1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
// Copyright 2018 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use std::fmt;
use std::fmt::Display;
use std::path::Path;
use std::str::FromStr;
use remain::sorted;
use serde::Deserialize;
use serde::Deserializer;
use serde::Serialize;
use serde::Serializer;
use thiserror::Error as ThisError;
/// Identifies a single component of a [`PciAddress`].
#[derive(Debug, PartialEq, Eq)]
pub enum PciAddressComponent {
Domain,
Bus,
Device,
Function,
}
/// PCI address parsing and conversion errors.
#[derive(ThisError, Debug, PartialEq, Eq)]
#[sorted]
pub enum Error {
/// The specified component was outside the valid range.
#[error("{0:?} out of range")]
ComponentOutOfRange(PciAddressComponent),
/// The specified component could not be parsed as a hexadecimal number.
#[error("{0:?} failed to parse as hex")]
InvalidHex(PciAddressComponent),
/// The given PCI device path is invalid
#[error("Invalid PCI device path")]
InvalidHostPath,
/// A delimiter (`:` or `.`) between the two specified components was missing or incorrect.
#[error("Missing delimiter between {0:?} and {1:?}")]
MissingDelimiter(PciAddressComponent, PciAddressComponent),
/// The PCI address contained more than the expected number of components.
#[error("Too many components in PCI address")]
TooManyComponents,
}
pub type Result<T> = std::result::Result<T, Error>;
/// PCI Device Address, AKA Bus:Device.Function
#[derive(Default, Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct PciAddress {
/// Bus number, in the range `0..=255`.
pub bus: u8,
/// Device number, in the range `0..=31`.
pub dev: u8,
/// Function number, in the range `0..=7`.
pub func: u8,
}
impl Serialize for PciAddress {
fn serialize<S>(&self, serializer: S) -> std::result::Result<S::Ok, S::Error>
where
S: Serializer,
{
serializer.serialize_str(&self.to_string())
}
}
impl<'de> Deserialize<'de> for PciAddress {
fn deserialize<D>(deserializer: D) -> std::result::Result<Self, D::Error>
where
D: Deserializer<'de>,
{
let s = String::deserialize(deserializer)?;
FromStr::from_str(&s).map_err(serde::de::Error::custom)
}
}
/// Convert `PciAddress` to a human-readable string format.
///
/// The display format will always include the domain component, even if it is zero.
///
/// # Example
///
/// ```
/// use resources::PciAddress;
///
/// let pci_address = PciAddress::new(0x0000, 0x03, 0x14, 0x1)?;
/// assert_eq!(pci_address.to_string(), "0000:03:14.1");
/// # Ok::<(), resources::PciAddressError>(())
/// ```
impl Display for PciAddress {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let domain = 0;
write!(
f,
"{:04x}:{:02x}:{:02x}.{:0x}",
domain, self.bus, self.dev, self.func,
)
}
}
/// Construct `PciAddress` from string "\[domain:\]bus:device.function".
/// Each component of the address is unprefixed hexadecimal.
///
/// # Example
///
/// ```
/// use std::str::FromStr;
/// use resources::PciAddress;
///
/// let pci_address = PciAddress::from_str("d7:15.4")?;
/// assert_eq!(pci_address.bus, 0xd7);
/// assert_eq!(pci_address.dev, 0x15);
/// assert_eq!(pci_address.func, 0x4);
/// # Ok::<(), resources::PciAddressError>(())
/// ```
impl FromStr for PciAddress {
type Err = Error;
fn from_str(address: &str) -> std::result::Result<Self, Self::Err> {
let (dev_bus_domain, func) = address.rsplit_once('.').ok_or(Error::MissingDelimiter(
PciAddressComponent::Device,
PciAddressComponent::Function,
))?;
let func = u32::from_str_radix(func, 16)
.map_err(|_| Error::InvalidHex(PciAddressComponent::Function))?;
let (bus_domain, dev) = dev_bus_domain
.rsplit_once(':')
.ok_or(Error::MissingDelimiter(
PciAddressComponent::Bus,
PciAddressComponent::Device,
))?;
let dev = u32::from_str_radix(dev, 16)
.map_err(|_| Error::InvalidHex(PciAddressComponent::Device))?;
// Domain is optional; if unspecified, the rest of the string is the bus, and domain
// defaults to 0.
let (domain, bus) = bus_domain.rsplit_once(':').unwrap_or(("0", bus_domain));
let bus = u32::from_str_radix(bus, 16)
.map_err(|_| Error::InvalidHex(PciAddressComponent::Bus))?;
if domain.contains(':') {
return Err(Error::TooManyComponents);
}
let domain = u32::from_str_radix(domain, 16)
.map_err(|_| Error::InvalidHex(PciAddressComponent::Domain))?;
Self::new(domain, bus, dev, func)
}
}
impl PciAddress {
#[doc(hidden)]
const BUS_MASK: u32 = 0x00ff;
#[doc(hidden)]
const DEVICE_BITS_NUM: usize = 5;
#[doc(hidden)]
const DEVICE_MASK: u32 = 0x1f;
#[doc(hidden)]
const FUNCTION_BITS_NUM: usize = 3;
#[doc(hidden)]
const FUNCTION_MASK: u32 = 0x07;
#[doc(hidden)]
const REGISTER_OFFSET: usize = 2;
/// Construct [`PciAddress`] from separate domain, bus, device, and function numbers.
///
/// # Arguments
///
/// * `domain` - The PCI domain number. Must be `0` in the current implementation.
/// * `bus` - The PCI bus number. Must be in the range `0..=255`.
/// * `dev` - The PCI device number. Must be in the range `0..=31`.
/// * `func` - The PCI function number. Must be in the range `0..=7`.
///
/// # Errors
///
/// If any component is out of the valid range, this function will return
/// [`Error::ComponentOutOfRange`].
pub fn new(domain: u32, bus: u32, dev: u32, func: u32) -> Result<Self> {
if bus > Self::BUS_MASK {
return Err(Error::ComponentOutOfRange(PciAddressComponent::Bus));
}
if dev > Self::DEVICE_MASK {
return Err(Error::ComponentOutOfRange(PciAddressComponent::Device));
}
if func > Self::FUNCTION_MASK {
return Err(Error::ComponentOutOfRange(PciAddressComponent::Function));
}
// PciAddress does not store domain for now, so disallow anything other than domain 0.
if domain > 0 {
return Err(Error::ComponentOutOfRange(PciAddressComponent::Domain));
}
Ok(PciAddress {
bus: bus as u8,
dev: dev as u8,
func: func as u8,
})
}
/// Decode a [`PciAddress`] and register index from a CONFIG_ADDRESS value.
///
/// The configuration address should be in the format used with the PCI CAM or ECAM
/// configuration space access mechanisms, with the lowest bits encoding a register index and
/// the bits above that encoding the PCI function (3 bits), device (5 bits), and bus (8 bits).
/// The low two bits of the configuration address, which are technically part of the register
/// number, are ignored, since PCI configuration space accesses must be DWORD (4-byte) aligned.
///
/// On success, returns a [`PciAddress`] and the extracted register index in DWORDs.
///
/// # Arguments
///
/// * `config_address` - The PCI configuration address.
/// * `register_bits_num` - The size of the register value in bits.
///
/// # Example
///
/// ```
/// use resources::PciAddress;
///
/// let (pci_address, register_index) = PciAddress::from_config_address(0x32a354, 8);
/// assert_eq!(pci_address.bus, 0x32);
/// assert_eq!(pci_address.dev, 0x14);
/// assert_eq!(pci_address.func, 0x3);
/// assert_eq!(register_index, 0x15);
/// ```
pub fn from_config_address(config_address: u32, register_bits_num: usize) -> (Self, usize) {
let bus_offset = register_bits_num + Self::FUNCTION_BITS_NUM + Self::DEVICE_BITS_NUM;
let bus = ((config_address >> bus_offset) & Self::BUS_MASK) as u8;
let dev_offset = register_bits_num + Self::FUNCTION_BITS_NUM;
let dev = ((config_address >> dev_offset) & Self::DEVICE_MASK) as u8;
let func = ((config_address >> register_bits_num) & Self::FUNCTION_MASK) as u8;
let register_mask: u32 = (1_u32 << (register_bits_num - Self::REGISTER_OFFSET)) - 1;
let register = ((config_address >> Self::REGISTER_OFFSET) & register_mask) as usize;
(PciAddress { bus, dev, func }, register)
}
/// Construct [`PciAddress`] from a system PCI path
///
/// # Arguments
///
/// * `path` - The system PCI path. The file name of this path must be a valid PCI address.
///
/// # Errors
///
/// If the path given is invalid or filename is an invalid PCI address, this function will
/// return error.
pub fn from_path(path: &Path) -> Result<Self> {
let os_str = path.file_name().ok_or(Error::InvalidHostPath)?;
let pci_str = os_str.to_str().ok_or(Error::InvalidHostPath)?;
PciAddress::from_str(pci_str)
}
/// Encode [`PciAddress`] into CONFIG_ADDRESS value.
///
/// See [`PciAddress::from_config_address()`] for details of the encoding.
///
/// # Arguments
///
/// * `register` - The register index in DWORDs.
/// * `register_bits_num` - The width of the register field, not including the two lowest bits.
///
/// # Example
///
/// ```
/// use resources::PciAddress;
///
/// let pci_address = PciAddress::new(0x0000, 0x32, 0x14, 0x3)?;
/// let config_address = pci_address.to_config_address(0x15, 8);
/// assert_eq!(config_address, 0x32a354);
/// # Ok::<(), resources::PciAddressError>(())
/// ```
pub fn to_config_address(&self, register: usize, register_bits_num: usize) -> u32 {
let bus_offset = register_bits_num + Self::FUNCTION_BITS_NUM + Self::DEVICE_BITS_NUM;
let dev_offset = register_bits_num + Self::FUNCTION_BITS_NUM;
let register_mask: u32 = (1_u32 << (register_bits_num - Self::REGISTER_OFFSET)) - 1;
((Self::BUS_MASK & self.bus as u32) << bus_offset)
| ((Self::DEVICE_MASK & self.dev as u32) << dev_offset)
| ((Self::FUNCTION_MASK & self.func as u32) << register_bits_num)
| ((register_mask & register as u32) << Self::REGISTER_OFFSET)
}
/// Convert B:D:F PCI address to unsigned 32 bit integer.
///
/// The bus, device, and function numbers are packed into an integer as follows:
///
/// | Bits 15-8 | Bits 7-3 | Bits 2-0 |
/// |-----------|----------|----------|
/// | Bus | Device | Function |
pub fn to_u32(&self) -> u32 {
((Self::BUS_MASK & self.bus as u32) << (Self::FUNCTION_BITS_NUM + Self::DEVICE_BITS_NUM))
| ((Self::DEVICE_MASK & self.dev as u32) << Self::FUNCTION_BITS_NUM)
| (Self::FUNCTION_MASK & self.func as u32)
}
/// Convert D:F PCI address to a linux style devfn.
///
/// The device and function numbers are packed into an u8 as follows:
///
/// | Bits 7-3 | Bits 2-0 |
/// |----------|----------|
/// | Device | Function |
pub fn devfn(&self) -> u8 {
(self.dev << Self::FUNCTION_BITS_NUM) | self.func
}
/// Convert D:F PCI address to an ACPI _ADR.
///
/// The device and function numbers are packed into an u32 as follows:
///
/// | Bits 31-16 | Bits 15-0 |
/// |------------|-----------|
/// | Device | Function |
pub fn acpi_adr(&self) -> u32 {
((Self::DEVICE_MASK & self.dev as u32) << 16) | (Self::FUNCTION_MASK & self.func as u32)
}
/// Convert B:D:F PCI address to a PCI PME Requester ID.
///
/// The output is identical to `to_u32()` except that only the lower 16 bits are needed
pub fn pme_requester_id(&self) -> u16 {
self.to_u32() as u16
}
/// Returns true if the address points to PCI root host-bridge.
///
/// This is true if and only if this is the all-zero address (`00:0.0`).
pub fn is_root(&self) -> bool {
matches!(
&self,
PciAddress {
bus: 0,
dev: 0,
func: 0
}
)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn from_string() {
assert_eq!(
PciAddress::from_str("0000:00:00.0").unwrap(),
PciAddress {
bus: 0,
dev: 0,
func: 0
}
);
assert_eq!(
PciAddress::from_str("00:00.0").unwrap(),
PciAddress {
bus: 0,
dev: 0,
func: 0
}
);
assert_eq!(
PciAddress::from_str("01:02.3").unwrap(),
PciAddress {
bus: 1,
dev: 2,
func: 3
}
);
assert_eq!(
PciAddress::from_str("ff:1f.7").unwrap(),
PciAddress {
bus: 0xff,
dev: 0x1f,
func: 7,
}
);
}
#[test]
fn from_string_missing_func_delim() {
assert_eq!(
PciAddress::from_str("1").expect_err("parse should fail"),
Error::MissingDelimiter(PciAddressComponent::Device, PciAddressComponent::Function)
);
}
#[test]
fn from_string_missing_dev_delim() {
assert_eq!(
PciAddress::from_str("2.1").expect_err("parse should fail"),
Error::MissingDelimiter(PciAddressComponent::Bus, PciAddressComponent::Device)
);
}
#[test]
fn from_string_extra_components() {
assert_eq!(
PciAddress::from_str("0:0:0:0.0").expect_err("parse should fail"),
Error::TooManyComponents
);
}
#[test]
fn from_string_invalid_func_hex() {
assert_eq!(
PciAddress::from_str("0000:00:00.g").expect_err("parse should fail"),
Error::InvalidHex(PciAddressComponent::Function)
);
}
#[test]
fn from_string_invalid_func_range() {
assert_eq!(
PciAddress::from_str("0000:00:00.8").expect_err("parse should fail"),
Error::ComponentOutOfRange(PciAddressComponent::Function)
);
}
#[test]
fn from_string_invalid_dev_hex() {
assert_eq!(
PciAddress::from_str("0000:00:gg.0").expect_err("parse should fail"),
Error::InvalidHex(PciAddressComponent::Device)
);
}
#[test]
fn from_string_invalid_dev_range() {
assert_eq!(
PciAddress::from_str("0000:00:20.0").expect_err("parse should fail"),
Error::ComponentOutOfRange(PciAddressComponent::Device)
);
}
#[test]
fn from_string_invalid_bus_hex() {
assert_eq!(
PciAddress::from_str("0000:gg:00.0").expect_err("parse should fail"),
Error::InvalidHex(PciAddressComponent::Bus)
);
}
#[test]
fn from_string_invalid_bus_range() {
assert_eq!(
PciAddress::from_str("0000:100:00.0").expect_err("parse should fail"),
Error::ComponentOutOfRange(PciAddressComponent::Bus)
);
}
#[test]
fn from_string_invalid_domain_hex() {
assert_eq!(
PciAddress::from_str("gggg:00:00.0").expect_err("parse should fail"),
Error::InvalidHex(PciAddressComponent::Domain)
);
}
#[test]
fn from_string_invalid_domain_range() {
assert_eq!(
PciAddress::from_str("0001:00:00.0").expect_err("parse should fail"),
Error::ComponentOutOfRange(PciAddressComponent::Domain)
);
}
#[test]
fn format_simple() {
assert_eq!(
PciAddress::new(0, 1, 2, 3).unwrap().to_string(),
"0000:01:02.3"
);
}
#[test]
fn format_max() {
assert_eq!(
PciAddress::new(0, 0xff, 0x1f, 7).unwrap().to_string(),
"0000:ff:1f.7"
);
}
#[test]
fn serialize_json() {
assert_eq!(
serde_json::to_string(&PciAddress::new(0, 0xa5, 0x1f, 3).unwrap()).unwrap(),
"\"0000:a5:1f.3\""
);
}
#[test]
fn deserialize_json() {
assert_eq!(
serde_json::from_str::<PciAddress>("\"0000:a5:1f.3\"").unwrap(),
PciAddress {
bus: 0xa5,
dev: 0x1f,
func: 3,
}
);
}
}