1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
// Copyright 2024 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! Defines an arena allocator backed by `base::MemoryMapping`.
use std::cell::RefCell;
use std::collections::BTreeSet;
use std::fs::File;
use anyhow::anyhow;
use anyhow::bail;
use anyhow::Context;
use anyhow::Result;
use base::MappedRegion;
use base::MemoryMapping;
use zerocopy::AsBytes;
use zerocopy::FromBytes;
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
struct Region {
start: usize,
len: usize,
}
/// Manages a set of regions that are not overlapping each other.
#[derive(Default)]
struct RegionManager(BTreeSet<Region>);
impl RegionManager {
fn allocate(&mut self, start: usize, len: usize) -> Result<()> {
// Allocation needs to fail if there exists a region that overlaps with [start, start+len).
// A region r is overlapping with [start, start+len) if and only if:
// r.start <= (start+len) && start <= (r.start+r.len)
//
// So, we first find the last region where r.start <= (start+len) holds.
let left = self
.0
.range(
..Region {
start: start + len,
len: 0,
},
)
.next_back()
.copied();
// New region to be added.
let new = match left {
None => Region { start, len },
Some(r) => {
if start < r.start + r.len {
bail!(
"range overlaps: existing: {:?}, new: {:?}",
left,
Region { start, len }
);
}
// if `r` and the new region is adjacent, merge them.
// otherwise, just return the new region.
if start == r.start + r.len {
let new = Region {
start: r.start,
len: r.len + len,
};
self.0.remove(&r);
new
} else {
Region { start, len }
}
}
};
// If there exists a region that starts from `new.start + new.len`,
// it should be merged with `new`.
let right = self
.0
.range(
Region {
start: new.start + new.len,
len: 0,
}..,
)
.next()
.copied();
match right {
Some(r) if r.start == new.start + new.len => {
// merge and insert
let merged = Region {
start: new.start,
len: new.len + r.len,
};
self.0.remove(&r);
self.0.insert(merged);
}
Some(_) | None => {
// just insert
self.0.insert(new);
}
}
Ok(())
}
#[cfg(test)]
fn to_vec(&self) -> Vec<&Region> {
self.0.iter().collect()
}
}
#[test]
fn test_region_manager() {
let mut rm: RegionManager = Default::default();
rm.allocate(0, 5).unwrap();
assert_eq!(rm.to_vec(), vec![&Region { start: 0, len: 5 }]);
rm.allocate(10, 5).unwrap();
rm.allocate(15, 5).unwrap(); // will be merged into the previous one
assert_eq!(
rm.to_vec(),
vec![&Region { start: 0, len: 5 }, &Region { start: 10, len: 10 }]
);
rm.allocate(3, 5).unwrap_err(); // fail
rm.allocate(8, 5).unwrap_err(); // fail
rm.allocate(25, 5).unwrap();
assert_eq!(
rm.to_vec(),
vec![
&Region { start: 0, len: 5 },
&Region { start: 10, len: 10 },
&Region { start: 25, len: 5 }
]
);
rm.allocate(5, 5).unwrap(); // will be merged to the existing two regions
assert_eq!(
rm.to_vec(),
vec![&Region { start: 0, len: 20 }, &Region { start: 25, len: 5 }]
);
rm.allocate(20, 5).unwrap();
assert_eq!(rm.to_vec(), vec![&Region { start: 0, len: 30 },]);
}
#[derive(Debug, Clone, Copy, AsBytes)]
#[repr(C)]
/// Represents a ID of a disk block.
pub struct BlockId(u32);
impl From<u32> for BlockId {
fn from(value: u32) -> Self {
BlockId(value)
}
}
impl From<BlockId> for u32 {
fn from(value: BlockId) -> Self {
value.0
}
}
impl BlockId {
pub fn as_bytes(&self) -> &[u8] {
self.0.as_bytes()
}
}
/// Information on how to mmap a host file to ext2 blocks.
pub struct FileMappingInfo {
/// Offset in the memory that a file is mapped to.
pub mem_offset: usize,
/// The file to be mmap'd.
pub file: File,
/// The length of the mapping.
pub length: usize,
/// Offset in the file to start the mapping.
pub file_offset: usize,
}
/// Memory arena backed by `base::MemoryMapping`.
///
/// This struct takes a mutable referencet to the memory mapping so this arena won't arena the
/// region.
pub struct Arena<'a> {
mem: &'a mut MemoryMapping,
block_size: usize,
/// A set of regions that are not overlapping each other.
/// Use `RefCell` for interior mutability because the mutablity of `RegionManager` should be
/// independent from the mutability of the memory mapping.
regions: RefCell<RegionManager>,
mappings: RefCell<Vec<FileMappingInfo>>,
}
impl<'a> Arena<'a> {
/// Create a new arena backed by `len` bytes of `base::MemoryMapping`.
pub fn new(block_size: usize, mem: &'a mut MemoryMapping) -> Result<Self> {
Ok(Self {
mem,
block_size,
regions: Default::default(),
mappings: Default::default(),
})
}
/// A helper function to mark a region as reserved.
fn reserve(&self, mem_offset: usize, len: usize) -> Result<()> {
let mem_end = mem_offset.checked_add(len).context("mem_end overflow")?;
if mem_end > self.mem.size() {
bail!(
"out of memory region: {mem_offset} + {len} > {}",
self.mem.size()
);
}
self.regions.borrow_mut().allocate(mem_offset, len)?;
Ok(())
}
/// Reserves a region for mmap and stores the mmap information.
/// Note that `Arena` will not call mmap(). Instead, the owner of `Arena` instance must call
/// `into_mapping_info()` to retrieve the mapping information and call mmap later instead.
pub fn reserve_for_mmap(
&self,
mem_offset: usize,
length: usize,
file: File,
file_offset: usize,
) -> Result<()> {
self.reserve(mem_offset, length)?;
self.mappings.borrow_mut().push(FileMappingInfo {
mem_offset,
length,
file: file.try_clone()?,
file_offset,
});
Ok(())
}
/// Allocate a new slice on an anonymous memory.
/// `Arena` structs guarantees that this area is not overlapping with other regions.
pub fn allocate_slice(
&self,
block: BlockId,
block_offset: usize,
len: usize,
) -> Result<&'a mut [u8]> {
let offset = u32::from(block) as usize * self.block_size + block_offset;
self.reserve(offset, len)?;
let new_addr = (self.mem.as_ptr() as usize)
.checked_add(offset)
.context("address overflow")?;
// SAFETY: the memory region [new_addr, new_addr+len) is guaranteed to be valid.
let slice = unsafe { std::slice::from_raw_parts_mut(new_addr as *mut u8, len) };
Ok(slice)
}
/// Allocate a new region for a value with type `T`.
pub fn allocate<T: AsBytes + FromBytes + Sized>(
&self,
block: BlockId,
block_offset: usize,
) -> Result<&'a mut T> {
let slice = self.allocate_slice(block, block_offset, std::mem::size_of::<T>())?;
T::mut_from(slice).ok_or_else(|| anyhow!("failed to interpret"))
}
pub fn write_to_mem<T: AsBytes + FromBytes + Sized>(
&self,
block_id: BlockId,
block_offset: usize,
value: &T,
) -> Result<()> {
let slice = self.allocate_slice(block_id, block_offset, std::mem::size_of::<T>())?;
slice.copy_from_slice(value.as_bytes());
Ok(())
}
/// Consumes `Arena` and retrieve mmap information.
pub fn into_mapping_info(self) -> Vec<FileMappingInfo> {
self.mappings.take()
}
}