1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
// Copyright 2022 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! Provides wrapper of userfaultfd crate for vmm-swap feature.

#![deny(missing_docs)]

use std::convert::From;
use std::fs::File;
use std::fs::OpenOptions;
use std::ops::Range;
use std::os::unix::io::AsRawFd;
use std::os::unix::prelude::FromRawFd;
use std::os::unix::prelude::OpenOptionsExt;

use anyhow::Context;
use base::errno_result;
use base::info;
use base::ioctl_io_nr;
use base::ioctl_iowr_nr;
use base::ioctl_with_mut_ref;
use base::ioctl_with_val;
use base::linux::MemoryMappingUnix;
use base::AsRawDescriptor;
use base::AsRawDescriptors;
use base::FromRawDescriptor;
use base::IntoRawDescriptor;
use base::MappedRegion;
use base::MemoryMapping;
use base::MemoryMappingBuilder;
use base::RawDescriptor;
use thiserror::Error as ThisError;
use userfaultfd::Error as UffdError;
pub use userfaultfd::Event as UffdEvent;
use userfaultfd::FeatureFlags;
use userfaultfd::IoctlFlags;
use userfaultfd::Uffd;
use userfaultfd::UffdBuilder;

use crate::pagesize::pages_to_bytes;

const DEV_USERFAULTFD_PATH: &str = "/dev/userfaultfd";
const USERFAULTFD_IOC: u32 = 0xAA;
ioctl_io_nr!(USERFAULTFD_IOC_NEW, USERFAULTFD_IOC, 0x00);
ioctl_iowr_nr!(
    UFFDIO_API,
    userfaultfd_sys::UFFDIO,
    userfaultfd_sys::_UFFDIO_API,
    userfaultfd_sys::uffdio_api
);

/// Result for Userfaultfd
pub type Result<T> = std::result::Result<T, Error>;

/// Errors for Userfaultfd
#[derive(ThisError, Debug)]
pub enum Error {
    #[error("userfaultfd error: {0:?}")]
    /// unrecoverable userfaultfd error.
    Userfaultfd(UffdError),
    #[error("copy partially succeeded: {0:?} bytes copied")]
    /// UFFDIO_COPY partillay succeed.
    PartiallyCopied(usize),
    #[error("the page is already filled")]
    /// The page is already filled.
    PageExist,
    #[error("the uffd in the corresponding process is already closed")]
    /// The corresponding process is already dead or has run exec(2).
    UffdClosed,
    #[error("clone error: {0:?}")]
    /// Failed to clone userfaultfd.
    Clone(base::Error),
}

impl From<UffdError> for Error {
    fn from(e: UffdError) -> Self {
        match e {
            UffdError::PartiallyCopied(copied) => Self::PartiallyCopied(copied),
            UffdError::CopyFailed(errno) if errno as i32 == libc::ESRCH => Self::UffdClosed,
            UffdError::ZeropageFailed(errno) if errno as i32 == libc::EEXIST => Self::PageExist,
            UffdError::ZeropageFailed(errno) if errno as i32 == libc::ESRCH => Self::UffdClosed,
            other => Self::Userfaultfd(other),
        }
    }
}

/// Register all the regions to all the userfaultfd
///
/// # Arguments
///
/// * `regions` - the list of address range of regions.
/// * `uffds` - the reference to the list of [Userfaultfd] for all the processes which may touch the
///   `address_range` to be registered.
///
/// # Safety
///
/// Each address range in `regions` must be from guest memory.
///
/// The `uffds` must cover all the processes which may touch the `address_range`. otherwise some
/// pages are zeroed by kernel on the unregistered process instead of swapping in from the swap
/// file.
#[deny(unsafe_op_in_unsafe_fn)]
pub unsafe fn register_regions(regions: &[Range<usize>], uffds: &[Userfaultfd]) -> Result<()> {
    for address_range in regions {
        for uffd in uffds {
            // SAFETY:
            // Safe because the range is from the guest memory region.
            let result = unsafe {
                uffd.register(address_range.start, address_range.end - address_range.start)
            };
            match result {
                Ok(_) => {}
                // Skip the userfaultfd for dead processes.
                Err(Error::UffdClosed) => {}
                Err(e) => {
                    return Err(e);
                }
            };
        }
    }
    Ok(())
}

/// Unregister all the regions from all the userfaultfd.
///
/// `UFFDIO_UNREGISTER` unblocks any threads currently waiting on the region and remove page fault
/// events on the region from the userfaultfd event queue.
///
/// # Arguments
///
/// * `regions` - the list of address range of regions.
/// * `uffds` - the reference to the list of registered [Userfaultfd].
pub fn unregister_regions(regions: &[Range<usize>], uffds: &[Userfaultfd]) -> Result<()> {
    for address_range in regions {
        for uffd in uffds {
            let result =
                uffd.unregister(address_range.start, address_range.end - address_range.start);
            match result {
                Ok(_) => {}
                // Skip the userfaultfd for dead processes.
                Err(Error::UffdClosed) => {}
                Err(e) => {
                    return Err(e);
                }
            };
        }
    }
    Ok(())
}

/// Factory for [Userfaultfd].
///
/// If `/dev/userfaultfd` (introduced from Linux 6.1) exists, creates userfaultfd from the dev file.
/// Otherwise use `userfaultfd(2)` to create a userfaultfd.
pub struct Factory {
    dev_file: Option<File>,
}

impl Default for Factory {
    fn default() -> Self {
        Self::new()
    }
}

impl Factory {
    /// Create [Factory] and try open `/dev/userfaultfd`.
    ///
    /// If it fails to open `/dev/userfaultfd`, userfaultfd creation fallback to `userfaultfd(2)`
    /// syscall.
    pub fn new() -> Self {
        let dev_file = OpenOptions::new()
            .read(true)
            .custom_flags(libc::O_CLOEXEC | libc::O_NONBLOCK)
            .open(DEV_USERFAULTFD_PATH);
        match dev_file {
            Ok(dev_file) => Self {
                dev_file: Some(dev_file),
            },
            Err(e) => {
                info!(
                    "Failed to open /dev/userfaultfd ({:?}), will fall back to userfaultfd(2)",
                    e
                );
                Self { dev_file: None }
            }
        }
    }

    /// Creates a new [Userfaultfd] for this process.
    pub fn create(&self) -> anyhow::Result<Userfaultfd> {
        if let Some(dev_file) = &self.dev_file {
            // SAFETY:
            // Safe because ioctl(2) USERFAULTFD_IOC_NEW with does not change Rust memory safety.
            let res = unsafe {
                ioctl_with_val(
                    dev_file,
                    USERFAULTFD_IOC_NEW,
                    (libc::O_CLOEXEC | libc::O_NONBLOCK) as libc::c_ulong,
                )
            };
            let uffd = if res < 0 {
                return errno_result().context("USERFAULTFD_IOC_NEW");
            } else {
                // Safe because the uffd is not owned by anyone in this process.
                // SAFETY:
                unsafe { Userfaultfd::from_raw_descriptor(res) }
            };
            let mut api = userfaultfd_sys::uffdio_api {
                api: userfaultfd_sys::UFFD_API,
                features: (FeatureFlags::MISSING_SHMEM | FeatureFlags::EVENT_REMOVE).bits(),
                ioctls: 0,
            };
            // SAFETY:
            // Safe because ioctl(2) UFFDIO_API with does not change Rust memory safety.
            let res = unsafe { ioctl_with_mut_ref(&uffd, UFFDIO_API, &mut api) };
            if res < 0 {
                errno_result().context("UFFDIO_API")
            } else {
                Ok(uffd)
            }
        } else {
            Userfaultfd::new().context("create userfaultfd")
        }
    }

    /// Create a new [Factory] object.
    pub fn try_clone(&self) -> anyhow::Result<Self> {
        let dev_file = self.dev_file.as_ref().map(File::try_clone).transpose()?;
        Ok(Self { dev_file })
    }
}

impl AsRawDescriptors for Factory {
    fn as_raw_descriptors(&self) -> Vec<RawDescriptor> {
        if let Some(dev_file) = &self.dev_file {
            vec![dev_file.as_raw_descriptor()]
        } else {
            Vec::new()
        }
    }
}

/// Wrapper for [`userfaultfd::Uffd`] to be used in the vmm-swap feature.
///
/// # Safety
///
/// The userfaultfd operations (`UFFDIO_COPY` and `UFFDIO_ZEROPAGE`) looks unsafe since it fills a
/// memory content directly. But they actually are not unsafe operation but `UFFDIO_REGISTER` should
/// be the unsafe operation for Rust memory safety.
///
/// According to [the Rust document](https://doc.rust-lang.org/nomicon/uninitialized.html),
///
/// > All runtime-allocated memory in a Rust program begins its life as uninitialized.
///
/// The userfaultfd operations actually does not change/overwrite the existing memory contents but
/// they just setup the "uninitialized" pages. If the page was already initialized, the userfaultfd
/// operations fail and return EEXIST error (which is not documented unfortunately). So they
/// originally does not affect the Rust memory safety.
///
/// The "uninitialized" page in this context has 2 patterns:
///
/// 1. pages which is never touched or,
/// 2. pages which is never touched after MADV_REMOVE
///
/// Filling the (1) pages with any contents should not affect the Rust memory safety.
///
/// Filling the (2) pages potentially may break the memory used by Rust. But the safety should be
/// examined at `MADV_REMOVE` and `UFFDIO_REGISTER` timing.
#[derive(Debug)]
pub struct Userfaultfd {
    uffd: Uffd,
}

impl Userfaultfd {
    /// Creates a new userfaultfd using userfaultfd(2) syscall.
    ///
    /// This is public for tests.
    pub fn new() -> Result<Self> {
        let uffd = UffdBuilder::new()
            .close_on_exec(true)
            .non_blocking(true)
            .user_mode_only(false)
            .require_features(FeatureFlags::MISSING_SHMEM | FeatureFlags::EVENT_REMOVE)
            .create()?;
        Ok(Self { uffd })
    }

    /// Register a range of memory to the userfaultfd.
    ///
    /// After this registration, any page faults on the range will be caught by the userfaultfd.
    ///
    /// # Arguments
    ///
    /// * `addr` - the starting address of the range of memory.
    /// * `len` - the length in bytes of the range of memory.
    ///
    /// # Safety
    ///
    /// [addr, addr+len) must lie within a [MemoryMapping], and that mapping
    /// must live for the lifespan of the userfaultfd kernel object (which may be distinct from the
    /// `Userfaultfd` rust object in this process).
    pub unsafe fn register(&self, addr: usize, len: usize) -> Result<IoctlFlags> {
        match self.uffd.register(addr as *mut libc::c_void, len) {
            Ok(flags) => Ok(flags),
            Err(UffdError::SystemError(errno)) if errno as i32 == libc::ENOMEM => {
                // Userfaultfd returns `ENOMEM` if the corresponding process dies or run as another
                // program by `exec` system call.
                // TODO(b/267124393): Verify UFFDIO_ZEROPAGE + ESRCH as well since ENOMEM may be for
                // other reasons.
                Err(Error::UffdClosed)
            }
            Err(e) => Err(e.into()),
        }
    }

    /// Unregister a range of memory from the userfaultfd.
    ///
    /// # Arguments
    ///
    /// * `addr` - the starting address of the range of memory.
    /// * `len` - the length in bytes of the range of memory.
    pub fn unregister(&self, addr: usize, len: usize) -> Result<()> {
        match self.uffd.unregister(addr as *mut libc::c_void, len) {
            Ok(_) => Ok(()),
            Err(UffdError::SystemError(errno)) if errno as i32 == libc::ENOMEM => {
                // Userfaultfd returns `ENOMEM` if the corresponding process dies or run as another
                // program by `exec` system call.
                // TODO(b/267124393): Verify UFFDIO_ZEROPAGE + ESRCH as well since ENOMEM may be for
                // other reasons.
                Err(Error::UffdClosed)
            }
            Err(e) => Err(e.into()),
        }
    }

    /// Initialize page(s) and fill it with zero.
    ///
    /// # Arguments
    ///
    /// * `addr` - the starting address of the page(s) to be initialzed with zero.
    /// * `len` - the length in bytes of the page(s).
    /// * `wake` - whether or not to unblock the faulting thread.
    pub fn zero(&self, addr: usize, len: usize, wake: bool) -> Result<usize> {
        // SAFETY:
        // safe because zeroing untouched pages does not break the Rust memory safety since "All
        // runtime-allocated memory in a Rust program begins its life as uninitialized."
        // https://doc.rust-lang.org/nomicon/uninitialized.html
        Ok(unsafe { self.uffd.zeropage(addr as *mut libc::c_void, len, wake) }?)
    }

    /// Copy the `data` to the page(s) starting from `addr`.
    ///
    /// # Arguments
    ///
    /// * `addr` - the starting address of the page(s) to be initialzed with data.
    /// * `len` - the length in bytes of the page(s).
    /// * `data` - the starting address of the content.
    /// * `wake` - whether or not to unblock the faulting thread.
    pub fn copy(&self, addr: usize, len: usize, data: *const u8, wake: bool) -> Result<usize> {
        Ok(
            // SAFETY:
            // safe because filling untouched pages with data does not break the Rust memory safety
            // since "All runtime-allocated memory in a Rust program begins its life as
            // uninitialized." https://doc.rust-lang.org/nomicon/uninitialized.html
            unsafe {
                self.uffd.copy(
                    data as *const libc::c_void,
                    addr as *mut libc::c_void,
                    len,
                    wake,
                )
            }?,
        )
    }

    /// Wake the faulting thread blocked by the page(s).
    ///
    /// If the page is not initialized, the thread causes a page fault again.
    ///
    /// # Arguments
    ///
    /// * `addr` - the starting address of the page(s).
    /// * `len` - the length in bytes of the page(s).
    pub fn wake(&self, addr: usize, len: usize) -> Result<()> {
        Ok(self.uffd.wake(addr as *mut libc::c_void, len)?)
    }

    /// Read an event from the userfaultfd.
    ///
    /// Return `None` immediately if no events is ready to read.
    pub fn read_event(&self) -> Result<Option<UffdEvent>> {
        Ok(self.uffd.read_event()?)
    }

    /// Try to clone [Userfaultfd]
    pub fn try_clone(&self) -> Result<Self> {
        let dup_desc = base::clone_descriptor(self).map_err(Error::Clone)?;
        // SAFETY: no one owns dup_desc.
        let uffd = Self::from(unsafe { Uffd::from_raw_fd(dup_desc.into_raw_descriptor()) });
        Ok(uffd)
    }
}

impl From<Uffd> for Userfaultfd {
    fn from(uffd: Uffd) -> Self {
        Self { uffd }
    }
}

impl FromRawDescriptor for Userfaultfd {
    unsafe fn from_raw_descriptor(descriptor: RawDescriptor) -> Self {
        Self::from(Uffd::from_raw_fd(descriptor))
    }
}

impl AsRawDescriptor for Userfaultfd {
    fn as_raw_descriptor(&self) -> RawDescriptor {
        self.uffd.as_raw_fd()
    }
}

/// Check whether the process for the [Userfaultfd] is dead or not.
pub trait DeadUffdChecker {
    /// Register the [Userfaultfd]
    fn register(&self, uffd: &Userfaultfd) -> anyhow::Result<()>;
    /// Check whether the [Userfaultfd] is dead or not.
    fn is_dead(&self, uffd: &Userfaultfd) -> bool;
    /// Free the internal state.
    fn reset(&self) -> anyhow::Result<()>;
}

/// Check whether the process for the [Userfaultfd] is dead or not.
///
/// [DeadUffdCheckerImpl] uses `UFFD_ZERO` on a dummy mmap page to check the liveness.
///
/// This must keep alive on the main process to make the dummy mmap present in all descendant
/// processes.
pub struct DeadUffdCheckerImpl {
    dummy_mmap: MemoryMapping,
}

impl DeadUffdCheckerImpl {
    /// Creates [DeadUffdCheckerImpl].
    pub fn new() -> anyhow::Result<Self> {
        Ok(Self {
            dummy_mmap: MemoryMappingBuilder::new(pages_to_bytes(1))
                .build()
                .context("create dummy mmap")?,
        })
    }
}

impl DeadUffdChecker for DeadUffdCheckerImpl {
    fn register(&self, uffd: &Userfaultfd) -> anyhow::Result<()> {
        // SAFETY: no one except DeadUffdCheckerImpl access dummy_mmap.
        unsafe { uffd.register(self.dummy_mmap.as_ptr() as usize, pages_to_bytes(1)) }
            .map(|_| ())
            .context("register to dummy mmap")
    }

    fn is_dead(&self, uffd: &Userfaultfd) -> bool {
        // UFFDIO_ZEROPAGE returns ESRCH for dead uffd.
        matches!(
            uffd.zero(self.dummy_mmap.as_ptr() as usize, pages_to_bytes(1), false),
            Err(Error::UffdClosed)
        )
    }

    fn reset(&self) -> anyhow::Result<()> {
        self.dummy_mmap
            .remove_range(0, pages_to_bytes(1))
            .context("free dummy mmap")
    }
}