1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
// Copyright 2021 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use std::collections::VecDeque;
use std::future::Future;
use std::mem;
use std::sync::mpsc::channel;
use std::sync::mpsc::Receiver;
use std::sync::mpsc::Sender;
use std::sync::Arc;
use std::thread;
use std::thread::JoinHandle;
use std::time::Duration;
use std::time::Instant;
use base::error;
use base::warn;
use futures::channel::oneshot;
use slab::Slab;
use sync::Condvar;
use sync::Mutex;
const DEFAULT_SHUTDOWN_TIMEOUT: Duration = Duration::from_secs(10);
struct State {
tasks: VecDeque<Box<dyn FnOnce() + Send>>,
num_threads: usize,
num_idle: usize,
num_notified: usize,
worker_threads: Slab<JoinHandle<()>>,
exited_threads: Option<Receiver<usize>>,
exit: Sender<usize>,
shutting_down: bool,
}
fn run_blocking_thread(idx: usize, inner: Arc<Inner>, exit: Sender<usize>) {
let mut state = inner.state.lock();
while !state.shutting_down {
if let Some(f) = state.tasks.pop_front() {
drop(state);
f();
state = inner.state.lock();
continue;
}
// No more tasks so wait for more work.
state.num_idle += 1;
let (guard, result) = inner
.condvar
.wait_timeout_while(state, inner.keepalive, |s| {
!s.shutting_down && s.num_notified == 0
});
state = guard;
// If `state.num_notified > 0` then this was a real wakeup.
if state.num_notified > 0 {
state.num_notified -= 1;
continue;
}
// Only decrement the idle count if we timed out. Otherwise, it was decremented when new
// work was added to `state.tasks`.
if result.timed_out() {
state.num_idle = state
.num_idle
.checked_sub(1)
.expect("`num_idle` underflow on timeout");
break;
}
}
state.num_threads -= 1;
// If we're shutting down then the BlockingPool will take care of joining all the threads.
// Otherwise, we need to join the last worker thread that exited here.
let last_exited_thread = if let Some(exited_threads) = state.exited_threads.as_mut() {
exited_threads
.try_recv()
.map(|idx| state.worker_threads.remove(idx))
.ok()
} else {
None
};
// Drop the lock before trying to join the last exited thread.
drop(state);
if let Some(handle) = last_exited_thread {
let _ = handle.join();
}
if let Err(e) = exit.send(idx) {
error!("Failed to send thread exit event on channel: {}", e);
}
}
struct Inner {
state: Mutex<State>,
condvar: Condvar,
max_threads: usize,
keepalive: Duration,
}
impl Inner {
pub fn spawn<F, R>(self: &Arc<Self>, f: F) -> impl Future<Output = R>
where
F: FnOnce() -> R + Send + 'static,
R: Send + 'static,
{
let mut state = self.state.lock();
// If we're shutting down then nothing is going to run this task.
if state.shutting_down {
error!("spawn called after shutdown");
return futures::future::Either::Left(async {
panic!("tried to poll BlockingPool task after shutdown")
});
}
let (send_chan, recv_chan) = oneshot::channel();
state.tasks.push_back(Box::new(|| {
let _ = send_chan.send(f());
}));
if state.num_idle == 0 {
// There are no idle threads. Spawn a new one if possible.
if state.num_threads < self.max_threads {
state.num_threads += 1;
let exit = state.exit.clone();
let entry = state.worker_threads.vacant_entry();
let idx = entry.key();
let inner = self.clone();
entry.insert(
thread::Builder::new()
.name(format!("blockingPool{}", idx))
.spawn(move || run_blocking_thread(idx, inner, exit))
.unwrap(),
);
}
} else {
// We have idle threads, wake one up.
state.num_idle -= 1;
state.num_notified += 1;
self.condvar.notify_one();
}
futures::future::Either::Right(async {
recv_chan
.await
.expect("BlockingThread task unexpectedly cancelled")
})
}
}
#[derive(Debug, thiserror::Error)]
#[error("{0} BlockingPool threads did not exit in time and will be detached")]
pub struct ShutdownTimedOut(usize);
/// A thread pool for running work that may block.
///
/// It is generally discouraged to do any blocking work inside an async function. However, this is
/// sometimes unavoidable when dealing with interfaces that don't provide async variants. In this
/// case callers may use the `BlockingPool` to run the blocking work on a different thread and
/// `await` for its result to finish, which will prevent blocking the main thread of the
/// application.
///
/// Since the blocking work is sent to another thread, users should be careful when using the
/// `BlockingPool` for latency-sensitive operations. Additionally, the `BlockingPool` is intended to
/// be used for work that will eventually complete on its own. Users who want to spawn a thread
/// should just use `thread::spawn` directly.
///
/// There is no way to cancel work once it has been picked up by one of the worker threads in the
/// `BlockingPool`. Dropping or shutting down the pool will block up to a timeout (default 10
/// seconds) to wait for any active blocking work to finish. Any threads running tasks that have not
/// completed by that time will be detached.
///
/// # Examples
///
/// Spawn a task to run in the `BlockingPool` and await on its result.
///
/// ```edition2018
/// use cros_async::BlockingPool;
///
/// # async fn do_it() {
/// let pool = BlockingPool::default();
///
/// let res = pool.spawn(move || {
/// // Do some CPU-intensive or blocking work here.
///
/// 42
/// }).await;
///
/// assert_eq!(res, 42);
/// # }
/// # cros_async::block_on(do_it());
/// ```
pub struct BlockingPool {
inner: Arc<Inner>,
}
impl BlockingPool {
/// Create a new `BlockingPool`.
///
/// The `BlockingPool` will never spawn more than `max_threads` threads to do work, regardless
/// of the number of tasks that are added to it. This value should be set relatively low (for
/// example, the number of CPUs on the machine) if the pool is intended to run CPU intensive
/// work or it should be set relatively high (128 or more) if the pool is intended to be used
/// for various IO operations that cannot be completed asynchronously. The default value is 256.
///
/// Worker threads are spawned on demand when new work is added to the pool and will
/// automatically exit after being idle for some time so there is no overhead for setting
/// `max_threads` to a large value when there is little to no work assigned to the
/// `BlockingPool`. `keepalive` determines the idle duration after which the worker thread will
/// exit. The default value is 10 seconds.
pub fn new(max_threads: usize, keepalive: Duration) -> BlockingPool {
let (exit, exited_threads) = channel();
BlockingPool {
inner: Arc::new(Inner {
state: Mutex::new(State {
tasks: VecDeque::new(),
num_threads: 0,
num_idle: 0,
num_notified: 0,
worker_threads: Slab::new(),
exited_threads: Some(exited_threads),
exit,
shutting_down: false,
}),
condvar: Condvar::new(),
max_threads,
keepalive,
}),
}
}
/// Like new but with pre-allocating capacity for up to `max_threads`.
pub fn with_capacity(max_threads: usize, keepalive: Duration) -> BlockingPool {
let (exit, exited_threads) = channel();
BlockingPool {
inner: Arc::new(Inner {
state: Mutex::new(State {
tasks: VecDeque::new(),
num_threads: 0,
num_idle: 0,
num_notified: 0,
worker_threads: Slab::with_capacity(max_threads),
exited_threads: Some(exited_threads),
exit,
shutting_down: false,
}),
condvar: Condvar::new(),
max_threads,
keepalive,
}),
}
}
/// Spawn a task to run in the `BlockingPool`.
///
/// Callers may `await` the returned `Future` to be notified when the work is completed.
/// Dropping the future will not cancel the task.
///
/// # Panics
///
/// `await`ing a `Task` after dropping the `BlockingPool` or calling `BlockingPool::shutdown`
/// will panic if the work was not completed before the pool was shut down.
pub fn spawn<F, R>(&self, f: F) -> impl Future<Output = R>
where
F: FnOnce() -> R + Send + 'static,
R: Send + 'static,
{
self.inner.spawn(f)
}
/// Shut down the `BlockingPool`.
///
/// If `deadline` is provided then this will block until either all worker threads exit or the
/// deadline is exceeded. If `deadline` is not given then this will block indefinitely until all
/// worker threads exit. Any work that was added to the `BlockingPool` but not yet picked up by
/// a worker thread will not complete and `await`ing on the `Task` for that work will panic.
pub fn shutdown(&self, deadline: Option<Instant>) -> Result<(), ShutdownTimedOut> {
let mut state = self.inner.state.lock();
if state.shutting_down {
// We've already shut down this BlockingPool.
return Ok(());
}
state.shutting_down = true;
let exited_threads = state.exited_threads.take().expect("exited_threads missing");
let unfinished_tasks = std::mem::take(&mut state.tasks);
let mut worker_threads = mem::replace(&mut state.worker_threads, Slab::new());
drop(state);
self.inner.condvar.notify_all();
// Cancel any unfinished work after releasing the lock.
drop(unfinished_tasks);
// Now wait for all worker threads to exit.
if let Some(deadline) = deadline {
let mut now = Instant::now();
while now < deadline && !worker_threads.is_empty() {
if let Ok(idx) = exited_threads.recv_timeout(deadline - now) {
let _ = worker_threads.remove(idx).join();
}
now = Instant::now();
}
// Any threads that have not yet joined will just be detached.
if !worker_threads.is_empty() {
return Err(ShutdownTimedOut(worker_threads.len()));
}
Ok(())
} else {
// Block indefinitely until all worker threads exit.
for handle in worker_threads.drain() {
let _ = handle.join();
}
Ok(())
}
}
#[cfg(test)]
pub(crate) fn shutting_down(&self) -> bool {
self.inner.state.lock().shutting_down
}
}
impl Default for BlockingPool {
fn default() -> BlockingPool {
BlockingPool::new(256, Duration::from_secs(10))
}
}
impl Drop for BlockingPool {
fn drop(&mut self) {
if let Err(e) = self.shutdown(Some(Instant::now() + DEFAULT_SHUTDOWN_TIMEOUT)) {
warn!("{}", e);
}
}
}
#[cfg(test)]
mod test {
use std::sync::Arc;
use std::sync::Barrier;
use std::thread;
use std::time::Duration;
use std::time::Instant;
use futures::executor::block_on;
use futures::stream::FuturesUnordered;
use futures::StreamExt;
use sync::Condvar;
use sync::Mutex;
use super::super::super::BlockingPool;
#[test]
fn blocking_sleep() {
let pool = BlockingPool::default();
let res = block_on(pool.spawn(|| 42));
assert_eq!(res, 42);
}
#[test]
fn drop_doesnt_block() {
let pool = BlockingPool::default();
let (tx, rx) = std::sync::mpsc::sync_channel(0);
// The blocking work should continue even though we drop the future.
//
// If we cancelled the work, then the recv call would fail. If we blocked on the work, then
// the send would never complete because the channel is size zero and so waits for a
// matching recv call.
std::mem::drop(pool.spawn(move || tx.send(()).unwrap()));
rx.recv().unwrap();
}
#[test]
fn fast_tasks_with_short_keepalive() {
let pool = BlockingPool::new(256, Duration::from_millis(1));
let streams = FuturesUnordered::new();
for _ in 0..2 {
for _ in 0..256 {
let task = pool.spawn(|| ());
streams.push(task);
}
thread::sleep(Duration::from_millis(1));
}
block_on(streams.collect::<Vec<_>>());
// The test passes if there are no panics, which would happen if one of the worker threads
// triggered an underflow on `pool.inner.state.num_idle`.
}
#[test]
fn more_tasks_than_threads() {
let pool = BlockingPool::new(4, Duration::from_secs(10));
let stream = (0..19)
.map(|_| pool.spawn(|| thread::sleep(Duration::from_millis(5))))
.collect::<FuturesUnordered<_>>();
let results = block_on(stream.collect::<Vec<_>>());
assert_eq!(results.len(), 19);
}
#[test]
fn shutdown() {
let pool = BlockingPool::default();
let stream = (0..19)
.map(|_| pool.spawn(|| thread::sleep(Duration::from_millis(5))))
.collect::<FuturesUnordered<_>>();
let results = block_on(stream.collect::<Vec<_>>());
assert_eq!(results.len(), 19);
pool.shutdown(Some(Instant::now() + Duration::from_secs(10)))
.unwrap();
let state = pool.inner.state.lock();
assert_eq!(state.num_threads, 0);
}
#[test]
fn keepalive_timeout() {
// Set the keepalive to a very low value so that threads will exit soon after they run out
// of work.
let pool = BlockingPool::new(7, Duration::from_millis(1));
let stream = (0..19)
.map(|_| pool.spawn(|| thread::sleep(Duration::from_millis(5))))
.collect::<FuturesUnordered<_>>();
let results = block_on(stream.collect::<Vec<_>>());
assert_eq!(results.len(), 19);
// Wait for all threads to exit.
let deadline = Instant::now() + Duration::from_secs(10);
while Instant::now() < deadline {
thread::sleep(Duration::from_millis(100));
let state = pool.inner.state.lock();
if state.num_threads == 0 {
break;
}
}
{
let state = pool.inner.state.lock();
assert_eq!(state.num_threads, 0);
assert_eq!(state.num_idle, 0);
}
}
#[test]
#[should_panic]
fn shutdown_with_pending_work() {
let pool = BlockingPool::new(1, Duration::from_secs(10));
let mu = Arc::new(Mutex::new(false));
let cv = Arc::new(Condvar::new());
// First spawn a thread that blocks the pool.
let task_mu = mu.clone();
let task_cv = cv.clone();
let _blocking_task = pool.spawn(move || {
let mut ready = task_mu.lock();
while !*ready {
ready = task_cv.wait(ready);
}
});
// This task will never finish because we will shut down the pool first.
let unfinished = pool.spawn(|| 5);
// Spawn a thread to unblock the work we started earlier once it sees that the pool is
// shutting down.
let inner = pool.inner.clone();
thread::spawn(move || {
let mut state = inner.state.lock();
while !state.shutting_down {
state = inner.condvar.wait(state);
}
*mu.lock() = true;
cv.notify_all();
});
pool.shutdown(None).unwrap();
// This should panic.
assert_eq!(block_on(unfinished), 5);
}
#[test]
fn unfinished_worker_thread() {
let pool = BlockingPool::default();
let ready = Arc::new(Mutex::new(false));
let cv = Arc::new(Condvar::new());
let barrier = Arc::new(Barrier::new(2));
let thread_ready = ready.clone();
let thread_barrier = barrier.clone();
let thread_cv = cv.clone();
let task = pool.spawn(move || {
thread_barrier.wait();
let mut ready = thread_ready.lock();
while !*ready {
ready = thread_cv.wait(ready);
}
});
// Wait to shut down the pool until after the worker thread has started.
barrier.wait();
pool.shutdown(Some(Instant::now() + Duration::from_millis(5)))
.unwrap_err();
let num_threads = pool.inner.state.lock().num_threads;
assert_eq!(num_threads, 1);
// Now wake up the blocked task so we don't leak the thread.
*ready.lock() = true;
cv.notify_all();
block_on(task);
let deadline = Instant::now() + Duration::from_secs(10);
while Instant::now() < deadline {
thread::sleep(Duration::from_millis(100));
let state = pool.inner.state.lock();
if state.num_threads == 0 {
break;
}
}
{
let state = pool.inner.state.lock();
assert_eq!(state.num_threads, 0);
assert_eq!(state.num_idle, 0);
}
}
}