use std::time::Duration;
use super::*;
use crate::tsc::grouping::CoreGroup;
use crate::tsc::grouping::CoreGrouping;
use crate::tsc::grouping::CoreOffset;
#[test]
fn test_sync_mitigation_set_offsets() {
let offsets = vec![(0, 0), (1, 1000), (2, -1000), (3, 2000)];
// frequency of 1GHz means 20 nanos is 20 ticks
let state = TscState::new(1_000_000_000, offsets, Duration::from_nanos(20))
.expect("TscState::new should not fail for this test");
assert_eq!(
state.core_grouping,
CoreGrouping::new(vec![
CoreGroup {
cores: vec![CoreOffset {
core: 2,
offset: -1000
}]
},
CoreGroup {
cores: vec![CoreOffset { core: 0, offset: 0 }]
},
CoreGroup {
cores: vec![CoreOffset {
core: 1,
offset: 1000
}]
},
CoreGroup {
cores: vec![CoreOffset {
core: 3,
offset: 2000
}]
},
])
.expect("CoreGrouping::new should not fail here")
);
fn fake_rdtsc() -> u64 {
u64::MAX
}
let mitigations = tsc_sync_mitigations_inner(&state, 4, fake_rdtsc);
// core offsets are:
// - core 0: has an offset of 0, so TSC offset = 0 - u64::MAX - 0 = 1
// - core 1: has an offset of 1000, so TSC offset = 0 - u64::MAX - 1000 = -999
// - core 2: has an offset of -1000, so TSC offset = 0 - u64::MAX + 1000 = 1001
// - core 3: has an offset of 2000, so TSC offset = 0 - u64::MAX - 2000 = -1999
let expected = [1, 1u64.wrapping_sub(1000), 1001u64, 1u64.wrapping_sub(2000)];
for (i, expect) in expected.iter().enumerate() {
assert_eq!(
mitigations
.get_vcpu_tsc_offset(i)
.unwrap_or_else(|| panic!("core {} should have an offset of {}", i, expect)),
*expect
);
assert_eq!(
mitigations
.get_vcpu_affinity(i)
.unwrap_or_else(|| panic!("core {} should have an affinity of [{}]", i, i)),
vec![i]
);
}
}
#[test]
fn test_sync_mitigation_large_group() {
// 8 cores, and cores 1,3,5,7 are in-sync at offset -1000
let offsets = vec![
(0, 0),
(1, -1000),
(2, 1000),
(3, -1000),
(4, 2000),
(5, -1000),
(6, 3000),
(7, -1000),
];
// frequency of 1GHz means 20 nanos is 20 ticks
let state = TscState::new(1_000_000_000, offsets, Duration::from_nanos(20))
.expect("TscState::new should not fail for this test");
assert_eq!(
state.core_grouping,
CoreGrouping::new(vec![
CoreGroup {
cores: vec![
CoreOffset {
core: 1,
offset: -1000
},
CoreOffset {
core: 3,
offset: -1000
},
CoreOffset {
core: 5,
offset: -1000
},
CoreOffset {
core: 7,
offset: -1000
}
]
},
CoreGroup {
cores: vec![CoreOffset { core: 0, offset: 0 }]
},
CoreGroup {
cores: vec![CoreOffset {
core: 2,
offset: 1000
}]
},
CoreGroup {
cores: vec![CoreOffset {
core: 4,
offset: 2000
}]
},
CoreGroup {
cores: vec![CoreOffset {
core: 6,
offset: 3000
}]
},
])
.expect("CoreGrouping::new should not fail here")
);
fn fake_rdtsc() -> u64 {
u64::MAX
}
let num_vcpus = 4;
let mitigations = tsc_sync_mitigations_inner(&state, num_vcpus, fake_rdtsc);
let expected_affinity = vec![1, 3, 5, 7];
for i in 0..num_vcpus {
assert_eq!(
mitigations.get_vcpu_affinity(i).unwrap_or_else(|| panic!(
"core {} should have an affinity of {:?}",
i, expected_affinity
)),
expected_affinity
);
assert_eq!(mitigations.get_vcpu_tsc_offset(i), None);
}
}
#[test]
fn more_vcpus_than_cores() {
// 4 cores, two can be grouped but it doesn't matter because we'll have more vcpus than
// the largest group.
let offsets = vec![(0, 0), (1, 0), (2, 1000), (3, 2000)];
// frequency of 1GHz means 20 nanos is 20 ticks
let state = TscState::new(1_000_000_000, offsets, Duration::from_nanos(20))
.expect("TscState::new should not fail for this test");
assert_eq!(
state.core_grouping,
CoreGrouping::new(vec![
CoreGroup {
cores: vec![
CoreOffset { core: 0, offset: 0 },
CoreOffset { core: 1, offset: 0 }
]
},
CoreGroup {
cores: vec![CoreOffset {
core: 2,
offset: 1000
}]
},
CoreGroup {
cores: vec![CoreOffset {
core: 3,
offset: 2000
}]
},
])
.expect("CoreGrouping::new should not fail here")
);
fn fake_rdtsc() -> u64 {
u64::MAX
}
// 8 vcpus, more than we have cores
let num_vcpus = 8;
let mitigations = tsc_sync_mitigations_inner(&state, num_vcpus, fake_rdtsc);
let expected_offsets = [1, 1, 1u64.wrapping_sub(1000), 1u64.wrapping_sub(2000)];
for i in 0..num_vcpus {
assert_eq!(
mitigations.get_vcpu_affinity(i).unwrap_or_else(|| panic!(
"core {} should have an affinity of {:?}",
i,
i % 4
)),
// expected affinity is the vcpu modulo 4
vec![i % 4]
);
assert_eq!(
mitigations.get_vcpu_tsc_offset(i).unwrap_or_else(|| panic!(
"core {} should have an offset of {:?}",
i,
expected_offsets[i % 4]
)),
expected_offsets[i % 4]
);
}
}
}