1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
// Copyright 2019 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use std::collections::BTreeMap;
use std::str::FromStr;
use std::sync::Arc;
use std::time::Duration;

use acpi_tables::aml;
use acpi_tables::aml::Aml;
use anyhow::bail;
use anyhow::Context;
use base::custom_serde::serialize_arc_mutex;
use base::error;
use base::warn;
use base::Error as SysError;
use base::Event;
use base::EventToken;
use base::EventWaitResult;
use base::SendTube;
use base::Tube;
use base::VmEventType;
use base::WaitContext;
use base::WorkerThread;
use serde::Deserialize;
use serde::Serialize;
use sync::Mutex;
use thiserror::Error;
use vm_control::GpeNotify;
use vm_control::PmResource;
use vm_control::PmeNotify;
use vm_control::VmRequest;
use vm_control::VmResponse;

use crate::ac_adapter::AcAdapter;
use crate::pci::pm::PmConfig;
use crate::pci::CrosvmDeviceId;
use crate::BusAccessInfo;
use crate::BusDevice;
use crate::BusResumeDevice;
use crate::DeviceId;
use crate::IrqLevelEvent;
use crate::Suspendable;

#[derive(Error, Debug)]
pub enum ACPIPMError {
    /// Creating WaitContext failed.
    #[error("failed to create wait context: {0}")]
    CreateWaitContext(SysError),
    /// Error while waiting for events.
    #[error("failed to wait for events: {0}")]
    WaitError(SysError),
    #[error("Did not find group_id corresponding to acpi_mc_group")]
    AcpiMcGroupError,
    #[error("Failed to create and bind NETLINK_GENERIC socket for acpi_mc_group: {0}")]
    AcpiEventSockError(base::Error),
    #[error("GPE {0} is out of bound")]
    GpeOutOfBound(u32),
}

#[derive(Debug, Copy, Clone, Serialize, Deserialize)]
pub enum ACPIPMFixedEvent {
    GlobalLock,
    PowerButton,
    SleepButton,
    RTC,
}

#[derive(Serialize)]
pub(crate) struct Pm1Resource {
    pub(crate) status: u16,
    enable: u16,
    control: u16,
    #[serde(skip_serializing)]
    suspend_tube: Arc<Mutex<SendTube>>,
    #[serde(skip_serializing)]
    rtc_clear_evt: Option<Event>,
}

#[derive(Deserialize)]
struct Pm1ResourceSerializable {
    status: u16,
    enable: u16,
    control: u16,
}

#[derive(Serialize)]
pub(crate) struct GpeResource {
    pub(crate) status: [u8; ACPIPM_RESOURCE_GPE0_BLK_LEN as usize / 2],
    enable: [u8; ACPIPM_RESOURCE_GPE0_BLK_LEN as usize / 2],
    #[serde(skip_serializing)]
    pub(crate) gpe_notify: BTreeMap<u32, Vec<Arc<Mutex<dyn GpeNotify>>>>,
    // For each triggered GPE, a vector of events to check when resampling
    // sci_evt. If any events are un-signaled, then sci_evt should be re-asserted.
    #[serde(skip_serializing)]
    pending_clear_evts: BTreeMap<u32, Vec<Event>>,
    #[serde(skip_serializing)]
    suspend_tube: Arc<Mutex<SendTube>>,
}

#[derive(Deserialize)]
struct GpeResourceSerializable {
    status: [u8; ACPIPM_RESOURCE_GPE0_BLK_LEN as usize / 2],
    enable: [u8; ACPIPM_RESOURCE_GPE0_BLK_LEN as usize / 2],
}

#[derive(Serialize, Deserialize, Clone)]
pub(crate) struct PciResource {
    #[serde(skip_serializing, skip_deserializing)]
    pub(crate) pme_notify: BTreeMap<u8, Vec<Arc<Mutex<dyn PmeNotify>>>>,
}

/// ACPI PM resource for handling OS suspend/resume request
#[allow(dead_code)]
#[derive(Serialize)]
pub struct ACPIPMResource {
    // This is SCI interrupt that will be raised in the VM.
    #[serde(skip_serializing)]
    sci_evt: IrqLevelEvent,
    #[serde(skip_serializing)]
    worker_thread: Option<WorkerThread<()>>,
    #[serde(skip_serializing)]
    suspend_tube: Arc<Mutex<SendTube>>,
    #[serde(skip_serializing)]
    exit_evt_wrtube: SendTube,
    #[serde(serialize_with = "serialize_arc_mutex")]
    pm1: Arc<Mutex<Pm1Resource>>,
    #[serde(serialize_with = "serialize_arc_mutex")]
    gpe0: Arc<Mutex<GpeResource>>,
    #[serde(serialize_with = "serialize_arc_mutex")]
    pci: Arc<Mutex<PciResource>>,
    #[serde(skip_serializing)]
    acdc: Option<Arc<Mutex<AcAdapter>>>,
}

#[derive(Deserialize)]
struct ACPIPMResrourceSerializable {
    pm1: Pm1ResourceSerializable,
    gpe0: GpeResourceSerializable,
}

impl ACPIPMResource {
    /// Constructs ACPI Power Management Resouce.
    #[allow(dead_code)]
    pub fn new(
        sci_evt: IrqLevelEvent,
        suspend_tube: Arc<Mutex<SendTube>>,
        exit_evt_wrtube: SendTube,
        acdc: Option<Arc<Mutex<AcAdapter>>>,
    ) -> ACPIPMResource {
        let pm1 = Pm1Resource {
            status: 0,
            enable: 0,
            control: 0,
            suspend_tube: suspend_tube.clone(),
            rtc_clear_evt: None,
        };
        let gpe0 = GpeResource {
            status: Default::default(),
            enable: Default::default(),
            gpe_notify: BTreeMap::new(),
            pending_clear_evts: BTreeMap::new(),
            suspend_tube: suspend_tube.clone(),
        };
        let pci = PciResource {
            pme_notify: BTreeMap::new(),
        };

        ACPIPMResource {
            sci_evt,
            worker_thread: None,
            suspend_tube,
            exit_evt_wrtube,
            pm1: Arc::new(Mutex::new(pm1)),
            gpe0: Arc::new(Mutex::new(gpe0)),
            pci: Arc::new(Mutex::new(pci)),
            acdc,
        }
    }

    pub fn start(&mut self) {
        let sci_evt = self.sci_evt.try_clone().expect("failed to clone event");
        let pm1 = self.pm1.clone();
        let gpe0 = self.gpe0.clone();
        let acdc = self.acdc.clone();

        let acpi_event_ignored_gpe = Vec::new();

        self.worker_thread = Some(WorkerThread::start("ACPI PM worker", move |kill_evt| {
            if let Err(e) = run_worker(sci_evt, kill_evt, pm1, gpe0, acpi_event_ignored_gpe, acdc) {
                error!("{}", e);
            }
        }));
    }
}

impl Suspendable for ACPIPMResource {
    fn snapshot(&mut self) -> anyhow::Result<serde_json::Value> {
        if !self.gpe0.lock().pending_clear_evts.is_empty() {
            bail!("ACPIPMResource is busy");
        }
        serde_json::to_value(&self)
            .with_context(|| format!("error serializing {}", self.debug_label()))
    }

    fn restore(&mut self, data: serde_json::Value) -> anyhow::Result<()> {
        let acpi_snapshot: ACPIPMResrourceSerializable = serde_json::from_value(data)
            .with_context(|| format!("error deserializing {}", self.debug_label()))?;
        {
            let mut pm1 = self.pm1.lock();
            pm1.status = acpi_snapshot.pm1.status;
            pm1.enable = acpi_snapshot.pm1.enable;
            pm1.control = acpi_snapshot.pm1.control;
        }
        {
            let mut gpe0 = self.gpe0.lock();
            gpe0.status = acpi_snapshot.gpe0.status;
            gpe0.enable = acpi_snapshot.gpe0.enable;
        }
        Ok(())
    }

    fn sleep(&mut self) -> anyhow::Result<()> {
        if let Some(worker_thread) = self.worker_thread.take() {
            worker_thread.stop();
        }
        Ok(())
    }

    fn wake(&mut self) -> anyhow::Result<()> {
        self.start();
        Ok(())
    }
}

fn run_worker(
    sci_evt: IrqLevelEvent,
    kill_evt: Event,
    pm1: Arc<Mutex<Pm1Resource>>,
    gpe0: Arc<Mutex<GpeResource>>,
    acpi_event_ignored_gpe: Vec<u32>,
    arced_ac_adapter: Option<Arc<Mutex<AcAdapter>>>,
) -> Result<(), ACPIPMError> {
    let acpi_event_sock = crate::sys::get_acpi_event_sock()?;
    #[derive(EventToken)]
    enum Token {
        AcpiEvent,
        InterruptResample,
        Kill,
    }

    let wait_ctx: WaitContext<Token> = WaitContext::build_with(&[
        (sci_evt.get_resample(), Token::InterruptResample),
        (&kill_evt, Token::Kill),
    ])
    .map_err(ACPIPMError::CreateWaitContext)?;
    if let Some(acpi_event_sock) = &acpi_event_sock {
        wait_ctx
            .add(acpi_event_sock, Token::AcpiEvent)
            .map_err(ACPIPMError::CreateWaitContext)?;
    }

    loop {
        let events = wait_ctx.wait().map_err(ACPIPMError::WaitError)?;
        for event in events.iter().filter(|e| e.is_readable) {
            match event.token {
                Token::AcpiEvent => {
                    crate::sys::acpi_event_run(
                        &sci_evt,
                        &acpi_event_sock,
                        &gpe0,
                        &acpi_event_ignored_gpe,
                        &arced_ac_adapter,
                    );
                }
                Token::InterruptResample => {
                    sci_evt.clear_resample();

                    // Re-trigger SCI if PM1 or GPE status is still not cleared.
                    pm1.lock().resample_clear_evts_and_trigger(&sci_evt);
                    gpe0.lock().resample_clear_evts_and_trigger(&sci_evt);
                }
                Token::Kill => return Ok(()),
            }
        }
    }
}

impl Pm1Resource {
    fn trigger_sci(&self, sci_evt: &IrqLevelEvent) {
        if self.status & self.enable & ACPIPMFixedEvent::bitmask_all() != 0 {
            if let Err(e) = sci_evt.trigger() {
                error!("ACPIPM: failed to trigger sci event for pm1: {}", e);
            }
            if let Err(e) = self.suspend_tube.lock().send(&false) {
                error!("ACPIPM: failed to trigger wake event: {}", e);
            }
        }
    }

    fn resample_clear_evts_and_trigger(&mut self, sci_evt: &IrqLevelEvent) {
        if let Some(clear_evt) = self.rtc_clear_evt.take() {
            if clear_evt.wait_timeout(Duration::ZERO) == Ok(EventWaitResult::TimedOut) {
                self.rtc_clear_evt = Some(clear_evt);
                self.status |= ACPIPMFixedEvent::RTC.bitmask();
            }
        }
        self.trigger_sci(sci_evt);
    }
}

impl GpeResource {
    pub fn trigger_sci(&self, sci_evt: &IrqLevelEvent) {
        if (0..self.status.len()).any(|i| self.status[i] & self.enable[i] != 0) {
            if let Err(e) = sci_evt.trigger() {
                error!("ACPIPM: failed to trigger sci event for gpe: {}", e);
            }
            if let Err(e) = self.suspend_tube.lock().send(&false) {
                error!("ACPIPM: failed to trigger wake event: {}", e);
            }
        }
    }

    pub fn set_active(&mut self, gpe: u32) -> Result<(), ACPIPMError> {
        if let Some(status_byte) = self.status.get_mut(gpe as usize / 8) {
            *status_byte |= 1 << (gpe % 8);
        } else {
            return Err(ACPIPMError::GpeOutOfBound(gpe));
        }
        Ok(())
    }

    pub fn resample_clear_evts_and_trigger(&mut self, sci_evt: &IrqLevelEvent) {
        let mut retained = Vec::new();
        self.pending_clear_evts.retain(|gpe, clear_evts| {
            clear_evts.retain(|clear_evt| {
                clear_evt.wait_timeout(Duration::ZERO) == Ok(EventWaitResult::TimedOut)
            });
            if !clear_evts.is_empty() {
                retained.push(*gpe);
            }
            !clear_evts.is_empty()
        });
        for gpe in retained.into_iter() {
            self.set_active(gpe).expect("bad gpe index");
        }

        self.trigger_sci(sci_evt);
    }
}

/// the ACPI PM register length.
pub const ACPIPM_RESOURCE_EVENTBLK_LEN: u8 = 4;
pub const ACPIPM_RESOURCE_CONTROLBLK_LEN: u8 = 2;
pub const ACPIPM_RESOURCE_GPE0_BLK_LEN: u8 = 64;
pub const ACPIPM_RESOURCE_LEN: u8 = ACPIPM_RESOURCE_EVENTBLK_LEN + 4 + ACPIPM_RESOURCE_GPE0_BLK_LEN;

// Should be in sync with gpe_allocator range
pub const ACPIPM_GPE_MAX: u16 = ACPIPM_RESOURCE_GPE0_BLK_LEN as u16 / 2 * 8 - 1;

/// ACPI PM register value definitions

/// 4.8.4.1.1 PM1 Status Registers, ACPI Spec Version 6.4
/// Register Location: <PM1a_EVT_BLK / PM1b_EVT_BLK> System I/O or Memory Space (defined in FADT)
/// Size: PM1_EVT_LEN / 2 (defined in FADT)
const PM1_STATUS: u16 = 0;

/// 4.8.4.1.2 PM1Enable Registers, ACPI Spec Version 6.4
/// Register Location: <<PM1a_EVT_BLK / PM1b_EVT_BLK> + PM1_EVT_LEN / 2 System I/O or Memory Space
/// (defined in FADT)
/// Size: PM1_EVT_LEN / 2 (defined in FADT)
const PM1_ENABLE: u16 = PM1_STATUS + (ACPIPM_RESOURCE_EVENTBLK_LEN as u16 / 2);

/// 4.8.4.2.1 PM1 Control Registers, ACPI Spec Version 6.4
/// Register Location: <PM1a_CNT_BLK / PM1b_CNT_BLK> System I/O or Memory Space (defined in FADT)
/// Size: PM1_CNT_LEN (defined in FADT)
const PM1_CONTROL: u16 = PM1_STATUS + ACPIPM_RESOURCE_EVENTBLK_LEN as u16;

/// 4.8.5.1 General-Purpose Event Register Blocks, ACPI Spec Version 6.4
/// - Each register block contains two registers: an enable and a status register.
/// - Each register block is 32-bit aligned.
/// - Each register in the block is accessed as a byte.

/// 4.8.5.1.1 General-Purpose Event 0 Register Block, ACPI Spec Version 6.4
/// This register block consists of two registers: The GPE0_STS and the GPE0_EN registers. Each
/// register’s length is defined to be half the length of the GPE0 register block, and is described
/// in the ACPI FADT’s GPE0_BLK and GPE0_BLK_LEN operators.

/// 4.8.5.1.1.1 General-Purpose Event 0 Status Register, ACPI Spec Version 6.4
/// Register Location: <GPE0_STS> System I/O or System Memory Space (defined in FADT)
/// Size: GPE0_BLK_LEN/2 (defined in FADT)
const GPE0_STATUS: u16 = PM1_STATUS + ACPIPM_RESOURCE_EVENTBLK_LEN as u16 + 4; // ensure alignment

/// 4.8.5.1.1.2 General-Purpose Event 0 Enable Register, ACPI Spec Version 6.4
/// Register Location: <GPE0_EN> System I/O or System Memory Space (defined in FADT)
/// Size: GPE0_BLK_LEN/2 (defined in FADT)
const GPE0_ENABLE: u16 = GPE0_STATUS + (ACPIPM_RESOURCE_GPE0_BLK_LEN as u16 / 2);

/// 4.8.4.1.1, 4.8.4.1.2 Fixed event bits in both PM1 Status and PM1 Enable registers.
const BITSHIFT_PM1_GBL: u16 = 5;
const BITSHIFT_PM1_PWRBTN: u16 = 8;
const BITSHIFT_PM1_SLPBTN: u16 = 9;
const BITSHIFT_PM1_RTC: u16 = 10;

const BITMASK_PM1CNT_SLEEP_ENABLE: u16 = 0x2000;
const BITMASK_PM1CNT_WAKE_STATUS: u16 = 0x8000;

const BITMASK_PM1CNT_SLEEP_TYPE: u16 = 0x1C00;
const SLEEP_TYPE_S1: u16 = 1 << 10;
const SLEEP_TYPE_S5: u16 = 0 << 10;

impl ACPIPMFixedEvent {
    fn bitshift(self) -> u16 {
        match self {
            ACPIPMFixedEvent::GlobalLock => BITSHIFT_PM1_GBL,
            ACPIPMFixedEvent::PowerButton => BITSHIFT_PM1_PWRBTN,
            ACPIPMFixedEvent::SleepButton => BITSHIFT_PM1_SLPBTN,
            ACPIPMFixedEvent::RTC => BITSHIFT_PM1_RTC,
        }
    }

    pub(crate) fn bitmask(self) -> u16 {
        1 << self.bitshift()
    }

    fn bitmask_all() -> u16 {
        (1 << BITSHIFT_PM1_GBL)
            | (1 << BITSHIFT_PM1_PWRBTN)
            | (1 << BITSHIFT_PM1_SLPBTN)
            | (1 << BITSHIFT_PM1_RTC)
    }
}

impl FromStr for ACPIPMFixedEvent {
    type Err = &'static str;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        match s {
            "gbllock" => Ok(ACPIPMFixedEvent::GlobalLock),
            "powerbtn" => Ok(ACPIPMFixedEvent::PowerButton),
            "sleepbtn" => Ok(ACPIPMFixedEvent::SleepButton),
            "rtc" => Ok(ACPIPMFixedEvent::RTC),
            _ => Err("unknown event, must be: gbllock|powerbtn|sleepbtn|rtc"),
        }
    }
}

impl PmResource for ACPIPMResource {
    fn pwrbtn_evt(&mut self) {
        let mut pm1 = self.pm1.lock();

        pm1.status |= ACPIPMFixedEvent::PowerButton.bitmask();
        pm1.trigger_sci(&self.sci_evt);
    }

    fn slpbtn_evt(&mut self) {
        let mut pm1 = self.pm1.lock();

        pm1.status |= ACPIPMFixedEvent::SleepButton.bitmask();
        pm1.trigger_sci(&self.sci_evt);
    }

    fn rtc_evt(&mut self, clear_evt: Event) {
        let mut pm1 = self.pm1.lock();

        pm1.rtc_clear_evt = Some(clear_evt);
        pm1.status |= ACPIPMFixedEvent::RTC.bitmask();
        pm1.trigger_sci(&self.sci_evt);
    }

    fn gpe_evt(&mut self, gpe: u32, clear_evt: Option<Event>) {
        let mut gpe0 = self.gpe0.lock();
        match gpe0.set_active(gpe) {
            Ok(_) => {
                if let Some(clear_evt) = clear_evt {
                    gpe0.pending_clear_evts
                        .entry(gpe)
                        .or_default()
                        .push(clear_evt);
                }
                gpe0.trigger_sci(&self.sci_evt)
            }
            Err(e) => error!("{}", e),
        }
    }

    fn pme_evt(&mut self, requester_id: u16) {
        let bus = ((requester_id >> 8) & 0xFF) as u8;
        let mut pci = self.pci.lock();
        if let Some(root_ports) = pci.pme_notify.get_mut(&bus) {
            for root_port in root_ports {
                root_port.lock().notify(requester_id);
            }
        }
    }

    fn register_gpe_notify_dev(&mut self, gpe: u32, notify_dev: Arc<Mutex<dyn GpeNotify>>) {
        let mut gpe0 = self.gpe0.lock();
        match gpe0.gpe_notify.get_mut(&gpe) {
            Some(v) => v.push(notify_dev),
            None => {
                gpe0.gpe_notify.insert(gpe, vec![notify_dev]);
            }
        }
    }

    fn register_pme_notify_dev(&mut self, bus: u8, notify_dev: Arc<Mutex<dyn PmeNotify>>) {
        let mut pci = self.pci.lock();
        match pci.pme_notify.get_mut(&bus) {
            Some(v) => v.push(notify_dev),
            None => {
                pci.pme_notify.insert(bus, vec![notify_dev]);
            }
        }
    }
}

const PM1_STATUS_LAST: u16 = PM1_STATUS + (ACPIPM_RESOURCE_EVENTBLK_LEN as u16 / 2) - 1;
const PM1_ENABLE_LAST: u16 = PM1_ENABLE + (ACPIPM_RESOURCE_EVENTBLK_LEN as u16 / 2) - 1;
const PM1_CONTROL_LAST: u16 = PM1_CONTROL + ACPIPM_RESOURCE_CONTROLBLK_LEN as u16 - 1;
const GPE0_STATUS_LAST: u16 = GPE0_STATUS + (ACPIPM_RESOURCE_GPE0_BLK_LEN as u16 / 2) - 1;
const GPE0_ENABLE_LAST: u16 = GPE0_ENABLE + (ACPIPM_RESOURCE_GPE0_BLK_LEN as u16 / 2) - 1;

impl BusDevice for ACPIPMResource {
    fn device_id(&self) -> DeviceId {
        CrosvmDeviceId::ACPIPMResource.into()
    }

    fn debug_label(&self) -> String {
        "ACPIPMResource".to_owned()
    }

    fn read(&mut self, info: BusAccessInfo, data: &mut [u8]) {
        match info.offset as u16 {
            // Accesses to the PM1 registers are done through byte or word accesses
            PM1_STATUS..=PM1_STATUS_LAST => {
                if data.len() > std::mem::size_of::<u16>()
                    || info.offset + data.len() as u64 > (PM1_STATUS_LAST + 1).into()
                {
                    warn!("ACPIPM: bad read size: {}", data.len());
                    return;
                }
                let offset = (info.offset - PM1_STATUS as u64) as usize;

                let v = self.pm1.lock().status.to_ne_bytes();
                for (i, j) in (offset..offset + data.len()).enumerate() {
                    data[i] = v[j];
                }
            }
            PM1_ENABLE..=PM1_ENABLE_LAST => {
                if data.len() > std::mem::size_of::<u16>()
                    || info.offset + data.len() as u64 > (PM1_ENABLE_LAST + 1).into()
                {
                    warn!("ACPIPM: bad read size: {}", data.len());
                    return;
                }
                let offset = (info.offset - PM1_ENABLE as u64) as usize;

                let v = self.pm1.lock().enable.to_ne_bytes();
                for (i, j) in (offset..offset + data.len()).enumerate() {
                    data[i] = v[j];
                }
            }
            PM1_CONTROL..=PM1_CONTROL_LAST => {
                if data.len() > std::mem::size_of::<u16>()
                    || info.offset + data.len() as u64 > (PM1_CONTROL_LAST + 1).into()
                {
                    warn!("ACPIPM: bad read size: {}", data.len());
                    return;
                }
                let offset = (info.offset - PM1_CONTROL as u64) as usize;
                data.copy_from_slice(
                    &self.pm1.lock().control.to_ne_bytes()[offset..offset + data.len()],
                );
            }
            // OSPM accesses GPE registers through byte accesses (regardless of their length)
            GPE0_STATUS..=GPE0_STATUS_LAST => {
                if data.len() > std::mem::size_of::<u8>()
                    || info.offset + data.len() as u64 > (GPE0_STATUS_LAST + 1).into()
                {
                    warn!("ACPIPM: bad read size: {}", data.len());
                    return;
                }
                let offset = (info.offset - GPE0_STATUS as u64) as usize;
                data[0] = self.gpe0.lock().status[offset];
            }
            GPE0_ENABLE..=GPE0_ENABLE_LAST => {
                if data.len() > std::mem::size_of::<u8>()
                    || info.offset + data.len() as u64 > (GPE0_ENABLE_LAST + 1).into()
                {
                    warn!("ACPIPM: bad read size: {}", data.len());
                    return;
                }
                let offset = (info.offset - GPE0_ENABLE as u64) as usize;
                data[0] = self.gpe0.lock().enable[offset];
            }
            _ => {
                warn!("ACPIPM: Bad read from {}", info);
            }
        }
    }

    fn write(&mut self, info: BusAccessInfo, data: &[u8]) {
        match info.offset as u16 {
            // Accesses to the PM1 registers are done through byte or word accesses
            PM1_STATUS..=PM1_STATUS_LAST => {
                if data.len() > std::mem::size_of::<u16>()
                    || info.offset + data.len() as u64 > (PM1_STATUS_LAST + 1).into()
                {
                    warn!("ACPIPM: bad write size: {}", data.len());
                    return;
                }
                let offset = (info.offset - PM1_STATUS as u64) as usize;

                let mut pm1 = self.pm1.lock();
                let mut v = pm1.status.to_ne_bytes();
                for (i, j) in (offset..offset + data.len()).enumerate() {
                    v[j] &= !data[i];
                }
                pm1.status = u16::from_ne_bytes(v);
            }
            PM1_ENABLE..=PM1_ENABLE_LAST => {
                if data.len() > std::mem::size_of::<u16>()
                    || info.offset + data.len() as u64 > (PM1_ENABLE_LAST + 1).into()
                {
                    warn!("ACPIPM: bad write size: {}", data.len());
                    return;
                }
                let offset = (info.offset - PM1_ENABLE as u64) as usize;

                let mut pm1 = self.pm1.lock();
                let mut v = pm1.enable.to_ne_bytes();
                for (i, j) in (offset..offset + data.len()).enumerate() {
                    v[j] = data[i];
                }
                pm1.enable = u16::from_ne_bytes(v);
                pm1.resample_clear_evts_and_trigger(&self.sci_evt);
            }
            PM1_CONTROL..=PM1_CONTROL_LAST => {
                if data.len() > std::mem::size_of::<u16>()
                    || info.offset + data.len() as u64 > (PM1_CONTROL_LAST + 1).into()
                {
                    warn!("ACPIPM: bad write size: {}", data.len());
                    return;
                }
                let offset = (info.offset - PM1_CONTROL as u64) as usize;

                let mut pm1 = self.pm1.lock();

                let mut v = pm1.control.to_ne_bytes();
                for (i, j) in (offset..offset + data.len()).enumerate() {
                    v[j] = data[i];
                }
                let val = u16::from_ne_bytes(v);

                // SLP_EN is a write-only bit and reads to it always return a zero
                if (val & BITMASK_PM1CNT_SLEEP_ENABLE) != 0 {
                    match val & BITMASK_PM1CNT_SLEEP_TYPE {
                        SLEEP_TYPE_S1 => {
                            if let Err(e) = self.suspend_tube.lock().send(&true) {
                                error!("ACPIPM: failed to trigger suspend event: {}", e);
                            }
                        }
                        SLEEP_TYPE_S5 => {
                            if let Err(e) =
                                self.exit_evt_wrtube.send::<VmEventType>(&VmEventType::Exit)
                            {
                                error!("ACPIPM: failed to trigger exit event: {}", e);
                            }
                        }
                        _ => error!(
                            "ACPIPM: unknown SLP_TYP written: {}",
                            (val & BITMASK_PM1CNT_SLEEP_TYPE) >> 10
                        ),
                    }
                }
                pm1.control = val & !BITMASK_PM1CNT_SLEEP_ENABLE;

                // Re-trigger PM & GPEs in case there is a pending wakeup that should
                // override us just having gone to sleep.
                pm1.resample_clear_evts_and_trigger(&self.sci_evt);
                self.gpe0
                    .lock()
                    .resample_clear_evts_and_trigger(&self.sci_evt);
            }
            // OSPM accesses GPE registers through byte accesses (regardless of their length)
            GPE0_STATUS..=GPE0_STATUS_LAST => {
                if data.len() > std::mem::size_of::<u8>()
                    || info.offset + data.len() as u64 > (GPE0_STATUS_LAST + 1).into()
                {
                    warn!("ACPIPM: bad write size: {}", data.len());
                    return;
                }
                let offset = (info.offset - GPE0_STATUS as u64) as usize;
                self.gpe0.lock().status[offset] &= !data[0];
            }
            GPE0_ENABLE..=GPE0_ENABLE_LAST => {
                if data.len() > std::mem::size_of::<u8>()
                    || info.offset + data.len() as u64 > (GPE0_ENABLE_LAST + 1).into()
                {
                    warn!("ACPIPM: bad write size: {}", data.len());
                    return;
                }
                let offset = (info.offset - GPE0_ENABLE as u64) as usize;
                let mut gpe = self.gpe0.lock();
                if gpe.enable[offset] != data[0] {
                    gpe.enable[offset] = data[0];
                    gpe.resample_clear_evts_and_trigger(&self.sci_evt);
                }
            }
            _ => {
                warn!("ACPIPM: Bad write to {}", info);
            }
        };
    }
}

impl BusResumeDevice for ACPIPMResource {
    fn resume_imminent(&mut self) {
        self.pm1.lock().status |= BITMASK_PM1CNT_WAKE_STATUS;
    }
}

impl Aml for ACPIPMResource {
    fn to_aml_bytes(&self, bytes: &mut Vec<u8>) {
        // S1
        aml::Name::new(
            "_S1_".into(),
            &aml::Package::new(vec![&aml::ONE, &aml::ONE, &aml::ZERO, &aml::ZERO]),
        )
        .to_aml_bytes(bytes);

        // S5
        aml::Name::new(
            "_S5_".into(),
            &aml::Package::new(vec![&aml::ZERO, &aml::ZERO, &aml::ZERO, &aml::ZERO]),
        )
        .to_aml_bytes(bytes);
    }
}

pub const PM_WAKEUP_GPIO: u32 = 0;

pub struct PmWakeupEvent {
    vm_control_tube: Arc<Mutex<Tube>>,
    pm_config: Arc<Mutex<PmConfig>>,
}

impl PmWakeupEvent {
    pub fn new(vm_control_tube: Arc<Mutex<Tube>>, pm_config: Arc<Mutex<PmConfig>>) -> Self {
        Self {
            vm_control_tube,
            pm_config,
        }
    }

    pub fn trigger_wakeup(&self) -> anyhow::Result<Option<Event>> {
        if self.pm_config.lock().should_trigger_pme() {
            let event = Event::new().context("failed to create clear event")?;
            let tube = self.vm_control_tube.lock();
            tube.send(&VmRequest::Gpe {
                gpe: PM_WAKEUP_GPIO,
                clear_evt: Some(event.try_clone().context("failed to clone clear event")?),
            })
            .context("failed to send pme")?;
            match tube.recv::<VmResponse>() {
                Ok(VmResponse::Ok) => Ok(Some(event)),
                e => bail!("pme failure {:?}", e),
            }
        } else {
            Ok(None)
        }
    }
}

#[cfg(test)]
mod tests {
    use base::Tube;

    use super::*;
    use crate::suspendable_tests;

    fn get_send_tube() -> SendTube {
        Tube::directional_pair().unwrap().0
    }

    fn get_irq_evt() -> IrqLevelEvent {
        match crate::IrqLevelEvent::new() {
            Ok(evt) => evt,
            Err(e) => panic!(
                "failed to create irqlevelevt: {} - panic. Can't test ACPI",
                e
            ),
        }
    }

    fn modify_device(acpi: &mut ACPIPMResource) {
        {
            let mut pm1 = acpi.pm1.lock();
            pm1.enable += 1;
        }
    }

    suspendable_tests!(
        acpi,
        ACPIPMResource::new(
            get_irq_evt(),
            Arc::new(Mutex::new(get_send_tube())),
            get_send_tube(),
            None,
        ),
        modify_device
    );
}