1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
// Copyright 2017 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use std::num::Wrapping;
use std::sync::atomic::fence;
use std::sync::atomic::Ordering;
use anyhow::bail;
use anyhow::Context;
use anyhow::Result;
use base::error;
use base::Event;
use data_model::Le32;
use serde::Deserialize;
use serde::Serialize;
use virtio_sys::virtio_ring::VIRTIO_RING_F_EVENT_IDX;
use vm_memory::GuestAddress;
use vm_memory::GuestMemory;
use zerocopy::AsBytes;
use zerocopy::FromBytes;
use zerocopy::FromZeroes;
use crate::virtio::DescriptorChain;
use crate::virtio::Interrupt;
use crate::virtio::QueueConfig;
use crate::virtio::SplitDescriptorChain;
#[allow(dead_code)]
const VIRTQ_USED_F_NO_NOTIFY: u16 = 0x1;
#[allow(dead_code)]
const VIRTQ_AVAIL_F_NO_INTERRUPT: u16 = 0x1;
/// An activated virtio queue with split queue layout.
#[derive(Debug)]
pub struct SplitQueue {
mem: GuestMemory,
event: Event,
interrupt: Interrupt,
/// The queue size in elements the driver selected. This is always guaranteed to be a power of
/// two, as required for split virtqueues.
size: u16,
/// MSI-X vector for the queue. Don't care for INTx
vector: u16,
/// Guest physical address of the descriptor table
desc_table: GuestAddress,
/// Guest physical address of the available ring
avail_ring: GuestAddress,
/// Guest physical address of the used ring
used_ring: GuestAddress,
next_avail: Wrapping<u16>,
next_used: Wrapping<u16>,
// Device feature bits accepted by the driver
features: u64,
last_used: Wrapping<u16>,
}
#[derive(Serialize, Deserialize)]
pub struct SplitQueueSnapshot {
size: u16,
vector: u16,
desc_table: GuestAddress,
avail_ring: GuestAddress,
used_ring: GuestAddress,
next_avail: Wrapping<u16>,
next_used: Wrapping<u16>,
features: u64,
last_used: Wrapping<u16>,
}
#[repr(C)]
#[derive(AsBytes, FromZeroes, FromBytes)]
struct virtq_used_elem {
id: Le32,
len: Le32,
}
impl SplitQueue {
/// Constructs an activated split virtio queue with the given configuration.
pub fn new(
config: &QueueConfig,
mem: &GuestMemory,
event: Event,
interrupt: Interrupt,
) -> Result<SplitQueue> {
let size = config.size();
if !size.is_power_of_two() {
bail!("split queue size {size} is not a power of 2");
}
let desc_table = config.desc_table();
let avail_ring = config.avail_ring();
let used_ring = config.used_ring();
// Validate addresses and queue size to ensure that address calculation won't overflow.
let ring_sizes = Self::ring_sizes(size, desc_table, avail_ring, used_ring);
let rings = ring_sizes
.iter()
.zip(vec!["descriptor table", "available ring", "used ring"]);
for ((addr, size), name) in rings {
if addr.checked_add(*size as u64).is_none() {
bail!(
"virtio queue {} goes out of bounds: start:0x{:08x} size:0x{:08x}",
name,
addr.offset(),
size,
);
}
}
Ok(SplitQueue {
mem: mem.clone(),
event,
interrupt,
size,
vector: config.vector(),
desc_table: config.desc_table(),
avail_ring: config.avail_ring(),
used_ring: config.used_ring(),
features: config.acked_features(),
next_avail: config.next_avail(),
next_used: config.next_used(),
// WARNING: last_used controls interrupt suppression
// (VIRTIO_RING_F_EVENT_IDX). The only safe value initial value is
// zero (unless restoring a snapshot and the value that was stored
// on the device is known; however we do not bother with that in our
// snapshot system since it is much simpler to just use the zero
// value and send a potentially spurious interrupt on restore).
last_used: Wrapping(0),
})
}
pub fn vhost_user_reclaim(&mut self, vring_base: u16) {
self.next_avail = Wrapping(vring_base);
// The vhost-user spec says:
//
// For the Used Ring, the device only needs the next descriptor index at which to put
// new descriptors, which is the value in the vring structure in memory, so this value
// is not covered by this message.
//
// So, we read the value from guest memory.
let used_index_addr = self.used_ring.unchecked_add(2);
self.next_used = self
.mem
.read_obj_from_addr_volatile(used_index_addr)
.unwrap();
// Since the backend has not told us what its actual last_used value
// was, we have to assume that an interrupt must be sent when next
// available descriptor is used, so we set this to zero.
//
// But wait, one might ask, why can't we just assume the vhost-user
// backend has already sent interrupts for any descriptors it marked
// used before it stopped processing the queue? Then we could just
// initialize last_used as `last_used == next_used`, which would skip
// spurious interrupts and be more efficient. Right?
//
// If VIRTIO_RING_F_EVENT_IDX is enabled, then no. The reason is the
// device could be in an interrupt suppressed state and so it may indeed
// have marked some descriptors used, but not yet sent an interrupt for
// them. Once we set last_used = next_used, no interrupts will be sent
// to the driver until the driver updates next_used (see
// queue_wants_interrupt for details), but the driver will
// never wake up the device isn't sending any interrupts. Thus, the
// device stalls.
//
// NOTE: this value is not used by the snapshot/restore process, but we
// still want to pick a reasonable value here in case it is used in the
// future.
self.last_used = Wrapping(0);
}
pub fn next_avail_to_process(&self) -> u16 {
self.next_avail.0
}
/// Return the actual size of the queue, as the driver may not set up a
/// queue as big as the device allows.
pub fn size(&self) -> u16 {
self.size
}
/// Getter for vector field
pub fn vector(&self) -> u16 {
self.vector
}
/// Getter for descriptor area
pub fn desc_table(&self) -> GuestAddress {
self.desc_table
}
/// Getter for driver area
pub fn avail_ring(&self) -> GuestAddress {
self.avail_ring
}
/// Getter for device area
pub fn used_ring(&self) -> GuestAddress {
self.used_ring
}
/// Get a reference to the queue's "kick event"
pub fn event(&self) -> &Event {
&self.event
}
/// Get a reference to the queue's interrupt
pub fn interrupt(&self) -> &Interrupt {
&self.interrupt
}
// Return `index` modulo the currently configured queue size.
fn wrap_queue_index(&self, index: Wrapping<u16>) -> u16 {
// We know that `self.size` is a power of two (enforced by `new()`), so the modulus can
// be calculated with a bitmask rather than actual division.
debug_assert!(self.size.is_power_of_two());
index.0 & self.size.wrapping_sub(1)
}
fn ring_sizes(
queue_size: u16,
desc_table: GuestAddress,
avail_ring: GuestAddress,
used_ring: GuestAddress,
) -> Vec<(GuestAddress, usize)> {
let queue_size = queue_size as usize;
vec![
(desc_table, 16 * queue_size),
(avail_ring, 6 + 2 * queue_size),
(used_ring, 6 + 8 * queue_size),
]
}
// Get the index of the first available descriptor chain in the available ring
// (the next one that the driver will fill).
//
// All available ring entries between `self.next_avail` and `get_avail_index()` are available
// to be processed by the device.
fn get_avail_index(&self) -> Wrapping<u16> {
fence(Ordering::SeqCst);
let avail_index_addr = self.avail_ring.unchecked_add(2);
let avail_index: u16 = self
.mem
.read_obj_from_addr_volatile(avail_index_addr)
.unwrap();
Wrapping(avail_index)
}
// Set the `avail_event` field in the used ring.
//
// This allows the device to inform the driver that driver-to-device notification
// (kicking the ring) is not necessary until the driver reaches the `avail_index` descriptor.
//
// This value is only used if the `VIRTIO_F_EVENT_IDX` feature has been negotiated.
fn set_avail_event(&mut self, avail_index: Wrapping<u16>) {
fence(Ordering::SeqCst);
let avail_event_addr = self.used_ring.unchecked_add(4 + 8 * u64::from(self.size));
self.mem
.write_obj_at_addr_volatile(avail_index.0, avail_event_addr)
.unwrap();
}
// Query the value of a single-bit flag in the available ring.
//
// Returns `true` if `flag` is currently set (by the driver) in the available ring flags.
fn get_avail_flag(&self, flag: u16) -> bool {
fence(Ordering::SeqCst);
let avail_flags: u16 = self
.mem
.read_obj_from_addr_volatile(self.avail_ring)
.unwrap();
avail_flags & flag == flag
}
// Get the `used_event` field in the available ring.
//
// The returned value is the index of the next descriptor chain entry for which the driver
// needs to be notified upon use. Entries before this index may be used without notifying
// the driver.
//
// This value is only valid if the `VIRTIO_F_EVENT_IDX` feature has been negotiated.
fn get_used_event(&self) -> Wrapping<u16> {
fence(Ordering::SeqCst);
let used_event_addr = self.avail_ring.unchecked_add(4 + 2 * u64::from(self.size));
let used_event: u16 = self
.mem
.read_obj_from_addr_volatile(used_event_addr)
.unwrap();
Wrapping(used_event)
}
// Set the `idx` field in the used ring.
//
// This indicates to the driver that all entries up to (but not including) `used_index` have
// been used by the device and may be processed by the driver.
fn set_used_index(&mut self, used_index: Wrapping<u16>) {
fence(Ordering::SeqCst);
let used_index_addr = self.used_ring.unchecked_add(2);
self.mem
.write_obj_at_addr_volatile(used_index.0, used_index_addr)
.unwrap();
}
/// Get the first available descriptor chain without removing it from the queue.
/// Call `pop_peeked` to remove the returned descriptor chain from the queue.
pub fn peek(&mut self) -> Option<DescriptorChain> {
let avail_index = self.get_avail_index();
if self.next_avail == avail_index {
return None;
}
// This fence ensures that subsequent reads from the descriptor do not
// get reordered and happen only after fetching the available_index and
// checking that there is a slot available.
fence(Ordering::SeqCst);
let desc_idx_addr_offset = 4 + (u64::from(self.wrap_queue_index(self.next_avail)) * 2);
let desc_idx_addr = self.avail_ring.checked_add(desc_idx_addr_offset)?;
// This index is checked below in checked_new.
let descriptor_index: u16 = self.mem.read_obj_from_addr_volatile(desc_idx_addr).unwrap();
let chain =
SplitDescriptorChain::new(&self.mem, self.desc_table, self.size, descriptor_index);
DescriptorChain::new(chain, &self.mem, descriptor_index)
.map_err(|e| {
error!("{:#}", e);
e
})
.ok()
}
/// Remove the first available descriptor chain from the queue.
/// This function should only be called immediately following `peek` and must be passed a
/// reference to the same `DescriptorChain` returned by the most recent `peek`.
pub(super) fn pop_peeked(&mut self, _descriptor_chain: &DescriptorChain) {
self.next_avail += Wrapping(1);
if self.features & ((1u64) << VIRTIO_RING_F_EVENT_IDX) != 0 {
self.set_avail_event(self.next_avail);
}
}
/// Puts an available descriptor head into the used ring for use by the guest.
pub fn add_used(&mut self, desc_chain: DescriptorChain, len: u32) {
let desc_index = desc_chain.index();
debug_assert!(desc_index < self.size);
let used_ring = self.used_ring;
let next_used = self.wrap_queue_index(self.next_used) as usize;
let used_elem = used_ring.unchecked_add((4 + next_used * 8) as u64);
let elem = virtq_used_elem {
id: Le32::from(u32::from(desc_index)),
len: Le32::from(len),
};
// This write can't fail as we are guaranteed to be within the descriptor ring.
self.mem
.write_obj_at_addr_volatile(elem, used_elem)
.unwrap();
self.next_used += Wrapping(1);
self.set_used_index(self.next_used);
}
/// Returns if the queue should have an interrupt sent based on its state.
///
/// This function implements `VIRTIO_RING_F_EVENT_IDX`, otherwise known as
/// interrupt suppression. The virtio spec provides the driver with a field,
/// `used_event`, which says that once we write that descriptor (or several
/// in the case of a flurry of `add_used` calls), we should send a
/// notification. Because the values involved wrap around `u16::MAX`, and to
/// avoid checking the condition on every `add_used` call, the math is a
/// little complicated.
///
/// The critical inequality is:
/// ```text
/// (next_used - 1) - used_event < next_used - last_used
/// ```
///
/// For illustration purposes, we label it as `A < B`, where
/// `A = (next_used -1) - used_event`, and `B = next_used - last_used`.
///
/// `A` and `B` represent two distances, measured in a wrapping ring of size
/// `u16::MAX`. In the "send intr" case, the inequality is true. In the
/// "don't send intr" case, the inequality is false. We must be very careful
/// in assigning a direction to the ring, so that when we
/// graph the subtraction operations, we are measuring the right distance
/// (similar to how DC circuits are analyzed).
///
/// The two distances are as follows:
/// * `A` is the distance between the driver's requested notification point, and the current
/// position in the ring.
///
/// * `B` is the distance between the last time we notified the guest, and the current position
/// in the ring.
///
/// If we graph these distances for the situation where we want to notify
/// the guest, and when we don't want to notify the guest, we see that
/// `A < B` becomes true the moment `next_used - 1` passes `used_event`. See
/// the graphs at the bottom of this comment block for a more visual
/// explanation.
///
/// Once an interrupt is sent, we have a final useful property: last_used
/// moves up next_used, which causes the inequality to be false. Thus, we
/// won't send notifications again until `used_event` is moved forward by
/// the driver.
///
/// Finally, let's talk about a couple of ways to write this inequality
/// that don't work, and critically, explain *why*.
///
/// First, a naive reading of the virtio spec might lead us to ask: why not
/// just use the following inequality:
/// ```text
/// next_used - 1 >= used_event
/// ```
///
/// because that's much simpler, right? The trouble is that the ring wraps,
/// so it could be that a smaller index is actually ahead of a larger one.
/// That's why we have to use distances in the ring instead.
///
/// Second, one might look at the correct inequality:
/// ```text
/// (next_used - 1) - used_event < next_used - last_used
/// ```
///
/// And try to simplify it to:
/// ```text
/// last_used - 1 < used_event
/// ```
///
/// Functionally, this won't work because next_used isn't present at all
/// anymore. (Notifications will never be sent.) But why is that? The algebra
/// here *appears* to work out, but all semantic meaning is lost. There are
/// two explanations for why this happens:
/// * The intuitive one: the terms in the inequality are not actually separable; in other words,
/// (next_used - last_used) is an inseparable term, so subtracting next_used from both sides
/// of the original inequality and zeroing them out is semantically invalid. But why aren't
/// they separable? See below.
/// * The theoretical one: canceling like terms relies a vector space law: a + x = b + x => a =
/// b (cancellation law). For congruences / equality under modulo, this law is satisfied, but
/// for inequalities under mod, it is not; therefore, we cannot cancel like terms.
///
/// ```text
/// ┌──────────────────────────────────┐
/// │ │
/// │ │
/// │ │
/// │ ┌──────────── next_used - 1
/// │ │A x
/// │ │ ┌────────────x────────────┐
/// │ │ │ x │
/// │ │ │ │
/// │ │ │ │ │
/// │ │ │ │ │
/// │ used_event xxxx + ◄───┘ xxxxx last_used
/// │ │ │ │
/// │ │ Send intr │ │
/// │ │ │ │
/// │ └─────────────────────────┘ │
/// │ │
/// │ B │
/// └────────────────────────────────────────────────────┘
///
/// ┌───────────────────────────────────────────────────┐
/// │ A │
/// │ ┌────────────────────────┐ │
/// │ │ │ │
/// │ │ │ │
/// │ │ │ │ │
/// │ │ │ │ │
/// used_event xxxx │ xxxxx last_used │
/// │ + ◄───┘ │ │ │
/// │ │ │ │
/// │ Don't send intr │ │ │
/// │ │ │ │
/// └───────────x────────────┘ │ │
/// x │ │
/// next_used - 1 │ │
/// │ │ B │ │
/// │ └────────────────────┘ │
/// │ │
/// └──────────────────────────────────┘
/// ```
fn queue_wants_interrupt(&self) -> bool {
if self.features & ((1u64) << VIRTIO_RING_F_EVENT_IDX) != 0 {
let used_event = self.get_used_event();
self.next_used - used_event - Wrapping(1) < self.next_used - self.last_used
} else {
!self.get_avail_flag(VIRTQ_AVAIL_F_NO_INTERRUPT)
}
}
/// inject interrupt into guest on this queue
/// return true: interrupt is injected into guest for this queue
/// false: interrupt isn't injected
pub fn trigger_interrupt(&mut self) -> bool {
if self.queue_wants_interrupt() {
self.last_used = self.next_used;
self.interrupt.signal_used_queue(self.vector);
true
} else {
false
}
}
pub fn snapshot(&self) -> anyhow::Result<serde_json::Value> {
serde_json::to_value(SplitQueueSnapshot {
size: self.size,
vector: self.vector,
desc_table: self.desc_table,
avail_ring: self.avail_ring,
used_ring: self.used_ring,
next_avail: self.next_avail,
next_used: self.next_used,
features: self.features,
last_used: self.last_used,
})
.context("failed to serialize MsixConfigSnapshot")
}
pub fn restore(
queue_value: serde_json::Value,
mem: &GuestMemory,
event: Event,
interrupt: Interrupt,
) -> anyhow::Result<SplitQueue> {
let s: SplitQueueSnapshot = serde_json::from_value(queue_value)?;
let queue = SplitQueue {
mem: mem.clone(),
event,
interrupt,
size: s.size,
vector: s.vector,
desc_table: s.desc_table,
avail_ring: s.avail_ring,
used_ring: s.used_ring,
next_avail: s.next_avail,
next_used: s.next_used,
features: s.features,
last_used: s.last_used,
};
Ok(queue)
}
}
#[cfg(test)]
mod tests {
use std::convert::TryInto;
use std::mem::offset_of;
use data_model::Le16;
use data_model::Le32;
use data_model::Le64;
use zerocopy::AsBytes;
use zerocopy::FromBytes;
use super::*;
use crate::virtio::create_descriptor_chain;
use crate::virtio::Desc;
use crate::virtio::Interrupt;
use crate::virtio::Queue;
const GUEST_MEMORY_SIZE: u64 = 0x10000;
const DESC_OFFSET: u64 = 0;
const AVAIL_OFFSET: u64 = 0x200;
const USED_OFFSET: u64 = 0x400;
const QUEUE_SIZE: usize = 0x10;
const BUFFER_OFFSET: u64 = 0x8000;
const BUFFER_LEN: u32 = 0x400;
#[derive(Copy, Clone, Debug, FromZeroes, FromBytes, AsBytes)]
#[repr(C)]
struct Avail {
flags: Le16,
idx: Le16,
ring: [Le16; QUEUE_SIZE],
used_event: Le16,
}
impl Default for Avail {
fn default() -> Self {
Avail {
flags: Le16::from(0u16),
idx: Le16::from(0u16),
ring: [Le16::from(0u16); QUEUE_SIZE],
used_event: Le16::from(0u16),
}
}
}
#[derive(Copy, Clone, Debug, FromZeroes, FromBytes, AsBytes)]
#[repr(C)]
struct UsedElem {
id: Le32,
len: Le32,
}
impl Default for UsedElem {
fn default() -> Self {
UsedElem {
id: Le32::from(0u32),
len: Le32::from(0u32),
}
}
}
#[derive(Copy, Clone, Debug, FromZeroes, FromBytes, AsBytes)]
#[repr(C, packed)]
struct Used {
flags: Le16,
idx: Le16,
used_elem_ring: [UsedElem; QUEUE_SIZE],
avail_event: Le16,
}
impl Default for Used {
fn default() -> Self {
Used {
flags: Le16::from(0u16),
idx: Le16::from(0u16),
used_elem_ring: [UsedElem::default(); QUEUE_SIZE],
avail_event: Le16::from(0u16),
}
}
}
fn setup_vq(queue: &mut QueueConfig, mem: &GuestMemory) -> Queue {
let desc = Desc {
addr: Le64::from(BUFFER_OFFSET),
len: Le32::from(BUFFER_LEN),
flags: Le16::from(0u16),
next: Le16::from(1u16),
};
let _ = mem.write_obj_at_addr(desc, GuestAddress(DESC_OFFSET));
let avail = Avail::default();
let _ = mem.write_obj_at_addr(avail, GuestAddress(AVAIL_OFFSET));
let used = Used::default();
let _ = mem.write_obj_at_addr(used, GuestAddress(USED_OFFSET));
queue.set_desc_table(GuestAddress(DESC_OFFSET));
queue.set_avail_ring(GuestAddress(AVAIL_OFFSET));
queue.set_used_ring(GuestAddress(USED_OFFSET));
queue.ack_features((1u64) << VIRTIO_RING_F_EVENT_IDX);
queue.set_ready(true);
queue
.activate(mem, Event::new().unwrap(), Interrupt::new_for_test())
.expect("QueueConfig::activate failed")
}
fn fake_desc_chain(mem: &GuestMemory) -> DescriptorChain {
create_descriptor_chain(mem, GuestAddress(0), GuestAddress(0), Vec::new(), 0)
.expect("failed to create descriptor chain")
}
#[test]
fn queue_event_id_guest_fast() {
let mut queue =
QueueConfig::new(QUEUE_SIZE.try_into().unwrap(), 1 << VIRTIO_RING_F_EVENT_IDX);
let memory_start_addr = GuestAddress(0x0);
let mem = GuestMemory::new(&[(memory_start_addr, GUEST_MEMORY_SIZE)]).unwrap();
let mut queue = setup_vq(&mut queue, &mem);
// Offset of used_event within Avail structure
let used_event_offset = offset_of!(Avail, used_event) as u64;
let used_event_address = GuestAddress(AVAIL_OFFSET + used_event_offset);
// Assume driver submit 0x100 req to device,
// device has handled them, so increase self.next_used to 0x100
let mut device_generate: Wrapping<u16> = Wrapping(0x100);
for _ in 0..device_generate.0 {
queue.add_used(fake_desc_chain(&mem), BUFFER_LEN);
}
// At this moment driver hasn't handled any interrupts yet, so it
// should inject interrupt.
assert_eq!(queue.trigger_interrupt(), true);
// Driver handle all the interrupts and update avail.used_event to 0x100
let mut driver_handled = device_generate;
let _ = mem.write_obj_at_addr(Le16::from(driver_handled.0), used_event_address);
// At this moment driver have handled all the interrupts, and
// device doesn't generate more data, so interrupt isn't needed.
assert_eq!(queue.trigger_interrupt(), false);
// Assume driver submit another u16::MAX - 0x100 req to device,
// Device has handled all of them, so increase self.next_used to u16::MAX
for _ in device_generate.0..u16::MAX {
queue.add_used(fake_desc_chain(&mem), BUFFER_LEN);
}
device_generate = Wrapping(u16::MAX);
// At this moment driver just handled 0x100 interrupts, so it
// should inject interrupt.
assert_eq!(queue.trigger_interrupt(), true);
// driver handle all the interrupts and update avail.used_event to u16::MAX
driver_handled = device_generate;
let _ = mem.write_obj_at_addr(Le16::from(driver_handled.0), used_event_address);
// At this moment driver have handled all the interrupts, and
// device doesn't generate more data, so interrupt isn't needed.
assert_eq!(queue.trigger_interrupt(), false);
// Assume driver submit another 1 request,
// device has handled it, so wrap self.next_used to 0
queue.add_used(fake_desc_chain(&mem), BUFFER_LEN);
device_generate += Wrapping(1);
// At this moment driver has handled all the previous interrupts, so it
// should inject interrupt again.
assert_eq!(queue.trigger_interrupt(), true);
// driver handle that interrupts and update avail.used_event to 0
driver_handled = device_generate;
let _ = mem.write_obj_at_addr(Le16::from(driver_handled.0), used_event_address);
// At this moment driver have handled all the interrupts, and
// device doesn't generate more data, so interrupt isn't needed.
assert_eq!(queue.trigger_interrupt(), false);
}
#[test]
fn queue_event_id_guest_slow() {
let mut queue =
QueueConfig::new(QUEUE_SIZE.try_into().unwrap(), 1 << VIRTIO_RING_F_EVENT_IDX);
let memory_start_addr = GuestAddress(0x0);
let mem = GuestMemory::new(&[(memory_start_addr, GUEST_MEMORY_SIZE)]).unwrap();
let mut queue = setup_vq(&mut queue, &mem);
// Offset of used_event within Avail structure
let used_event_offset = offset_of!(Avail, used_event) as u64;
let used_event_address = GuestAddress(AVAIL_OFFSET + used_event_offset);
// Assume driver submit 0x100 req to device,
// device have handled 0x100 req, so increase self.next_used to 0x100
let mut device_generate: Wrapping<u16> = Wrapping(0x100);
for _ in 0..device_generate.0 {
queue.add_used(fake_desc_chain(&mem), BUFFER_LEN);
}
// At this moment driver hasn't handled any interrupts yet, so it
// should inject interrupt.
assert_eq!(queue.trigger_interrupt(), true);
// Driver handle part of the interrupts and update avail.used_event to 0x80
let mut driver_handled = Wrapping(0x80);
let _ = mem.write_obj_at_addr(Le16::from(driver_handled.0), used_event_address);
// At this moment driver hasn't finished last interrupt yet,
// so interrupt isn't needed.
assert_eq!(queue.trigger_interrupt(), false);
// Assume driver submit another 1 request,
// device has handled it, so increment self.next_used.
queue.add_used(fake_desc_chain(&mem), BUFFER_LEN);
device_generate += Wrapping(1);
// At this moment driver hasn't finished last interrupt yet,
// so interrupt isn't needed.
assert_eq!(queue.trigger_interrupt(), false);
// Assume driver submit another u16::MAX - 0x101 req to device,
// Device has handled all of them, so increase self.next_used to u16::MAX
for _ in device_generate.0..u16::MAX {
queue.add_used(fake_desc_chain(&mem), BUFFER_LEN);
}
device_generate = Wrapping(u16::MAX);
// At this moment driver hasn't finished last interrupt yet,
// so interrupt isn't needed.
assert_eq!(queue.trigger_interrupt(), false);
// driver handle most of the interrupts and update avail.used_event to u16::MAX - 1,
driver_handled = device_generate - Wrapping(1);
let _ = mem.write_obj_at_addr(Le16::from(driver_handled.0), used_event_address);
// Assume driver submit another 1 request,
// device has handled it, so wrap self.next_used to 0
queue.add_used(fake_desc_chain(&mem), BUFFER_LEN);
device_generate += Wrapping(1);
// At this moment driver has already finished the last interrupt(0x100),
// and device service other request, so new interrupt is needed.
assert_eq!(queue.trigger_interrupt(), true);
// Assume driver submit another 1 request,
// device has handled it, so increment self.next_used to 1
queue.add_used(fake_desc_chain(&mem), BUFFER_LEN);
device_generate += Wrapping(1);
// At this moment driver hasn't finished last interrupt((Wrapping(0)) yet,
// so interrupt isn't needed.
assert_eq!(queue.trigger_interrupt(), false);
// driver handle all the remain interrupts and wrap avail.used_event to 0x1.
driver_handled = device_generate;
let _ = mem.write_obj_at_addr(Le16::from(driver_handled.0), used_event_address);
// At this moment driver has handled all the interrupts, and
// device doesn't generate more data, so interrupt isn't needed.
assert_eq!(queue.trigger_interrupt(), false);
// Assume driver submit another 1 request,
// device has handled it, so increase self.next_used.
queue.add_used(fake_desc_chain(&mem), BUFFER_LEN);
device_generate += Wrapping(1);
// At this moment driver has finished all the previous interrupts, so it
// should inject interrupt again.
assert_eq!(queue.trigger_interrupt(), true);
}
}