1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
// Copyright 2022 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! Provides wrapper of userfaultfd crate for vmm-swap feature.
#![deny(missing_docs)]
use std::convert::From;
use std::fs::File;
use std::fs::OpenOptions;
use std::ops::Range;
use std::os::unix::io::AsRawFd;
use std::os::unix::prelude::FromRawFd;
use std::os::unix::prelude::OpenOptionsExt;
use anyhow::Context;
use base::errno_result;
use base::info;
use base::ioctl_io_nr;
use base::ioctl_iowr_nr;
use base::ioctl_with_mut_ref;
use base::ioctl_with_val;
use base::linux::MemoryMappingUnix;
use base::AsRawDescriptor;
use base::AsRawDescriptors;
use base::FromRawDescriptor;
use base::IntoRawDescriptor;
use base::MappedRegion;
use base::MemoryMapping;
use base::MemoryMappingBuilder;
use base::RawDescriptor;
use thiserror::Error as ThisError;
use userfaultfd::Error as UffdError;
pub use userfaultfd::Event as UffdEvent;
use userfaultfd::FeatureFlags;
use userfaultfd::IoctlFlags;
use userfaultfd::Uffd;
use userfaultfd::UffdBuilder;
use crate::pagesize::pages_to_bytes;
const DEV_USERFAULTFD_PATH: &str = "/dev/userfaultfd";
const USERFAULTFD_IOC: u32 = 0xAA;
ioctl_io_nr!(USERFAULTFD_IOC_NEW, USERFAULTFD_IOC, 0x00);
ioctl_iowr_nr!(
UFFDIO_API,
userfaultfd_sys::UFFDIO,
userfaultfd_sys::_UFFDIO_API,
userfaultfd_sys::uffdio_api
);
/// Result for Userfaultfd
pub type Result<T> = std::result::Result<T, Error>;
/// Errors for Userfaultfd
#[derive(ThisError, Debug)]
pub enum Error {
#[error("userfaultfd error: {0:?}")]
/// unrecoverable userfaultfd error.
Userfaultfd(UffdError),
#[error("copy partially succeeded: {0:?} bytes copied")]
/// UFFDIO_COPY partillay succeed.
PartiallyCopied(usize),
#[error("the page is already filled")]
/// The page is already filled.
PageExist,
#[error("the uffd in the corresponding process is already closed")]
/// The corresponding process is already dead or has run exec(2).
UffdClosed,
#[error("clone error: {0:?}")]
/// Failed to clone userfaultfd.
Clone(base::Error),
}
impl From<UffdError> for Error {
fn from(e: UffdError) -> Self {
match e {
UffdError::PartiallyCopied(copied) => Self::PartiallyCopied(copied),
UffdError::CopyFailed(errno) if errno as i32 == libc::ESRCH => Self::UffdClosed,
UffdError::ZeropageFailed(errno) if errno as i32 == libc::EEXIST => Self::PageExist,
UffdError::ZeropageFailed(errno) if errno as i32 == libc::ESRCH => Self::UffdClosed,
other => Self::Userfaultfd(other),
}
}
}
/// Register all the regions to all the userfaultfd
///
/// # Arguments
///
/// * `regions` - the list of address range of regions.
/// * `uffds` - the reference to the list of [Userfaultfd] for all the processes which may touch the
/// `address_range` to be registered.
///
/// # Safety
///
/// Each address range in `regions` must be from guest memory.
///
/// The `uffds` must cover all the processes which may touch the `address_range`. otherwise some
/// pages are zeroed by kernel on the unregistered process instead of swapping in from the swap
/// file.
#[deny(unsafe_op_in_unsafe_fn)]
pub unsafe fn register_regions(regions: &[Range<usize>], uffds: &[Userfaultfd]) -> Result<()> {
for address_range in regions {
for uffd in uffds {
// SAFETY:
// Safe because the range is from the guest memory region.
let result = unsafe {
uffd.register(address_range.start, address_range.end - address_range.start)
};
match result {
Ok(_) => {}
// Skip the userfaultfd for dead processes.
Err(Error::UffdClosed) => {}
Err(e) => {
return Err(e);
}
};
}
}
Ok(())
}
/// Unregister all the regions from all the userfaultfd.
///
/// `UFFDIO_UNREGISTER` unblocks any threads currently waiting on the region and remove page fault
/// events on the region from the userfaultfd event queue.
///
/// # Arguments
///
/// * `regions` - the list of address range of regions.
/// * `uffds` - the reference to the list of registered [Userfaultfd].
pub fn unregister_regions(regions: &[Range<usize>], uffds: &[Userfaultfd]) -> Result<()> {
for address_range in regions {
for uffd in uffds {
let result =
uffd.unregister(address_range.start, address_range.end - address_range.start);
match result {
Ok(_) => {}
// Skip the userfaultfd for dead processes.
Err(Error::UffdClosed) => {}
Err(e) => {
return Err(e);
}
};
}
}
Ok(())
}
/// Factory for [Userfaultfd].
///
/// If `/dev/userfaultfd` (introduced from Linux 6.1) exists, creates userfaultfd from the dev file.
/// Otherwise use `userfaultfd(2)` to create a userfaultfd.
pub struct Factory {
dev_file: Option<File>,
}
impl Default for Factory {
fn default() -> Self {
Self::new()
}
}
impl Factory {
/// Create [Factory] and try open `/dev/userfaultfd`.
///
/// If it fails to open `/dev/userfaultfd`, userfaultfd creation fallback to `userfaultfd(2)`
/// syscall.
pub fn new() -> Self {
let dev_file = OpenOptions::new()
.read(true)
.custom_flags(libc::O_CLOEXEC | libc::O_NONBLOCK)
.open(DEV_USERFAULTFD_PATH);
match dev_file {
Ok(dev_file) => Self {
dev_file: Some(dev_file),
},
Err(e) => {
info!(
"Failed to open /dev/userfaultfd ({:?}), will fall back to userfaultfd(2)",
e
);
Self { dev_file: None }
}
}
}
/// Creates a new [Userfaultfd] for this process.
pub fn create(&self) -> anyhow::Result<Userfaultfd> {
if let Some(dev_file) = &self.dev_file {
// SAFETY:
// Safe because ioctl(2) USERFAULTFD_IOC_NEW with does not change Rust memory safety.
let res = unsafe {
ioctl_with_val(
dev_file,
USERFAULTFD_IOC_NEW,
(libc::O_CLOEXEC | libc::O_NONBLOCK) as libc::c_ulong,
)
};
let uffd = if res < 0 {
return errno_result().context("USERFAULTFD_IOC_NEW");
} else {
// Safe because the uffd is not owned by anyone in this process.
// SAFETY:
unsafe { Userfaultfd::from_raw_descriptor(res) }
};
let mut api = userfaultfd_sys::uffdio_api {
api: userfaultfd_sys::UFFD_API,
features: (FeatureFlags::MISSING_SHMEM | FeatureFlags::EVENT_REMOVE).bits(),
ioctls: 0,
};
// SAFETY:
// Safe because ioctl(2) UFFDIO_API with does not change Rust memory safety.
let res = unsafe { ioctl_with_mut_ref(&uffd, UFFDIO_API, &mut api) };
if res < 0 {
errno_result().context("UFFDIO_API")
} else {
Ok(uffd)
}
} else {
Userfaultfd::new().context("create userfaultfd")
}
}
/// Create a new [Factory] object.
pub fn try_clone(&self) -> anyhow::Result<Self> {
let dev_file = self.dev_file.as_ref().map(File::try_clone).transpose()?;
Ok(Self { dev_file })
}
}
impl AsRawDescriptors for Factory {
fn as_raw_descriptors(&self) -> Vec<RawDescriptor> {
if let Some(dev_file) = &self.dev_file {
vec![dev_file.as_raw_descriptor()]
} else {
Vec::new()
}
}
}
/// Wrapper for [`userfaultfd::Uffd`] to be used in the vmm-swap feature.
///
/// # Safety
///
/// The userfaultfd operations (`UFFDIO_COPY` and `UFFDIO_ZEROPAGE`) looks unsafe since it fills a
/// memory content directly. But they actually are not unsafe operation but `UFFDIO_REGISTER` should
/// be the unsafe operation for Rust memory safety.
///
/// According to [the Rust document](https://doc.rust-lang.org/nomicon/uninitialized.html),
///
/// > All runtime-allocated memory in a Rust program begins its life as uninitialized.
///
/// The userfaultfd operations actually does not change/overwrite the existing memory contents but
/// they just setup the "uninitialized" pages. If the page was already initialized, the userfaultfd
/// operations fail and return EEXIST error (which is not documented unfortunately). So they
/// originally does not affect the Rust memory safety.
///
/// The "uninitialized" page in this context has 2 patterns:
///
/// 1. pages which is never touched or,
/// 2. pages which is never touched after MADV_REMOVE
///
/// Filling the (1) pages with any contents should not affect the Rust memory safety.
///
/// Filling the (2) pages potentially may break the memory used by Rust. But the safety should be
/// examined at `MADV_REMOVE` and `UFFDIO_REGISTER` timing.
#[derive(Debug)]
pub struct Userfaultfd {
uffd: Uffd,
}
impl Userfaultfd {
/// Creates a new userfaultfd using userfaultfd(2) syscall.
///
/// This is public for tests.
pub fn new() -> Result<Self> {
let uffd = UffdBuilder::new()
.close_on_exec(true)
.non_blocking(true)
.user_mode_only(false)
.require_features(FeatureFlags::MISSING_SHMEM | FeatureFlags::EVENT_REMOVE)
.create()?;
Ok(Self { uffd })
}
/// Register a range of memory to the userfaultfd.
///
/// After this registration, any page faults on the range will be caught by the userfaultfd.
///
/// # Arguments
///
/// * `addr` - the starting address of the range of memory.
/// * `len` - the length in bytes of the range of memory.
///
/// # Safety
///
/// [addr, addr+len) must lie within a [MemoryMapping], and that mapping
/// must live for the lifespan of the userfaultfd kernel object (which may be distinct from the
/// `Userfaultfd` rust object in this process).
pub unsafe fn register(&self, addr: usize, len: usize) -> Result<IoctlFlags> {
match self.uffd.register(addr as *mut libc::c_void, len) {
Ok(flags) => Ok(flags),
Err(UffdError::SystemError(errno)) if errno as i32 == libc::ENOMEM => {
// Userfaultfd returns `ENOMEM` if the corresponding process dies or run as another
// program by `exec` system call.
// TODO(b/267124393): Verify UFFDIO_ZEROPAGE + ESRCH as well since ENOMEM may be for
// other reasons.
Err(Error::UffdClosed)
}
Err(e) => Err(e.into()),
}
}
/// Unregister a range of memory from the userfaultfd.
///
/// # Arguments
///
/// * `addr` - the starting address of the range of memory.
/// * `len` - the length in bytes of the range of memory.
pub fn unregister(&self, addr: usize, len: usize) -> Result<()> {
match self.uffd.unregister(addr as *mut libc::c_void, len) {
Ok(_) => Ok(()),
Err(UffdError::SystemError(errno)) if errno as i32 == libc::ENOMEM => {
// Userfaultfd returns `ENOMEM` if the corresponding process dies or run as another
// program by `exec` system call.
// TODO(b/267124393): Verify UFFDIO_ZEROPAGE + ESRCH as well since ENOMEM may be for
// other reasons.
Err(Error::UffdClosed)
}
Err(e) => Err(e.into()),
}
}
/// Initialize page(s) and fill it with zero.
///
/// # Arguments
///
/// * `addr` - the starting address of the page(s) to be initialzed with zero.
/// * `len` - the length in bytes of the page(s).
/// * `wake` - whether or not to unblock the faulting thread.
pub fn zero(&self, addr: usize, len: usize, wake: bool) -> Result<usize> {
// SAFETY:
// safe because zeroing untouched pages does not break the Rust memory safety since "All
// runtime-allocated memory in a Rust program begins its life as uninitialized."
// https://doc.rust-lang.org/nomicon/uninitialized.html
Ok(unsafe { self.uffd.zeropage(addr as *mut libc::c_void, len, wake) }?)
}
/// Copy the `data` to the page(s) starting from `addr`.
///
/// # Arguments
///
/// * `addr` - the starting address of the page(s) to be initialzed with data.
/// * `len` - the length in bytes of the page(s).
/// * `data` - the starting address of the content.
/// * `wake` - whether or not to unblock the faulting thread.
pub fn copy(&self, addr: usize, len: usize, data: *const u8, wake: bool) -> Result<usize> {
Ok(
// SAFETY:
// safe because filling untouched pages with data does not break the Rust memory safety
// since "All runtime-allocated memory in a Rust program begins its life as
// uninitialized." https://doc.rust-lang.org/nomicon/uninitialized.html
unsafe {
self.uffd.copy(
data as *const libc::c_void,
addr as *mut libc::c_void,
len,
wake,
)
}?,
)
}
/// Wake the faulting thread blocked by the page(s).
///
/// If the page is not initialized, the thread causes a page fault again.
///
/// # Arguments
///
/// * `addr` - the starting address of the page(s).
/// * `len` - the length in bytes of the page(s).
pub fn wake(&self, addr: usize, len: usize) -> Result<()> {
Ok(self.uffd.wake(addr as *mut libc::c_void, len)?)
}
/// Read an event from the userfaultfd.
///
/// Return `None` immediately if no events is ready to read.
pub fn read_event(&self) -> Result<Option<UffdEvent>> {
Ok(self.uffd.read_event()?)
}
/// Try to clone [Userfaultfd]
pub fn try_clone(&self) -> Result<Self> {
let dup_desc = base::clone_descriptor(self).map_err(Error::Clone)?;
// SAFETY: no one owns dup_desc.
let uffd = Self::from(unsafe { Uffd::from_raw_fd(dup_desc.into_raw_descriptor()) });
Ok(uffd)
}
}
impl From<Uffd> for Userfaultfd {
fn from(uffd: Uffd) -> Self {
Self { uffd }
}
}
impl FromRawDescriptor for Userfaultfd {
unsafe fn from_raw_descriptor(descriptor: RawDescriptor) -> Self {
Self::from(Uffd::from_raw_fd(descriptor))
}
}
impl AsRawDescriptor for Userfaultfd {
fn as_raw_descriptor(&self) -> RawDescriptor {
self.uffd.as_raw_fd()
}
}
/// Check whether the process for the [Userfaultfd] is dead or not.
pub trait DeadUffdChecker {
/// Register the [Userfaultfd]
fn register(&self, uffd: &Userfaultfd) -> anyhow::Result<()>;
/// Check whether the [Userfaultfd] is dead or not.
fn is_dead(&self, uffd: &Userfaultfd) -> bool;
/// Free the internal state.
fn reset(&self) -> anyhow::Result<()>;
}
/// Check whether the process for the [Userfaultfd] is dead or not.
///
/// [DeadUffdCheckerImpl] uses `UFFD_ZERO` on a dummy mmap page to check the liveness.
///
/// This must keep alive on the main process to make the dummy mmap present in all descendant
/// processes.
pub struct DeadUffdCheckerImpl {
dummy_mmap: MemoryMapping,
}
impl DeadUffdCheckerImpl {
/// Creates [DeadUffdCheckerImpl].
pub fn new() -> anyhow::Result<Self> {
Ok(Self {
dummy_mmap: MemoryMappingBuilder::new(pages_to_bytes(1))
.build()
.context("create dummy mmap")?,
})
}
}
impl DeadUffdChecker for DeadUffdCheckerImpl {
fn register(&self, uffd: &Userfaultfd) -> anyhow::Result<()> {
// SAFETY: no one except DeadUffdCheckerImpl access dummy_mmap.
unsafe { uffd.register(self.dummy_mmap.as_ptr() as usize, pages_to_bytes(1)) }
.map(|_| ())
.context("register to dummy mmap")
}
fn is_dead(&self, uffd: &Userfaultfd) -> bool {
// UFFDIO_ZEROPAGE returns ESRCH for dead uffd.
matches!(
uffd.zero(self.dummy_mmap.as_ptr() as usize, pages_to_bytes(1), false),
Err(Error::UffdClosed)
)
}
fn reset(&self) -> anyhow::Result<()> {
self.dummy_mmap
.remove_range(0, pages_to_bytes(1))
.context("free dummy mmap")
}
}