1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
// Copyright 2022 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use std::collections::HashSet;
use std::iter::FromIterator;
use std::time::Duration;
use std::time::Instant;
use anyhow::anyhow;
use anyhow::Context;
use anyhow::Result;
use base::set_cpu_affinity;
use base::warn;
use remain::sorted;
use thiserror::Error;
use super::grouping::*;
use super::rdtsc_safe;
const TSC_CALIBRATION_SAMPLES: usize = 10;
const TSC_CALIBRATION_DURATION: Duration = Duration::from_millis(100);
// remove data that is outside 3 standard deviations off the median
const TSC_CALIBRATION_STANDARD_DEVIATION_LIMIT: f64 = 3.0;
// We consider two TSC cores to be in sync if they are within 2 microseconds of each other.
// An optimal context switch takes about 1-3 microseconds.
const TSC_OFFSET_GROUPING_THRESHOLD: Duration = Duration::from_micros(2);
#[sorted]
#[derive(Error, Debug)]
pub enum TscCalibrationError {
/// Received `err` when setting the cpu affinity to `core`
#[error("failed to set thread cpu affinity to core {core}: {err}")]
SetCpuAffinityError { core: usize, err: base::Error },
}
/// Get the standard deviation of a `Vec<T>`.
pub fn standard_deviation<T: num_traits::ToPrimitive + num_traits::Num + Copy>(items: &[T]) -> f64 {
let sum: T = items.iter().fold(T::zero(), |acc: T, elem| acc + *elem);
let count = items.len();
let mean: f64 = sum.to_f64().unwrap_or(0.0) / count as f64;
let variance = items
.iter()
.map(|x| {
let diff = mean - (x.to_f64().unwrap_or(0.0));
diff * diff
})
.sum::<f64>();
(variance / count as f64).sqrt()
}
fn sort_and_get_bounds(items: &mut [i128], stdev_limit: f64) -> (f64, f64) {
items.sort_unstable();
let median = items[items.len() / 2];
let standard_deviation = standard_deviation(items);
let lower_bound = median as f64 - stdev_limit * standard_deviation;
let upper_bound = median as f64 + stdev_limit * standard_deviation;
(lower_bound, upper_bound)
}
/// Represents the host monotonic time and the TSC value at a single moment in time.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
struct TscMoment {
time: Instant,
tsc: u64,
}
impl TscMoment {
fn now(rdtsc: fn() -> u64) -> Self {
TscMoment {
time: Instant::now(),
tsc: rdtsc(),
}
}
/// Measure the tsc frequency using two `TscMoment`s.
fn measure_tsc_frequency(first: &TscMoment, second: &TscMoment) -> i128 {
// handle case where first is actually second in time
let (first, second) = if first.time > second.time {
(second, first)
} else {
(first, second)
};
let time_delta = second.time - first.time;
let tsc_delta = second.tsc as i128 - first.tsc as i128;
tsc_delta * 1_000_000_000i128 / time_delta.as_nanos() as i128
}
/// Measure the tsc offset using two `TscMoment`s and the TSC frequency.
fn measure_tsc_offset(first: &TscMoment, second: &TscMoment, tsc_frequency: u64) -> i128 {
// handle case where first is actually second in time
let (first, second) = if first.time > second.time {
(second, first)
} else {
(first, second)
};
let tsc_delta = second.tsc as i128 - first.tsc as i128;
let time_delta_as_tsc_ticks =
(second.time - first.time).as_nanos() * tsc_frequency as u128 / 1_000_000_000u128;
tsc_delta - time_delta_as_tsc_ticks as i128
}
}
#[derive(Default, Debug, Clone)]
pub struct TscState {
pub frequency: u64,
pub offsets: Vec<(usize, i128)>,
pub core_grouping: CoreGrouping,
}
impl TscState {
pub(crate) fn new(
tsc_frequency: u64,
offsets: Vec<(usize, i128)>,
in_sync_threshold: Duration,
) -> Result<Self> {
let core_grouping = group_core_offsets(&offsets, in_sync_threshold, tsc_frequency)
.context("Failed to group cores by their TSC offsets")?;
Ok(TscState {
frequency: tsc_frequency,
offsets,
core_grouping,
})
}
}
/// Calibrate the TSC frequency of `core`.
///
/// This function first pins itself to `core`, generates `num_samples` start `TscMoment`s, sleeps
/// for `calibration_duration`, and then generates `num_samples` end `TscMoment`s. For each pair
/// of start and end moments, a TSC frequency value is calculated. Any frequencies that are
/// outside of `stddev_limit` standard deviations from the median offset are discarded, because
/// they may represent an interrupt that occurred while a TscMoment was generated. The remaining
/// non-discarded frequencies are then averaged. The function returns the TSC frequency average, as
/// well as a Vec of `TscMoment`s, which are all of the end moments that were associated with at
/// least one non-discarded frequency.
///
/// # Arguments
/// * `core` - Core that this function should run on.
/// * `rdtsc` - Function for reading the TSC value, usually just runs RDTSC instruction.
/// * `num_samples` - Number of start and end `TscMoment`s to generate.
/// * `calibration_duration` - How long to sleep in between gathering start and end moments.
/// * `stdev_limit` - Number of standard deviations outside of which frequencies are discarded.
fn calibrate_tsc_frequency(
rdtsc: fn() -> u64,
core: usize,
num_samples: usize,
calibration_duration: Duration,
stdev_limit: f64,
) -> std::result::Result<(i128, Vec<TscMoment>), TscCalibrationError> {
set_cpu_affinity(vec![core])
.map_err(|e| TscCalibrationError::SetCpuAffinityError { core, err: e })?;
let starts: Vec<TscMoment> = (0..num_samples).map(|_| TscMoment::now(rdtsc)).collect();
std::thread::sleep(calibration_duration);
let ends: Vec<TscMoment> = (0..num_samples).map(|_| TscMoment::now(rdtsc)).collect();
let mut freqs = Vec::with_capacity(num_samples * num_samples);
for start in &starts {
for end in &ends {
freqs.push(TscMoment::measure_tsc_frequency(start, end))
}
}
let (lower_bound, upper_bound) = sort_and_get_bounds(&mut freqs, stdev_limit);
let mut good_samples: Vec<i128> = Vec::with_capacity(num_samples * num_samples);
let mut good_end_moments: HashSet<TscMoment> = HashSet::new();
for i in 0..num_samples {
for j in 0..num_samples {
let freq = freqs[i * num_samples + j];
if lower_bound < (freq as f64) && (freq as f64) < upper_bound {
good_end_moments.insert(ends[j]);
good_samples.push(freq);
}
}
}
Ok((
good_samples.iter().sum::<i128>() / good_samples.len() as i128,
Vec::from_iter(good_end_moments),
))
}
/// Measure the TSC offset for `core` from core 0 where `reference_moments` were gathered.
///
/// This function first pins itself to `core`, then generates `num_samples` `TscMoment`s for this
/// core, and then measures the TSC offset between those moments and all `reference_moments`. Any
/// moments that are outside of `stddev_limit` standard deviations from the median offset are
/// discarded, because they may represent an interrupt that occurred while a TscMoment was
/// generated. The remaining offsets are averaged and returned as nanoseconds.
///
/// # Arguments
/// * `core` - Core that this function should run on.
/// * `rdtsc` - Function for reading the TSC value, usually just runs RDTSC instruction.
/// * `tsc_frequency` - TSC frequency measured from core 0.
/// * `reference_moments` - `TscMoment`s gathered from core 0.
/// * `num_samples` - Number of `TscMoment`s to generate on this thread for measuring the offset.
/// * `stdev_limit` - Number of standard deviations outside of which offsets are discarded.
fn measure_tsc_offset(
core: usize,
rdtsc: fn() -> u64,
tsc_frequency: u64,
reference_moments: Vec<TscMoment>,
num_samples: usize,
stdev_limit: f64,
) -> std::result::Result<i128, TscCalibrationError> {
set_cpu_affinity(vec![core])
.map_err(|e| TscCalibrationError::SetCpuAffinityError { core, err: e })?;
let mut diffs: Vec<i128> = Vec::with_capacity(num_samples);
for _ in 0..num_samples {
let now = TscMoment::now(rdtsc);
for reference_moment in &reference_moments {
diffs.push(TscMoment::measure_tsc_offset(
reference_moment,
&now,
tsc_frequency,
));
}
}
let (lower_bound, upper_bound) = sort_and_get_bounds(&mut diffs, stdev_limit);
let mut good_samples: Vec<i128> = Vec::with_capacity(num_samples);
for diff in &diffs {
if lower_bound < (*diff as f64) && (*diff as f64) < upper_bound {
good_samples.push(*diff);
}
}
let average_diff = good_samples.iter().sum::<i128>() / good_samples.len() as i128;
// Convert the diff to nanoseconds using the tsc_frequency
Ok(average_diff * 1_000_000_000 / tsc_frequency as i128)
}
/// Calibrate the TSC state.
///
/// This function first runs a TSC frequency calibration thread for 100ms, which is pinned to
/// core0. The TSC calibration thread returns both the calibrated frequency, as well as a Vec of
/// TscMoment objects which were validated to be accurate (meaning it's unlikely an interrupt
/// occurred between moment's `time` and `tsc` values). This function then runs a tsc offset
/// measurement thread for each core, which takes the TSC frequency and the Vec of TscMoments and
/// measures whether or not the TSC values for that core are offset from core 0, and by how much.
/// The frequency and the per-core offsets are returned as a TscState.
pub fn calibrate_tsc_state() -> Result<TscState> {
calibrate_tsc_state_inner(
rdtsc_safe,
(0..base::number_of_logical_cores().context("Failed to get number of logical cores")?)
.collect(),
)
}
/// Actually calibrate the TSC state.
///
/// This function takes a customizable version of rdtsc and a specific set of cores to calibrate,
/// which is helpful for testing calibration logic and error handling.
///
/// # Arguments
///
/// * `rdtsc` - Function for reading the TSC value, usually just runs RDTSC instruction.
/// * `cores` - Cores to measure the TSC offset of.
fn calibrate_tsc_state_inner(rdtsc: fn() -> u64, cores: Vec<usize>) -> Result<TscState> {
// For loops can't return values unfortunately
let mut calibration_contents: Option<(u64, Vec<TscMoment>)> = None;
for core in &cores {
// Copy the value of core to a moveable variable now.
let moved_core = *core;
let handle = std::thread::Builder::new()
.name(format!("tsc_calibration_core_{}", core).to_string())
.spawn(move || {
calibrate_tsc_frequency(
rdtsc,
moved_core,
TSC_CALIBRATION_SAMPLES,
TSC_CALIBRATION_DURATION,
TSC_CALIBRATION_STANDARD_DEVIATION_LIMIT,
)
})
.map_err(|e| {
anyhow!(
"TSC frequency calibration thread for core {} failed: {:?}",
core,
e
)
})?;
match handle.join() {
Ok(calibrate_result) => match calibrate_result {
Ok((freq, reference_moments)) => {
if freq <= 0 {
warn!(
"TSC calibration on core {} resulted in TSC frequency of {} Hz, \
trying on another core.",
core, freq
);
continue;
};
calibration_contents = Some((freq as u64, reference_moments));
break;
}
Err(TscCalibrationError::SetCpuAffinityError { core, err }) => {
// There are several legitimate reasons why it might not be possible for crosvm
// to run on some cores:
// 1. Some cores may be offline.
// 2. On Windows, the process affinity mask may not contain all cores.
//
// We thus just warn in this situation.
warn!(
"Failed to set thread affinity to {} during tsc frequency calibration due \
to {}. This core is probably offline.",
core, err
);
}
},
// thread failed
Err(e) => {
return Err(anyhow!(
"TSC frequency calibration thread for core {} failed: {:?}",
core,
e
));
}
};
}
let (freq, reference_moments) =
calibration_contents.ok_or(anyhow!("Failed to calibrate TSC frequency on all cores"))?;
let mut offsets: Vec<(usize, i128)> = Vec::with_capacity(cores.len());
for core in cores {
let thread_reference_moments = reference_moments.clone();
let handle = std::thread::Builder::new()
.name(format!("measure_tsc_offset_core_{}", core).to_string())
.spawn(move || {
measure_tsc_offset(
core,
rdtsc,
freq,
thread_reference_moments,
TSC_CALIBRATION_SAMPLES,
TSC_CALIBRATION_STANDARD_DEVIATION_LIMIT,
)
})
.map_err(|e| {
anyhow!(
"TSC offset measurement thread for core {} failed: {:?}",
core,
e
)
})?;
let offset = match handle.join() {
// thread succeeded
Ok(measurement_result) => match measurement_result {
Ok(offset) => Some(offset),
Err(TscCalibrationError::SetCpuAffinityError { core, err }) => {
// There are several legitimate reasons why it might not be possible for crosvm
// to run on some cores:
// 1. Some cores may be offline.
// 2. On Windows, the process affinity mask may not contain all cores.
//
// We thus just warn in this situation.
warn!(
"Failed to set thread affinity to {} during tsc offset measurement due \
to {}. This core is probably offline.",
core, err
);
None
}
},
// thread failed
Err(e) => {
return Err(anyhow!(
"TSC offset measurement thread for core {} failed: {:?}",
core,
e
));
}
};
if let Some(offset) = offset {
offsets.push((core, offset));
}
}
TscState::new(freq, offsets, TSC_OFFSET_GROUPING_THRESHOLD)
}
#[cfg(test)]
mod tests {
use std::arch::x86_64::__rdtscp;
use std::arch::x86_64::_rdtsc;
use super::*;
const ACCEPTABLE_OFFSET_MEASUREMENT_ERROR: i128 = 2_000i128;
#[test]
fn test_handle_offline_core() {
// This test imitates what would happen if a core is offline, and set_cpu_affinity fails.
// The calibration should not fail, and the extra core should not appear in the list of
// offsets.
let num_cores =
base::number_of_logical_cores().expect("number of logical cores should not fail");
let too_may_cores = num_cores + 2;
let host_state = calibrate_tsc_state_inner(rdtsc_safe, (0..too_may_cores).collect())
.expect("calibrate tsc state should not fail");
// First assert that the number of offsets measured is at most num_cores (it might be
// less if the current host has some offline cores).
assert!(host_state.offsets.len() <= num_cores);
for (core, _) in host_state.offsets {
// Assert that all offsets that we have are for cores 0..num_cores.
assert!(core < num_cores);
}
}
#[test]
fn test_frequency_higher_than_u32() {
// This test is making sure that we're not truncating our TSC frequencies in the case that
// they are greater than u32::MAX.
let host_state = calibrate_tsc_state_inner(
rdtsc_safe,
(0..base::number_of_logical_cores().expect("number of logical cores should not fail"))
.collect(),
)
.expect("failed to calibrate host freq");
// We use a static multiplier of 1000 here because the function has to be static (fn).
// 1000 should work for tsc frequency > 4.2MHz, which should apply to basically any
// processor. This if statement checks and bails early if that's not the case.
if host_state.frequency * 1000 < (u32::MAX as u64) {
return;
}
fn rdtsc_frequency_higher_than_u32() -> u64 {
// SAFETY: trivially safe
unsafe { _rdtsc() }.wrapping_mul(1000)
}
let state = calibrate_tsc_state_inner(
rdtsc_frequency_higher_than_u32,
(0..base::number_of_logical_cores().expect("number of logical cores should not fail"))
.collect(),
)
.unwrap();
let expected_freq = host_state.frequency * 1000;
let margin_of_error = expected_freq / 100;
assert!(state.frequency < expected_freq + margin_of_error);
assert!(state.frequency > expected_freq - margin_of_error);
}
#[test]
#[ignore]
fn test_offset_identification_core_0() {
fn rdtsc_with_core_0_offset_by_100_000() -> u64 {
let mut id = 0u32;
// SAFETY: trivially safe
let mut value = unsafe { __rdtscp(&mut id as *mut u32) };
if id == 0 {
value += 100_000;
}
value
}
// This test only works if the host has >=2 logical cores.
let num_cores =
base::number_of_logical_cores().expect("Failed to get number of logical cores");
if num_cores < 2 {
return;
}
let state = calibrate_tsc_state_inner(
rdtsc_with_core_0_offset_by_100_000,
(0..base::number_of_logical_cores().expect("number of logical cores should not fail"))
.collect(),
)
.unwrap();
for core in 0..num_cores {
let expected_offset_ns = if core > 0 {
-100_000i128 * 1_000_000_000i128 / state.frequency as i128
} else {
0i128
};
assert!(
state.offsets[core].1 < expected_offset_ns + ACCEPTABLE_OFFSET_MEASUREMENT_ERROR
);
assert!(
state.offsets[core].1 > expected_offset_ns - ACCEPTABLE_OFFSET_MEASUREMENT_ERROR
);
}
}
#[test]
#[ignore]
fn test_offset_identification_core_1() {
fn rdtsc_with_core_1_offset_by_100_000() -> u64 {
let mut id = 0u32;
// SAFETY: trivially safe
let mut value = unsafe { __rdtscp(&mut id as *mut u32) };
if id == 1 {
value += 100_000;
}
value
}
// This test only works if the host has >=2 logical cores.
let num_cores =
base::number_of_logical_cores().expect("Failed to get number of logical cores");
if num_cores < 2 {
return;
}
let state = calibrate_tsc_state_inner(
rdtsc_with_core_1_offset_by_100_000,
(0..base::number_of_logical_cores().expect("number of logical cores should not fail"))
.collect(),
)
.unwrap();
for core in 0..num_cores {
let expected_offset_ns = if core == 1 {
100_000i128 * 1_000_000_000i128 / state.frequency as i128
} else {
0i128
};
assert!(
state.offsets[core].1 < expected_offset_ns + ACCEPTABLE_OFFSET_MEASUREMENT_ERROR
);
assert!(
state.offsets[core].1 > expected_offset_ns - ACCEPTABLE_OFFSET_MEASUREMENT_ERROR
);
}
}
}