1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
// Copyright 2017 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! Types for volatile access to memory.
//!
//! Two of the core rules for safe rust is no data races and no aliased mutable references.
//! `VolatileSlice`, along with types that produce it which implement
//! `VolatileMemory`, allow us to sidestep that rule by wrapping pointers that absolutely have to be
//! accessed volatile. Some systems really do need to operate on shared memory and can't have the
//! compiler reordering or eliding access because it has no visibility into what other systems are
//! doing with that hunk of memory.
//!
//! For the purposes of maintaining safety, volatile memory has some rules of its own:
//! 1. No references or slices to volatile memory (`&` or `&mut`).
//! 2. Access should always been done with a volatile read or write.
//!
//! The first rule is because having references of any kind to memory considered volatile would
//! violate pointer aliasing. The second is because unvolatile accesses are inherently undefined if
//! done concurrently without synchronization. With volatile access we know that the compiler has
//! not reordered or elided the access.
use std::cmp::min;
use std::mem::size_of;
use std::ptr::copy;
use std::ptr::read_volatile;
use std::ptr::write_bytes;
use std::ptr::write_volatile;
use std::result;
use std::slice;
use remain::sorted;
use thiserror::Error;
use zerocopy::AsBytes;
use zerocopy::FromBytes;
use zerocopy::Ref;
use crate::IoBufMut;
#[sorted]
#[derive(Error, Eq, PartialEq, Debug)]
pub enum VolatileMemoryError {
/// `addr` is out of bounds of the volatile memory slice.
#[error("address 0x{addr:x} is out of bounds")]
OutOfBounds { addr: usize },
/// Taking a slice at `base` with `offset` would overflow `usize`.
#[error("address 0x{base:x} offset by 0x{offset:x} would overflow")]
Overflow { base: usize, offset: usize },
}
pub type VolatileMemoryResult<T> = result::Result<T, VolatileMemoryError>;
use crate::VolatileMemoryError as Error;
type Result<T> = VolatileMemoryResult<T>;
/// Trait for types that support raw volatile access to their data.
pub trait VolatileMemory {
/// Gets a slice of memory at `offset` that is `count` bytes in length and supports volatile
/// access.
fn get_slice(&self, offset: usize, count: usize) -> Result<VolatileSlice>;
}
/// A slice of raw memory that supports volatile access. Like `std::io::IoSliceMut`, this type is
/// guaranteed to be ABI-compatible with `libc::iovec` but unlike `IoSliceMut`, it doesn't
/// automatically deref to `&mut [u8]`.
#[derive(Copy, Clone, Debug)]
#[repr(transparent)]
pub struct VolatileSlice<'a>(IoBufMut<'a>);
impl<'a> VolatileSlice<'a> {
/// Creates a slice of raw memory that must support volatile access.
pub fn new(buf: &mut [u8]) -> VolatileSlice {
VolatileSlice(IoBufMut::new(buf))
}
/// Creates a `VolatileSlice` from a pointer and a length.
///
/// # Safety
///
/// In order to use this method safely, `addr` must be valid for reads and writes of `len` bytes
/// and should live for the entire duration of lifetime `'a`.
pub unsafe fn from_raw_parts(addr: *mut u8, len: usize) -> VolatileSlice<'a> {
VolatileSlice(IoBufMut::from_raw_parts(addr, len))
}
/// Gets a const pointer to this slice's memory.
pub fn as_ptr(&self) -> *const u8 {
self.0.as_ptr()
}
/// Gets a mutable pointer to this slice's memory.
pub fn as_mut_ptr(&self) -> *mut u8 {
self.0.as_mut_ptr()
}
/// Gets the size of this slice.
pub fn size(&self) -> usize {
self.0.len()
}
/// Advance the starting position of this slice.
///
/// Panics if `count > self.size()`.
pub fn advance(&mut self, count: usize) {
self.0.advance(count)
}
/// Shorten the length of the slice.
///
/// Has no effect if `len > self.size()`.
pub fn truncate(&mut self, len: usize) {
self.0.truncate(len)
}
/// Returns this `VolatileSlice` as an `IoBufMut`.
pub fn as_iobuf(&self) -> &IoBufMut {
&self.0
}
/// Converts a slice of `VolatileSlice`s into a slice of `IoBufMut`s
#[allow(clippy::wrong_self_convention)]
pub fn as_iobufs<'mem, 'slice>(
iovs: &'slice [VolatileSlice<'mem>],
) -> &'slice [IoBufMut<'mem>] {
// SAFETY:
// Safe because `VolatileSlice` is ABI-compatible with `IoBufMut`.
unsafe { slice::from_raw_parts(iovs.as_ptr() as *const IoBufMut, iovs.len()) }
}
/// Converts a mutable slice of `VolatileSlice`s into a mutable slice of `IoBufMut`s
#[inline]
pub fn as_iobufs_mut<'mem, 'slice>(
iovs: &'slice mut [VolatileSlice<'mem>],
) -> &'slice mut [IoBufMut<'mem>] {
// SAFETY:
// Safe because `VolatileSlice` is ABI-compatible with `IoBufMut`.
unsafe { slice::from_raw_parts_mut(iovs.as_mut_ptr() as *mut IoBufMut, iovs.len()) }
}
/// Creates a copy of this slice with the address increased by `count` bytes, and the size
/// reduced by `count` bytes.
pub fn offset(self, count: usize) -> Result<VolatileSlice<'a>> {
let new_addr = (self.as_mut_ptr() as usize).checked_add(count).ok_or(
VolatileMemoryError::Overflow {
base: self.as_mut_ptr() as usize,
offset: count,
},
)?;
let new_size = self
.size()
.checked_sub(count)
.ok_or(VolatileMemoryError::OutOfBounds { addr: new_addr })?;
// SAFETY:
// Safe because the memory has the same lifetime and points to a subset of the memory of the
// original slice.
unsafe { Ok(VolatileSlice::from_raw_parts(new_addr as *mut u8, new_size)) }
}
/// Similar to `get_slice` but the returned slice outlives this slice.
///
/// The returned slice's lifetime is still limited by the underlying data's lifetime.
pub fn sub_slice(self, offset: usize, count: usize) -> Result<VolatileSlice<'a>> {
let mem_end = offset
.checked_add(count)
.ok_or(VolatileMemoryError::Overflow {
base: offset,
offset: count,
})?;
if mem_end > self.size() {
return Err(Error::OutOfBounds { addr: mem_end });
}
let new_addr = (self.as_mut_ptr() as usize).checked_add(offset).ok_or(
VolatileMemoryError::Overflow {
base: self.as_mut_ptr() as usize,
offset,
},
)?;
// SAFETY:
// Safe because we have verified that the new memory is a subset of the original slice.
Ok(unsafe { VolatileSlice::from_raw_parts(new_addr as *mut u8, count) })
}
/// Sets each byte of this slice with the given byte, similar to `memset`.
///
/// The bytes of this slice are accessed in an arbitray order.
///
/// # Examples
///
/// ```
/// # use base::VolatileSlice;
/// # fn test_write_45() -> Result<(), ()> {
/// let mut mem = [0u8; 32];
/// let vslice = VolatileSlice::new(&mut mem[..]);
/// vslice.write_bytes(45);
/// for &v in &mem[..] {
/// assert_eq!(v, 45);
/// }
/// # Ok(())
/// # }
pub fn write_bytes(&self, value: u8) {
// SAFETY:
// Safe because the memory is valid and needs only byte alignment.
unsafe {
write_bytes(self.as_mut_ptr(), value, self.size());
}
}
/// Copies `self.size()` or `buf.len()` times the size of `T` bytes, whichever is smaller, to
/// `buf`.
///
/// The copy happens from smallest to largest address in `T` sized chunks using volatile reads.
///
/// # Examples
///
/// ```
/// # use std::fs::File;
/// # use std::path::Path;
/// # use base::VolatileSlice;
/// # fn test_write_null() -> Result<(), ()> {
/// let mut mem = [0u8; 32];
/// let vslice = VolatileSlice::new(&mut mem[..]);
/// let mut buf = [5u8; 16];
/// vslice.copy_to(&mut buf[..]);
/// for v in &buf[..] {
/// assert_eq!(buf[0], 0);
/// }
/// # Ok(())
/// # }
/// ```
pub fn copy_to<T>(&self, buf: &mut [T])
where
T: FromBytes + AsBytes + Copy,
{
let mut addr = self.as_mut_ptr() as *const u8;
for v in buf.iter_mut().take(self.size() / size_of::<T>()) {
// SAFETY: Safe because buf is valid, aligned to type `T` and is initialized.
unsafe {
*v = read_volatile(addr as *const T);
addr = addr.add(size_of::<T>());
}
}
}
/// Copies `self.size()` or `slice.size()` bytes, whichever is smaller, to `slice`.
///
/// The copies happen in an undefined order.
/// # Examples
///
/// ```
/// # use base::VolatileMemory;
/// # use base::VolatileSlice;
/// # fn test_write_null() -> Result<(), ()> {
/// let mut mem = [0u8; 32];
/// let vslice = VolatileSlice::new(&mut mem[..]);
/// vslice.copy_to_volatile_slice(vslice.get_slice(16, 16).map_err(|_| ())?);
/// # Ok(())
/// # }
/// ```
pub fn copy_to_volatile_slice(&self, slice: VolatileSlice) {
// SAFETY: Safe because slice is valid and is byte aligned.
unsafe {
copy(
self.as_mut_ptr() as *const u8,
slice.as_mut_ptr(),
min(self.size(), slice.size()),
);
}
}
/// Copies `self.size()` or `buf.len()` times the size of `T` bytes, whichever is smaller, to
/// this slice's memory.
///
/// The copy happens from smallest to largest address in `T` sized chunks using volatile writes.
///
/// # Examples
///
/// ```
/// # use std::fs::File;
/// # use std::path::Path;
/// # use base::VolatileMemory;
/// # use base::VolatileSlice;
/// # fn test_write_null() -> Result<(), ()> {
/// let mut mem = [0u8; 32];
/// let vslice = VolatileSlice::new(&mut mem[..]);
/// let buf = [5u8; 64];
/// vslice.copy_from(&buf[..]);
/// let mut copy_buf = [0u32; 4];
/// vslice.copy_to(&mut copy_buf);
/// for i in 0..4 {
/// assert_eq!(copy_buf[i], 0x05050505);
/// }
/// # Ok(())
/// # }
/// ```
pub fn copy_from<T>(&self, buf: &[T])
where
T: FromBytes + AsBytes,
{
let mut addr = self.as_mut_ptr();
for v in buf.iter().take(self.size() / size_of::<T>()) {
// SAFETY: Safe because buf is valid, aligned to type `T` and is mutable.
unsafe {
write_volatile(
addr as *mut T,
Ref::<_, T>::new(v.as_bytes()).unwrap().read(),
);
addr = addr.add(size_of::<T>());
}
}
}
/// Returns whether all bytes in this slice are zero or not.
///
/// This is optimized for [VolatileSlice] aligned with 16 bytes.
///
/// TODO(b/274840085): Use SIMD for better performance.
pub fn is_all_zero(&self) -> bool {
const MASK_4BIT: usize = 0x0f;
let head_addr = self.as_ptr() as usize;
// Round up by 16
let aligned_head_addr = (head_addr + MASK_4BIT) & !MASK_4BIT;
let tail_addr = head_addr + self.size();
// Round down by 16
let aligned_tail_addr = tail_addr & !MASK_4BIT;
// Check 16 bytes at once. The addresses should be 16 bytes aligned for better performance.
if (aligned_head_addr..aligned_tail_addr).step_by(16).any(
|aligned_addr|
// SAFETY: Each aligned_addr is within VolatileSlice
unsafe { *(aligned_addr as *const u128) } != 0,
) {
return false;
}
if head_addr == aligned_head_addr && tail_addr == aligned_tail_addr {
// If head_addr and tail_addr are aligned, we can skip the unaligned part which contains
// at least 2 conditional branches.
true
} else {
// Check unaligned part.
// SAFETY: The range [head_addr, aligned_head_addr) and [aligned_tail_addr, tail_addr)
// are within VolatileSlice.
unsafe {
is_all_zero_naive(head_addr, aligned_head_addr)
&& is_all_zero_naive(aligned_tail_addr, tail_addr)
}
}
}
}
/// Check whether every byte is zero.
///
/// This checks byte by byte.
///
/// # Safety
///
/// * `head_addr` <= `tail_addr`
/// * Bytes between `head_addr` and `tail_addr` is valid to access.
unsafe fn is_all_zero_naive(head_addr: usize, tail_addr: usize) -> bool {
(head_addr..tail_addr).all(|addr| *(addr as *const u8) == 0)
}
impl<'a> VolatileMemory for VolatileSlice<'a> {
fn get_slice(&self, offset: usize, count: usize) -> Result<VolatileSlice> {
self.sub_slice(offset, count)
}
}
impl PartialEq<VolatileSlice<'_>> for VolatileSlice<'_> {
fn eq(&self, other: &VolatileSlice) -> bool {
let size = self.size();
if size != other.size() {
return false;
}
// SAFETY: We pass pointers into valid VolatileSlice regions, and size is checked above.
let cmp = unsafe { libc::memcmp(self.as_ptr() as _, other.as_ptr() as _, size) };
cmp == 0
}
}
/// The `PartialEq` implementation for `VolatileSlice` is reflexive, symmetric, and transitive.
impl Eq for VolatileSlice<'_> {}
impl std::io::Write for VolatileSlice<'_> {
fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
let len = buf.len().min(self.size());
self.copy_from(&buf[..len]);
self.advance(len);
Ok(len)
}
fn flush(&mut self) -> std::io::Result<()> {
Ok(())
}
}
#[cfg(test)]
mod tests {
use std::io::Write;
use std::sync::Arc;
use std::sync::Barrier;
use std::thread::spawn;
use super::*;
#[derive(Clone)]
struct VecMem {
mem: Arc<Vec<u8>>,
}
impl VecMem {
fn new(size: usize) -> VecMem {
VecMem {
mem: Arc::new(vec![0u8; size]),
}
}
}
impl VolatileMemory for VecMem {
fn get_slice(&self, offset: usize, count: usize) -> Result<VolatileSlice> {
let mem_end = offset
.checked_add(count)
.ok_or(VolatileMemoryError::Overflow {
base: offset,
offset: count,
})?;
if mem_end > self.mem.len() {
return Err(Error::OutOfBounds { addr: mem_end });
}
let new_addr = (self.mem.as_ptr() as usize).checked_add(offset).ok_or(
VolatileMemoryError::Overflow {
base: self.mem.as_ptr() as usize,
offset,
},
)?;
Ok(
// SAFETY: trivially safe
unsafe { VolatileSlice::from_raw_parts(new_addr as *mut u8, count) },
)
}
}
#[test]
fn observe_mutate() {
let a = VecMem::new(1);
let a_clone = a.clone();
a.get_slice(0, 1).unwrap().write_bytes(99);
let start_barrier = Arc::new(Barrier::new(2));
let thread_start_barrier = start_barrier.clone();
let end_barrier = Arc::new(Barrier::new(2));
let thread_end_barrier = end_barrier.clone();
spawn(move || {
thread_start_barrier.wait();
a_clone.get_slice(0, 1).unwrap().write_bytes(0);
thread_end_barrier.wait();
});
let mut byte = [0u8; 1];
a.get_slice(0, 1).unwrap().copy_to(&mut byte);
assert_eq!(byte[0], 99);
start_barrier.wait();
end_barrier.wait();
a.get_slice(0, 1).unwrap().copy_to(&mut byte);
assert_eq!(byte[0], 0);
}
#[test]
fn slice_size() {
let a = VecMem::new(100);
let s = a.get_slice(0, 27).unwrap();
assert_eq!(s.size(), 27);
let s = a.get_slice(34, 27).unwrap();
assert_eq!(s.size(), 27);
let s = s.get_slice(20, 5).unwrap();
assert_eq!(s.size(), 5);
}
#[test]
fn slice_overflow_error() {
let a = VecMem::new(1);
let res = a.get_slice(usize::MAX, 1).unwrap_err();
assert_eq!(
res,
Error::Overflow {
base: usize::MAX,
offset: 1,
}
);
}
#[test]
fn slice_oob_error() {
let a = VecMem::new(100);
a.get_slice(50, 50).unwrap();
let res = a.get_slice(55, 50).unwrap_err();
assert_eq!(res, Error::OutOfBounds { addr: 105 });
}
#[test]
fn is_all_zero_16bytes_aligned() {
let a = VecMem::new(1024);
let slice = a.get_slice(0, 1024).unwrap();
assert!(slice.is_all_zero());
a.get_slice(129, 1).unwrap().write_bytes(1);
assert!(!slice.is_all_zero());
}
#[test]
fn is_all_zero_head_not_aligned() {
let a = VecMem::new(1024);
let slice = a.get_slice(1, 1023).unwrap();
assert!(slice.is_all_zero());
a.get_slice(0, 1).unwrap().write_bytes(1);
assert!(slice.is_all_zero());
a.get_slice(1, 1).unwrap().write_bytes(1);
assert!(!slice.is_all_zero());
a.get_slice(1, 1).unwrap().write_bytes(0);
a.get_slice(129, 1).unwrap().write_bytes(1);
assert!(!slice.is_all_zero());
}
#[test]
fn is_all_zero_tail_not_aligned() {
let a = VecMem::new(1024);
let slice = a.get_slice(0, 1023).unwrap();
assert!(slice.is_all_zero());
a.get_slice(1023, 1).unwrap().write_bytes(1);
assert!(slice.is_all_zero());
a.get_slice(1022, 1).unwrap().write_bytes(1);
assert!(!slice.is_all_zero());
a.get_slice(1022, 1).unwrap().write_bytes(0);
a.get_slice(0, 1).unwrap().write_bytes(1);
assert!(!slice.is_all_zero());
}
#[test]
fn is_all_zero_no_aligned_16bytes() {
let a = VecMem::new(1024);
let slice = a.get_slice(1, 16).unwrap();
assert!(slice.is_all_zero());
a.get_slice(0, 1).unwrap().write_bytes(1);
assert!(slice.is_all_zero());
for i in 1..17 {
a.get_slice(i, 1).unwrap().write_bytes(1);
assert!(!slice.is_all_zero());
a.get_slice(i, 1).unwrap().write_bytes(0);
}
a.get_slice(17, 1).unwrap().write_bytes(1);
assert!(slice.is_all_zero());
}
#[test]
fn write_partial() {
let mem = VecMem::new(1024);
let mut slice = mem.get_slice(1, 16).unwrap();
slice.write_bytes(0xCC);
// Writing 4 bytes should succeed and advance the slice by 4 bytes.
let write_len = slice.write(&[1, 2, 3, 4]).unwrap();
assert_eq!(write_len, 4);
assert_eq!(slice.size(), 16 - 4);
// The written data should appear in the memory at offset 1.
assert_eq!(mem.mem[1..=4], [1, 2, 3, 4]);
// The next byte of the slice should be unmodified.
assert_eq!(mem.mem[5], 0xCC);
}
#[test]
fn write_multiple() {
let mem = VecMem::new(1024);
let mut slice = mem.get_slice(1, 16).unwrap();
slice.write_bytes(0xCC);
// Writing 4 bytes should succeed and advance the slice by 4 bytes.
let write_len = slice.write(&[1, 2, 3, 4]).unwrap();
assert_eq!(write_len, 4);
assert_eq!(slice.size(), 16 - 4);
// The next byte of the slice should be unmodified.
assert_eq!(mem.mem[5], 0xCC);
// Writing another 4 bytes should succeed and advance the slice again.
let write2_len = slice.write(&[5, 6, 7, 8]).unwrap();
assert_eq!(write2_len, 4);
assert_eq!(slice.size(), 16 - 4 - 4);
// The written data should appear in the memory at offset 1.
assert_eq!(mem.mem[1..=8], [1, 2, 3, 4, 5, 6, 7, 8]);
// The next byte of the slice should be unmodified.
assert_eq!(mem.mem[9], 0xCC);
}
#[test]
fn write_exact_slice_size() {
let mem = VecMem::new(1024);
let mut slice = mem.get_slice(1, 4).unwrap();
slice.write_bytes(0xCC);
// Writing 4 bytes should succeed and consume the entire slice.
let write_len = slice.write(&[1, 2, 3, 4]).unwrap();
assert_eq!(write_len, 4);
assert_eq!(slice.size(), 0);
// The written data should appear in the memory at offset 1.
assert_eq!(mem.mem[1..=4], [1, 2, 3, 4]);
// The byte after the slice should be unmodified.
assert_eq!(mem.mem[5], 0);
}
#[test]
fn write_more_than_slice_size() {
let mem = VecMem::new(1024);
let mut slice = mem.get_slice(1, 4).unwrap();
slice.write_bytes(0xCC);
// Attempting to write 5 bytes should succeed but only write 4 bytes.
let write_len = slice.write(&[1, 2, 3, 4, 5]).unwrap();
assert_eq!(write_len, 4);
assert_eq!(slice.size(), 0);
// The written data should appear in the memory at offset 1.
assert_eq!(mem.mem[1..=4], [1, 2, 3, 4]);
// The byte after the slice should be unmodified.
assert_eq!(mem.mem[5], 0);
}
#[test]
fn write_empty_slice() {
let mem = VecMem::new(1024);
let mut slice = mem.get_slice(1, 0).unwrap();
// Writing to an empty slice should always return 0.
assert_eq!(slice.write(&[1, 2, 3, 4]).unwrap(), 0);
assert_eq!(slice.write(&[5, 6, 7, 8]).unwrap(), 0);
assert_eq!(slice.write(&[]).unwrap(), 0);
}
}