1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
// Copyright 2017 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use std::num::Wrapping;
use std::sync::atomic::fence;
use std::sync::atomic::Ordering;

use anyhow::bail;
use anyhow::Context;
use anyhow::Result;
use base::error;
use base::Event;
use data_model::Le32;
use serde::Deserialize;
use serde::Serialize;
use virtio_sys::virtio_ring::VIRTIO_RING_F_EVENT_IDX;
use vm_memory::GuestAddress;
use vm_memory::GuestMemory;
use zerocopy::AsBytes;
use zerocopy::FromBytes;
use zerocopy::FromZeroes;

use crate::virtio::DescriptorChain;
use crate::virtio::Interrupt;
use crate::virtio::QueueConfig;
use crate::virtio::SplitDescriptorChain;

#[allow(dead_code)]
const VIRTQ_USED_F_NO_NOTIFY: u16 = 0x1;
#[allow(dead_code)]
const VIRTQ_AVAIL_F_NO_INTERRUPT: u16 = 0x1;

/// An activated virtio queue with split queue layout.
#[derive(Debug)]
pub struct SplitQueue {
    mem: GuestMemory,

    event: Event,

    /// The queue size in elements the driver selected. This is always guaranteed to be a power of
    /// two, as required for split virtqueues.
    size: u16,

    /// MSI-X vector for the queue. Don't care for INTx
    vector: u16,

    /// Guest physical address of the descriptor table
    desc_table: GuestAddress,

    /// Guest physical address of the available ring
    avail_ring: GuestAddress,

    /// Guest physical address of the used ring
    used_ring: GuestAddress,

    next_avail: Wrapping<u16>,
    next_used: Wrapping<u16>,

    // Device feature bits accepted by the driver
    features: u64,
    last_used: Wrapping<u16>,
}

#[derive(Serialize, Deserialize)]
pub struct SplitQueueSnapshot {
    size: u16,
    vector: u16,
    desc_table: GuestAddress,
    avail_ring: GuestAddress,
    used_ring: GuestAddress,
    next_avail: Wrapping<u16>,
    next_used: Wrapping<u16>,
    features: u64,
    last_used: Wrapping<u16>,
}

#[repr(C)]
#[derive(AsBytes, FromZeroes, FromBytes)]
struct virtq_used_elem {
    id: Le32,
    len: Le32,
}

impl SplitQueue {
    /// Constructs an activated split virtio queue with the given configuration.
    pub fn new(config: &QueueConfig, mem: &GuestMemory, event: Event) -> Result<SplitQueue> {
        let size = config.size();
        if !size.is_power_of_two() {
            bail!("split queue size {size} is not a power of 2");
        }

        let desc_table = config.desc_table();
        let avail_ring = config.avail_ring();
        let used_ring = config.used_ring();

        // Validate addresses and queue size to ensure that address calculation won't overflow.
        let ring_sizes = Self::ring_sizes(size, desc_table, avail_ring, used_ring);
        let rings = ring_sizes
            .iter()
            .zip(vec!["descriptor table", "available ring", "used ring"]);

        for ((addr, size), name) in rings {
            if addr.checked_add(*size as u64).is_none() {
                bail!(
                    "virtio queue {} goes out of bounds: start:0x{:08x} size:0x{:08x}",
                    name,
                    addr.offset(),
                    size,
                );
            }
        }

        Ok(SplitQueue {
            mem: mem.clone(),
            event,
            size,
            vector: config.vector(),
            desc_table: config.desc_table(),
            avail_ring: config.avail_ring(),
            used_ring: config.used_ring(),
            features: config.acked_features(),
            next_avail: config.next_avail(),
            next_used: config.next_used(),
            last_used: config.next_used(),
        })
    }

    /// Return the actual size of the queue, as the driver may not set up a
    /// queue as big as the device allows.
    pub fn size(&self) -> u16 {
        self.size
    }

    /// Getter for vector field
    pub fn vector(&self) -> u16 {
        self.vector
    }

    /// Getter for descriptor area
    pub fn desc_table(&self) -> GuestAddress {
        self.desc_table
    }

    /// Getter for driver area
    pub fn avail_ring(&self) -> GuestAddress {
        self.avail_ring
    }

    /// Getter for device area
    pub fn used_ring(&self) -> GuestAddress {
        self.used_ring
    }

    /// Get a reference to the queue's "kick event"
    pub fn event(&self) -> &Event {
        &self.event
    }

    // Return `index` modulo the currently configured queue size.
    fn wrap_queue_index(&self, index: Wrapping<u16>) -> u16 {
        // We know that `self.size` is a power of two (enforced by `new()`), so the modulus can
        // be calculated with a bitmask rather than actual division.
        debug_assert!(self.size.is_power_of_two());
        index.0 & self.size.wrapping_sub(1)
    }

    fn ring_sizes(
        queue_size: u16,
        desc_table: GuestAddress,
        avail_ring: GuestAddress,
        used_ring: GuestAddress,
    ) -> Vec<(GuestAddress, usize)> {
        let queue_size = queue_size as usize;
        vec![
            (desc_table, 16 * queue_size),
            (avail_ring, 6 + 2 * queue_size),
            (used_ring, 6 + 8 * queue_size),
        ]
    }

    // Get the index of the first available descriptor chain in the available ring
    // (the next one that the driver will fill).
    //
    // All available ring entries between `self.next_avail` and `get_avail_index()` are available
    // to be processed by the device.
    fn get_avail_index(&self) -> Wrapping<u16> {
        fence(Ordering::SeqCst);

        let avail_index_addr = self.avail_ring.unchecked_add(2);
        let avail_index: u16 = self
            .mem
            .read_obj_from_addr_volatile(avail_index_addr)
            .unwrap();

        Wrapping(avail_index)
    }

    // Set the `avail_event` field in the used ring.
    //
    // This allows the device to inform the driver that driver-to-device notification
    // (kicking the ring) is not necessary until the driver reaches the `avail_index` descriptor.
    //
    // This value is only used if the `VIRTIO_F_EVENT_IDX` feature has been negotiated.
    fn set_avail_event(&mut self, avail_index: Wrapping<u16>) {
        fence(Ordering::SeqCst);

        let avail_event_addr = self.used_ring.unchecked_add(4 + 8 * u64::from(self.size));
        self.mem
            .write_obj_at_addr_volatile(avail_index.0, avail_event_addr)
            .unwrap();
    }

    // Query the value of a single-bit flag in the available ring.
    //
    // Returns `true` if `flag` is currently set (by the driver) in the available ring flags.
    fn get_avail_flag(&self, flag: u16) -> bool {
        fence(Ordering::SeqCst);

        let avail_flags: u16 = self
            .mem
            .read_obj_from_addr_volatile(self.avail_ring)
            .unwrap();

        avail_flags & flag == flag
    }

    // Get the `used_event` field in the available ring.
    //
    // The returned value is the index of the next descriptor chain entry for which the driver
    // needs to be notified upon use.  Entries before this index may be used without notifying
    // the driver.
    //
    // This value is only valid if the `VIRTIO_F_EVENT_IDX` feature has been negotiated.
    fn get_used_event(&self) -> Wrapping<u16> {
        fence(Ordering::SeqCst);

        let used_event_addr = self.avail_ring.unchecked_add(4 + 2 * u64::from(self.size));
        let used_event: u16 = self
            .mem
            .read_obj_from_addr_volatile(used_event_addr)
            .unwrap();

        Wrapping(used_event)
    }

    // Set the `idx` field in the used ring.
    //
    // This indicates to the driver that all entries up to (but not including) `used_index` have
    // been used by the device and may be processed by the driver.
    fn set_used_index(&mut self, used_index: Wrapping<u16>) {
        fence(Ordering::SeqCst);

        let used_index_addr = self.used_ring.unchecked_add(2);
        self.mem
            .write_obj_at_addr_volatile(used_index.0, used_index_addr)
            .unwrap();
    }

    /// Get the first available descriptor chain without removing it from the queue.
    /// Call `pop_peeked` to remove the returned descriptor chain from the queue.
    pub fn peek(&mut self) -> Option<DescriptorChain> {
        let avail_index = self.get_avail_index();
        if self.next_avail == avail_index {
            return None;
        }

        // This fence ensures that subsequent reads from the descriptor do not
        // get reordered and happen only after fetching the available_index and
        // checking that there is a slot available.
        fence(Ordering::SeqCst);

        let desc_idx_addr_offset = 4 + (u64::from(self.wrap_queue_index(self.next_avail)) * 2);
        let desc_idx_addr = self.avail_ring.checked_add(desc_idx_addr_offset)?;

        // This index is checked below in checked_new.
        let descriptor_index: u16 = self.mem.read_obj_from_addr_volatile(desc_idx_addr).unwrap();

        let chain =
            SplitDescriptorChain::new(&self.mem, self.desc_table, self.size, descriptor_index);
        DescriptorChain::new(chain, &self.mem, descriptor_index)
            .map_err(|e| {
                error!("{:#}", e);
                e
            })
            .ok()
    }

    /// Remove the first available descriptor chain from the queue.
    /// This function should only be called immediately following `peek` and must be passed a
    /// reference to the same `DescriptorChain` returned by the most recent `peek`.
    pub(super) fn pop_peeked(&mut self, _descriptor_chain: &DescriptorChain) {
        self.next_avail += Wrapping(1);
        if self.features & ((1u64) << VIRTIO_RING_F_EVENT_IDX) != 0 {
            self.set_avail_event(self.next_avail);
        }
    }

    /// Puts an available descriptor head into the used ring for use by the guest.
    pub fn add_used(&mut self, desc_chain: DescriptorChain, len: u32) {
        let desc_index = desc_chain.index();
        debug_assert!(desc_index < self.size);

        let used_ring = self.used_ring;
        let next_used = self.wrap_queue_index(self.next_used) as usize;
        let used_elem = used_ring.unchecked_add((4 + next_used * 8) as u64);

        let elem = virtq_used_elem {
            id: Le32::from(u32::from(desc_index)),
            len: Le32::from(len),
        };

        // This write can't fail as we are guaranteed to be within the descriptor ring.
        self.mem
            .write_obj_at_addr_volatile(elem, used_elem)
            .unwrap();

        self.next_used += Wrapping(1);
        self.set_used_index(self.next_used);
    }

    /// Returns if the queue should have an interrupt sent based on its state.
    ///
    /// This function implements `VIRTIO_RING_F_EVENT_IDX`, otherwise known as
    /// interrupt suppression. The virtio spec provides the driver with a field,
    /// `used_event`, which says that once we write that descriptor (or several
    /// in the case of a flurry of `add_used` calls), we should send a
    /// notification. Because the values involved wrap around `u16::MAX`, and to
    /// avoid checking the condition on every `add_used` call, the math is a
    /// little complicated.
    ///
    /// The critical inequality is:
    /// ```text
    ///      (next_used - 1) - used_event < next_used - last_used
    /// ```
    ///
    /// For illustration purposes, we label it as `A < B`, where
    /// `A = (next_used -1) - used_event`, and `B = next_used - last_used`.
    ///
    /// `A` and `B` represent two distances, measured in a wrapping ring of size
    /// `u16::MAX`. In the "send intr" case, the inequality is true. In the
    /// "don't send intr" case, the inequality is false. We must be very careful
    /// in assigning a direction to the ring, so that when we
    /// graph the subtraction operations, we are measuring the right distance
    /// (similar to how DC circuits are analyzed).
    ///
    /// The two distances are as follows:
    ///  * `A` is the distance between the driver's requested notification point, and the current
    ///    position in the ring.
    ///
    ///  * `B` is the distance between the last time we notified the guest, and the current position
    ///    in the ring.
    ///
    /// If we graph these distances for the situation where we want to notify
    /// the guest, and when we don't want to notify the guest, we see that
    /// `A < B` becomes true the moment `next_used - 1` passes `used_event`. See
    /// the graphs at the bottom of this comment block for a more visual
    /// explanation.
    ///
    /// Once an interrupt is sent, we have a final useful property: last_used
    /// moves up next_used, which causes the inequality to be false. Thus, we
    /// won't send notifications again until `used_event` is moved forward by
    /// the driver.
    ///
    /// Finally, let's talk about a couple of ways to write this inequality
    /// that don't work, and critically, explain *why*.
    ///
    /// First, a naive reading of the virtio spec might lead us to ask: why not
    /// just use the following inequality:
    /// ```text
    ///      next_used - 1 >= used_event
    /// ```
    ///
    /// because that's much simpler, right? The trouble is that the ring wraps,
    /// so it could be that a smaller index is actually ahead of a larger one.
    /// That's why we have to use distances in the ring instead.
    ///
    /// Second, one might look at the correct inequality:
    /// ```text
    ///      (next_used - 1) - used_event < next_used - last_used
    /// ```
    ///
    /// And try to simplify it to:
    /// ```text
    ///      last_used - 1 < used_event
    /// ```
    ///
    /// Functionally, this won't work because next_used isn't present at all
    /// anymore. (Notifications will never be sent.) But why is that? The algebra
    /// here *appears* to work out, but all semantic meaning is lost. There are
    /// two explanations for why this happens:
    /// * The intuitive one: the terms in the inequality are not actually separable; in other words,
    ///   (next_used - last_used) is an inseparable term, so subtracting next_used from both sides
    ///   of the original inequality and zeroing them out is semantically invalid. But why aren't
    ///   they separable? See below.
    /// * The theoretical one: canceling like terms relies a vector space law: a + x = b + x => a =
    ///   b (cancellation law). For congruences / equality under modulo, this law is satisfied, but
    ///   for inequalities under mod, it is not; therefore, we cannot cancel like terms.
    ///
    /// ```text
    /// ┌──────────────────────────────────┐
    /// │                                  │
    /// │                                  │
    /// │                                  │
    /// │           ┌────────────  next_used - 1
    /// │           │A                   x
    /// │           │       ┌────────────x────────────┐
    /// │           │       │            x            │
    /// │           │       │                         │
    /// │           │       │               │         │
    /// │           │       │               │         │
    /// │     used_event  xxxx        + ◄───┘       xxxxx last_used
    /// │                   │                         │      │
    /// │                   │        Send intr        │      │
    /// │                   │                         │      │
    /// │                   └─────────────────────────┘      │
    /// │                                                    │
    /// │ B                                                  │
    /// └────────────────────────────────────────────────────┘
    ///
    ///             ┌───────────────────────────────────────────────────┐
    ///             │                                                 A │
    ///             │       ┌────────────────────────┐                  │
    ///             │       │                        │                  │
    ///             │       │                        │                  │
    ///             │       │              │         │                  │
    ///             │       │              │         │                  │
    ///       used_event  xxxx             │       xxxxx last_used      │
    ///                     │        + ◄───┘         │       │          │
    ///                     │                        │       │          │
    ///                     │     Don't send intr    │       │          │
    ///                     │                        │       │          │
    ///                     └───────────x────────────┘       │          │
    ///                                 x                    │          │
    ///                              next_used - 1           │          │
    ///                              │  │                  B │          │
    ///                              │  └────────────────────┘          │
    ///                              │                                  │
    ///                              └──────────────────────────────────┘
    /// ```
    fn queue_wants_interrupt(&self) -> bool {
        if self.features & ((1u64) << VIRTIO_RING_F_EVENT_IDX) != 0 {
            let used_event = self.get_used_event();
            self.next_used - used_event - Wrapping(1) < self.next_used - self.last_used
        } else {
            !self.get_avail_flag(VIRTQ_AVAIL_F_NO_INTERRUPT)
        }
    }

    /// inject interrupt into guest on this queue
    /// return true: interrupt is injected into guest for this queue
    ///        false: interrupt isn't injected
    pub fn trigger_interrupt(&mut self, interrupt: &Interrupt) -> bool {
        if self.queue_wants_interrupt() {
            self.last_used = self.next_used;
            interrupt.signal_used_queue(self.vector);
            true
        } else {
            false
        }
    }

    pub fn snapshot(&self) -> anyhow::Result<serde_json::Value> {
        serde_json::to_value(SplitQueueSnapshot {
            size: self.size,
            vector: self.vector,
            desc_table: self.desc_table,
            avail_ring: self.avail_ring,
            used_ring: self.used_ring,
            next_avail: self.next_avail,
            next_used: self.next_used,
            features: self.features,
            last_used: self.last_used,
        })
        .context("failed to serialize MsixConfigSnapshot")
    }

    pub fn restore(
        queue_value: serde_json::Value,
        mem: &GuestMemory,
        event: Event,
    ) -> anyhow::Result<SplitQueue> {
        let s: SplitQueueSnapshot = serde_json::from_value(queue_value)?;
        let queue = SplitQueue {
            mem: mem.clone(),
            event,
            size: s.size,
            vector: s.vector,
            desc_table: s.desc_table,
            avail_ring: s.avail_ring,
            used_ring: s.used_ring,
            next_avail: s.next_avail,
            next_used: s.next_used,
            features: s.features,
            last_used: s.last_used,
        };
        Ok(queue)
    }
}

#[cfg(test)]
mod tests {
    use std::convert::TryInto;

    use data_model::Le16;
    use data_model::Le32;
    use data_model::Le64;
    use memoffset::offset_of;
    use zerocopy::AsBytes;
    use zerocopy::FromBytes;

    use super::*;
    use crate::virtio::create_descriptor_chain;
    use crate::virtio::Desc;
    use crate::virtio::Interrupt;
    use crate::virtio::Queue;
    use crate::IrqLevelEvent;

    const GUEST_MEMORY_SIZE: u64 = 0x10000;
    const DESC_OFFSET: u64 = 0;
    const AVAIL_OFFSET: u64 = 0x200;
    const USED_OFFSET: u64 = 0x400;
    const QUEUE_SIZE: usize = 0x10;
    const BUFFER_OFFSET: u64 = 0x8000;
    const BUFFER_LEN: u32 = 0x400;

    #[derive(Copy, Clone, Debug, FromZeroes, FromBytes, AsBytes)]
    #[repr(C)]
    struct Avail {
        flags: Le16,
        idx: Le16,
        ring: [Le16; QUEUE_SIZE],
        used_event: Le16,
    }

    impl Default for Avail {
        fn default() -> Self {
            Avail {
                flags: Le16::from(0u16),
                idx: Le16::from(0u16),
                ring: [Le16::from(0u16); QUEUE_SIZE],
                used_event: Le16::from(0u16),
            }
        }
    }

    #[derive(Copy, Clone, Debug, FromZeroes, FromBytes, AsBytes)]
    #[repr(C)]
    struct UsedElem {
        id: Le32,
        len: Le32,
    }

    impl Default for UsedElem {
        fn default() -> Self {
            UsedElem {
                id: Le32::from(0u32),
                len: Le32::from(0u32),
            }
        }
    }

    #[derive(Copy, Clone, Debug, FromZeroes, FromBytes, AsBytes)]
    #[repr(C, packed)]
    struct Used {
        flags: Le16,
        idx: Le16,
        used_elem_ring: [UsedElem; QUEUE_SIZE],
        avail_event: Le16,
    }

    impl Default for Used {
        fn default() -> Self {
            Used {
                flags: Le16::from(0u16),
                idx: Le16::from(0u16),
                used_elem_ring: [UsedElem::default(); QUEUE_SIZE],
                avail_event: Le16::from(0u16),
            }
        }
    }

    fn setup_vq(queue: &mut QueueConfig, mem: &GuestMemory) -> Queue {
        let desc = Desc {
            addr: Le64::from(BUFFER_OFFSET),
            len: Le32::from(BUFFER_LEN),
            flags: Le16::from(0u16),
            next: Le16::from(1u16),
        };
        let _ = mem.write_obj_at_addr(desc, GuestAddress(DESC_OFFSET));

        let avail = Avail::default();
        let _ = mem.write_obj_at_addr(avail, GuestAddress(AVAIL_OFFSET));

        let used = Used::default();
        let _ = mem.write_obj_at_addr(used, GuestAddress(USED_OFFSET));

        queue.set_desc_table(GuestAddress(DESC_OFFSET));
        queue.set_avail_ring(GuestAddress(AVAIL_OFFSET));
        queue.set_used_ring(GuestAddress(USED_OFFSET));
        queue.ack_features((1u64) << VIRTIO_RING_F_EVENT_IDX);
        queue.set_ready(true);

        queue
            .activate(mem, Event::new().unwrap())
            .expect("QueueConfig::activate failed")
    }

    fn fake_desc_chain(mem: &GuestMemory) -> DescriptorChain {
        create_descriptor_chain(mem, GuestAddress(0), GuestAddress(0), Vec::new(), 0)
            .expect("failed to create descriptor chain")
    }

    #[test]
    fn queue_event_id_guest_fast() {
        let mut queue =
            QueueConfig::new(QUEUE_SIZE.try_into().unwrap(), 1 << VIRTIO_RING_F_EVENT_IDX);
        let memory_start_addr = GuestAddress(0x0);
        let mem = GuestMemory::new(&[(memory_start_addr, GUEST_MEMORY_SIZE)]).unwrap();
        let mut queue = setup_vq(&mut queue, &mem);

        let interrupt = Interrupt::new(
            IrqLevelEvent::new().unwrap(),
            None,
            10,
            #[cfg(target_arch = "x86_64")]
            None,
        );

        // Offset of used_event within Avail structure
        let used_event_offset = offset_of!(Avail, used_event) as u64;
        let used_event_address = GuestAddress(AVAIL_OFFSET + used_event_offset);

        // Assume driver submit 0x100 req to device,
        // device has handled them, so increase self.next_used to 0x100
        let mut device_generate: Wrapping<u16> = Wrapping(0x100);
        for _ in 0..device_generate.0 {
            queue.add_used(fake_desc_chain(&mem), BUFFER_LEN);
        }

        // At this moment driver hasn't handled any interrupts yet, so it
        // should inject interrupt.
        assert_eq!(queue.trigger_interrupt(&interrupt), true);

        // Driver handle all the interrupts and update avail.used_event to 0x100
        let mut driver_handled = device_generate;
        let _ = mem.write_obj_at_addr(Le16::from(driver_handled.0), used_event_address);

        // At this moment driver have handled all the interrupts, and
        // device doesn't generate more data, so interrupt isn't needed.
        assert_eq!(queue.trigger_interrupt(&interrupt), false);

        // Assume driver submit another u16::MAX - 0x100 req to device,
        // Device has handled all of them, so increase self.next_used to u16::MAX
        for _ in device_generate.0..u16::max_value() {
            queue.add_used(fake_desc_chain(&mem), BUFFER_LEN);
        }
        device_generate = Wrapping(u16::max_value());

        // At this moment driver just handled 0x100 interrupts, so it
        // should inject interrupt.
        assert_eq!(queue.trigger_interrupt(&interrupt), true);

        // driver handle all the interrupts and update avail.used_event to u16::MAX
        driver_handled = device_generate;
        let _ = mem.write_obj_at_addr(Le16::from(driver_handled.0), used_event_address);

        // At this moment driver have handled all the interrupts, and
        // device doesn't generate more data, so interrupt isn't needed.
        assert_eq!(queue.trigger_interrupt(&interrupt), false);

        // Assume driver submit another 1 request,
        // device has handled it, so wrap self.next_used to 0
        queue.add_used(fake_desc_chain(&mem), BUFFER_LEN);
        device_generate += Wrapping(1);

        // At this moment driver has handled all the previous interrupts, so it
        // should inject interrupt again.
        assert_eq!(queue.trigger_interrupt(&interrupt), true);

        // driver handle that interrupts and update avail.used_event to 0
        driver_handled = device_generate;
        let _ = mem.write_obj_at_addr(Le16::from(driver_handled.0), used_event_address);

        // At this moment driver have handled all the interrupts, and
        // device doesn't generate more data, so interrupt isn't needed.
        assert_eq!(queue.trigger_interrupt(&interrupt), false);
    }

    #[test]
    fn queue_event_id_guest_slow() {
        let mut queue =
            QueueConfig::new(QUEUE_SIZE.try_into().unwrap(), 1 << VIRTIO_RING_F_EVENT_IDX);
        let memory_start_addr = GuestAddress(0x0);
        let mem = GuestMemory::new(&[(memory_start_addr, GUEST_MEMORY_SIZE)]).unwrap();
        let mut queue = setup_vq(&mut queue, &mem);

        let interrupt = Interrupt::new(
            IrqLevelEvent::new().unwrap(),
            None,
            10,
            #[cfg(target_arch = "x86_64")]
            None,
        );

        // Offset of used_event within Avail structure
        let used_event_offset = offset_of!(Avail, used_event) as u64;
        let used_event_address = GuestAddress(AVAIL_OFFSET + used_event_offset);

        // Assume driver submit 0x100 req to device,
        // device have handled 0x100 req, so increase self.next_used to 0x100
        let mut device_generate: Wrapping<u16> = Wrapping(0x100);
        for _ in 0..device_generate.0 {
            queue.add_used(fake_desc_chain(&mem), BUFFER_LEN);
        }

        // At this moment driver hasn't handled any interrupts yet, so it
        // should inject interrupt.
        assert_eq!(queue.trigger_interrupt(&interrupt), true);

        // Driver handle part of the interrupts and update avail.used_event to 0x80
        let mut driver_handled = Wrapping(0x80);
        let _ = mem.write_obj_at_addr(Le16::from(driver_handled.0), used_event_address);

        // At this moment driver hasn't finished last interrupt yet,
        // so interrupt isn't needed.
        assert_eq!(queue.trigger_interrupt(&interrupt), false);

        // Assume driver submit another 1 request,
        // device has handled it, so increment self.next_used.
        queue.add_used(fake_desc_chain(&mem), BUFFER_LEN);
        device_generate += Wrapping(1);

        // At this moment driver hasn't finished last interrupt yet,
        // so interrupt isn't needed.
        assert_eq!(queue.trigger_interrupt(&interrupt), false);

        // Assume driver submit another u16::MAX - 0x101 req to device,
        // Device has handled all of them, so increase self.next_used to u16::MAX
        for _ in device_generate.0..u16::max_value() {
            queue.add_used(fake_desc_chain(&mem), BUFFER_LEN);
        }
        device_generate = Wrapping(u16::max_value());

        // At this moment driver hasn't finished last interrupt yet,
        // so interrupt isn't needed.
        assert_eq!(queue.trigger_interrupt(&interrupt), false);

        // driver handle most of the interrupts and update avail.used_event to u16::MAX - 1,
        driver_handled = device_generate - Wrapping(1);
        let _ = mem.write_obj_at_addr(Le16::from(driver_handled.0), used_event_address);

        // Assume driver submit another 1 request,
        // device has handled it, so wrap self.next_used to 0
        queue.add_used(fake_desc_chain(&mem), BUFFER_LEN);
        device_generate += Wrapping(1);

        // At this moment driver has already finished the last interrupt(0x100),
        // and device service other request, so new interrupt is needed.
        assert_eq!(queue.trigger_interrupt(&interrupt), true);

        // Assume driver submit another 1 request,
        // device has handled it, so increment self.next_used to 1
        queue.add_used(fake_desc_chain(&mem), BUFFER_LEN);
        device_generate += Wrapping(1);

        // At this moment driver hasn't finished last interrupt((Wrapping(0)) yet,
        // so interrupt isn't needed.
        assert_eq!(queue.trigger_interrupt(&interrupt), false);

        // driver handle all the remain interrupts and wrap avail.used_event to 0x1.
        driver_handled = device_generate;
        let _ = mem.write_obj_at_addr(Le16::from(driver_handled.0), used_event_address);

        // At this moment driver has handled all the interrupts, and
        // device doesn't generate more data, so interrupt isn't needed.
        assert_eq!(queue.trigger_interrupt(&interrupt), false);

        // Assume driver submit another 1 request,
        // device has handled it, so increase self.next_used.
        queue.add_used(fake_desc_chain(&mem), BUFFER_LEN);
        device_generate += Wrapping(1);

        // At this moment driver has finished all the previous interrupts, so it
        // should inject interrupt again.
        assert_eq!(queue.trigger_interrupt(&interrupt), true);
    }
}