1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
// Copyright 2017 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! Types for volatile access to memory.
//!
//! Two of the core rules for safe rust is no data races and no aliased mutable references.
//! `VolatileSlice`, along with types that produce it which implement
//! `VolatileMemory`, allow us to sidestep that rule by wrapping pointers that absolutely have to be
//! accessed volatile. Some systems really do need to operate on shared memory and can't have the
//! compiler reordering or eliding access because it has no visibility into what other systems are
//! doing with that hunk of memory.
//!
//! For the purposes of maintaining safety, volatile memory has some rules of its own:
//! 1. No references or slices to volatile memory (`&` or `&mut`).
//! 2. Access should always been done with a volatile read or write.
//!
//! The first rule is because having references of any kind to memory considered volatile would
//! violate pointer aliasing. The second is because unvolatile accesses are inherently undefined if
//! done concurrently without synchronization. With volatile access we know that the compiler has
//! not reordered or elided the access.

use std::cmp::min;
use std::mem::size_of;
use std::ptr::copy;
use std::ptr::read_volatile;
use std::ptr::write_bytes;
use std::ptr::write_volatile;
use std::result;
use std::slice;

use remain::sorted;
use thiserror::Error;
use zerocopy::AsBytes;
use zerocopy::FromBytes;
use zerocopy::Ref;

use crate::IoBufMut;

#[sorted]
#[derive(Error, Eq, PartialEq, Debug)]
pub enum VolatileMemoryError {
    /// `addr` is out of bounds of the volatile memory slice.
    #[error("address 0x{addr:x} is out of bounds")]
    OutOfBounds { addr: usize },
    /// Taking a slice at `base` with `offset` would overflow `usize`.
    #[error("address 0x{base:x} offset by 0x{offset:x} would overflow")]
    Overflow { base: usize, offset: usize },
}

pub type VolatileMemoryResult<T> = result::Result<T, VolatileMemoryError>;

use crate::VolatileMemoryError as Error;
type Result<T> = VolatileMemoryResult<T>;

/// Trait for types that support raw volatile access to their data.
pub trait VolatileMemory {
    /// Gets a slice of memory at `offset` that is `count` bytes in length and supports volatile
    /// access.
    fn get_slice(&self, offset: usize, count: usize) -> Result<VolatileSlice>;
}

/// A slice of raw memory that supports volatile access. Like `std::io::IoSliceMut`, this type is
/// guaranteed to be ABI-compatible with `libc::iovec` but unlike `IoSliceMut`, it doesn't
/// automatically deref to `&mut [u8]`.
#[derive(Copy, Clone, Debug)]
#[repr(transparent)]
pub struct VolatileSlice<'a>(IoBufMut<'a>);

impl<'a> VolatileSlice<'a> {
    /// Creates a slice of raw memory that must support volatile access.
    pub fn new(buf: &mut [u8]) -> VolatileSlice {
        VolatileSlice(IoBufMut::new(buf))
    }

    /// Creates a `VolatileSlice` from a pointer and a length.
    ///
    /// # Safety
    ///
    /// In order to use this method safely, `addr` must be valid for reads and writes of `len` bytes
    /// and should live for the entire duration of lifetime `'a`.
    pub unsafe fn from_raw_parts(addr: *mut u8, len: usize) -> VolatileSlice<'a> {
        VolatileSlice(IoBufMut::from_raw_parts(addr, len))
    }

    /// Gets a const pointer to this slice's memory.
    pub fn as_ptr(&self) -> *const u8 {
        self.0.as_ptr()
    }

    /// Gets a mutable pointer to this slice's memory.
    pub fn as_mut_ptr(&self) -> *mut u8 {
        self.0.as_mut_ptr()
    }

    /// Gets the size of this slice.
    pub fn size(&self) -> usize {
        self.0.len()
    }

    /// Advance the starting position of this slice.
    ///
    /// Panics if `count > self.size()`.
    pub fn advance(&mut self, count: usize) {
        self.0.advance(count)
    }

    /// Shorten the length of the slice.
    ///
    /// Has no effect if `len > self.size()`.
    pub fn truncate(&mut self, len: usize) {
        self.0.truncate(len)
    }

    /// Returns this `VolatileSlice` as an `IoBufMut`.
    pub fn as_iobuf(&self) -> &IoBufMut {
        &self.0
    }

    /// Converts a slice of `VolatileSlice`s into a slice of `IoBufMut`s
    #[allow(clippy::wrong_self_convention)]
    pub fn as_iobufs<'mem, 'slice>(
        iovs: &'slice [VolatileSlice<'mem>],
    ) -> &'slice [IoBufMut<'mem>] {
        // SAFETY:
        // Safe because `VolatileSlice` is ABI-compatible with `IoBufMut`.
        unsafe { slice::from_raw_parts(iovs.as_ptr() as *const IoBufMut, iovs.len()) }
    }

    /// Converts a mutable slice of `VolatileSlice`s into a mutable slice of `IoBufMut`s
    #[inline]
    pub fn as_iobufs_mut<'mem, 'slice>(
        iovs: &'slice mut [VolatileSlice<'mem>],
    ) -> &'slice mut [IoBufMut<'mem>] {
        // SAFETY:
        // Safe because `VolatileSlice` is ABI-compatible with `IoBufMut`.
        unsafe { slice::from_raw_parts_mut(iovs.as_mut_ptr() as *mut IoBufMut, iovs.len()) }
    }

    /// Creates a copy of this slice with the address increased by `count` bytes, and the size
    /// reduced by `count` bytes.
    pub fn offset(self, count: usize) -> Result<VolatileSlice<'a>> {
        let new_addr = (self.as_mut_ptr() as usize).checked_add(count).ok_or(
            VolatileMemoryError::Overflow {
                base: self.as_mut_ptr() as usize,
                offset: count,
            },
        )?;
        let new_size = self
            .size()
            .checked_sub(count)
            .ok_or(VolatileMemoryError::OutOfBounds { addr: new_addr })?;

        // SAFETY:
        // Safe because the memory has the same lifetime and points to a subset of the memory of the
        // original slice.
        unsafe { Ok(VolatileSlice::from_raw_parts(new_addr as *mut u8, new_size)) }
    }

    /// Similar to `get_slice` but the returned slice outlives this slice.
    ///
    /// The returned slice's lifetime is still limited by the underlying data's lifetime.
    pub fn sub_slice(self, offset: usize, count: usize) -> Result<VolatileSlice<'a>> {
        let mem_end = offset
            .checked_add(count)
            .ok_or(VolatileMemoryError::Overflow {
                base: offset,
                offset: count,
            })?;
        if mem_end > self.size() {
            return Err(Error::OutOfBounds { addr: mem_end });
        }
        let new_addr = (self.as_mut_ptr() as usize).checked_add(offset).ok_or(
            VolatileMemoryError::Overflow {
                base: self.as_mut_ptr() as usize,
                offset,
            },
        )?;

        // SAFETY:
        // Safe because we have verified that the new memory is a subset of the original slice.
        Ok(unsafe { VolatileSlice::from_raw_parts(new_addr as *mut u8, count) })
    }

    /// Sets each byte of this slice with the given byte, similar to `memset`.
    ///
    /// The bytes of this slice are accessed in an arbitray order.
    ///
    /// # Examples
    ///
    /// ```
    /// # use base::VolatileSlice;
    /// # fn test_write_45() -> Result<(), ()> {
    /// let mut mem = [0u8; 32];
    /// let vslice = VolatileSlice::new(&mut mem[..]);
    /// vslice.write_bytes(45);
    /// for &v in &mem[..] {
    ///     assert_eq!(v, 45);
    /// }
    /// # Ok(())
    /// # }
    pub fn write_bytes(&self, value: u8) {
        // SAFETY:
        // Safe because the memory is valid and needs only byte alignment.
        unsafe {
            write_bytes(self.as_mut_ptr(), value, self.size());
        }
    }

    /// Copies `self.size()` or `buf.len()` times the size of `T` bytes, whichever is smaller, to
    /// `buf`.
    ///
    /// The copy happens from smallest to largest address in `T` sized chunks using volatile reads.
    ///
    /// # Examples
    ///
    /// ```
    /// # use std::fs::File;
    /// # use std::path::Path;
    /// # use base::VolatileSlice;
    /// # fn test_write_null() -> Result<(), ()> {
    /// let mut mem = [0u8; 32];
    /// let vslice = VolatileSlice::new(&mut mem[..]);
    /// let mut buf = [5u8; 16];
    /// vslice.copy_to(&mut buf[..]);
    /// for v in &buf[..] {
    ///     assert_eq!(buf[0], 0);
    /// }
    /// # Ok(())
    /// # }
    /// ```
    pub fn copy_to<T>(&self, buf: &mut [T])
    where
        T: FromBytes + AsBytes + Copy,
    {
        let mut addr = self.as_mut_ptr() as *const u8;
        for v in buf.iter_mut().take(self.size() / size_of::<T>()) {
            // SAFETY: Safe because buf is valid, aligned to type `T` and is initialized.
            unsafe {
                *v = read_volatile(addr as *const T);
                addr = addr.add(size_of::<T>());
            }
        }
    }

    /// Copies `self.size()` or `slice.size()` bytes, whichever is smaller, to `slice`.
    ///
    /// The copies happen in an undefined order.
    /// # Examples
    ///
    /// ```
    /// # use base::VolatileMemory;
    /// # use base::VolatileSlice;
    /// # fn test_write_null() -> Result<(), ()> {
    /// let mut mem = [0u8; 32];
    /// let vslice = VolatileSlice::new(&mut mem[..]);
    /// vslice.copy_to_volatile_slice(vslice.get_slice(16, 16).map_err(|_| ())?);
    /// # Ok(())
    /// # }
    /// ```
    pub fn copy_to_volatile_slice(&self, slice: VolatileSlice) {
        // SAFETY: Safe because slice is valid and is byte aligned.
        unsafe {
            copy(
                self.as_mut_ptr() as *const u8,
                slice.as_mut_ptr(),
                min(self.size(), slice.size()),
            );
        }
    }

    /// Copies `self.size()` or `buf.len()` times the size of `T` bytes, whichever is smaller, to
    /// this slice's memory.
    ///
    /// The copy happens from smallest to largest address in `T` sized chunks using volatile writes.
    ///
    /// # Examples
    ///
    /// ```
    /// # use std::fs::File;
    /// # use std::path::Path;
    /// # use base::VolatileMemory;
    /// # use base::VolatileSlice;
    /// # fn test_write_null() -> Result<(), ()> {
    /// let mut mem = [0u8; 32];
    /// let vslice = VolatileSlice::new(&mut mem[..]);
    /// let buf = [5u8; 64];
    /// vslice.copy_from(&buf[..]);
    /// let mut copy_buf = [0u32; 4];
    /// vslice.copy_to(&mut copy_buf);
    /// for i in 0..4 {
    ///     assert_eq!(copy_buf[i], 0x05050505);
    /// }
    /// # Ok(())
    /// # }
    /// ```
    pub fn copy_from<T>(&self, buf: &[T])
    where
        T: FromBytes + AsBytes,
    {
        let mut addr = self.as_mut_ptr();
        for v in buf.iter().take(self.size() / size_of::<T>()) {
            // SAFETY: Safe because buf is valid, aligned to type `T` and is mutable.
            unsafe {
                write_volatile(
                    addr as *mut T,
                    Ref::<_, T>::new(v.as_bytes()).unwrap().read(),
                );
                addr = addr.add(size_of::<T>());
            }
        }
    }

    /// Returns whether all bytes in this slice are zero or not.
    ///
    /// This is optimized for [VolatileSlice] aligned with 16 bytes.
    ///
    /// TODO(b/274840085): Use SIMD for better performance.
    pub fn is_all_zero(&self) -> bool {
        const MASK_4BIT: usize = 0x0f;
        let head_addr = self.as_ptr() as usize;
        // Round up by 16
        let aligned_head_addr = (head_addr + MASK_4BIT) & !MASK_4BIT;
        let tail_addr = head_addr + self.size();
        // Round down by 16
        let aligned_tail_addr = tail_addr & !MASK_4BIT;

        // Check 16 bytes at once. The addresses should be 16 bytes aligned for better performance.
        if (aligned_head_addr..aligned_tail_addr).step_by(16).any(
            |aligned_addr|
                // SAFETY: Each aligned_addr is within VolatileSlice
                unsafe { *(aligned_addr as *const u128) } != 0,
        ) {
            return false;
        }

        if head_addr == aligned_head_addr && tail_addr == aligned_tail_addr {
            // If head_addr and tail_addr are aligned, we can skip the unaligned part which contains
            // at least 2 conditional branches.
            true
        } else {
            // Check unaligned part.
            // SAFETY: The range [head_addr, aligned_head_addr) and [aligned_tail_addr, tail_addr)
            // are within VolatileSlice.
            unsafe {
                is_all_zero_naive(head_addr, aligned_head_addr)
                    && is_all_zero_naive(aligned_tail_addr, tail_addr)
            }
        }
    }
}

/// Check whether every byte is zero.
///
/// This checks byte by byte.
///
/// # Safety
///
/// * `head_addr` <= `tail_addr`
/// * Bytes between `head_addr` and `tail_addr` is valid to access.
unsafe fn is_all_zero_naive(head_addr: usize, tail_addr: usize) -> bool {
    (head_addr..tail_addr).all(|addr| *(addr as *const u8) == 0)
}

impl<'a> VolatileMemory for VolatileSlice<'a> {
    fn get_slice(&self, offset: usize, count: usize) -> Result<VolatileSlice> {
        self.sub_slice(offset, count)
    }
}

impl PartialEq<VolatileSlice<'_>> for VolatileSlice<'_> {
    fn eq(&self, other: &VolatileSlice) -> bool {
        let size = self.size();
        if size != other.size() {
            return false;
        }

        // SAFETY: We pass pointers into valid VolatileSlice regions, and size is checked above.
        let cmp = unsafe { libc::memcmp(self.as_ptr() as _, other.as_ptr() as _, size) };

        cmp == 0
    }
}

/// The `PartialEq` implementation for `VolatileSlice` is reflexive, symmetric, and transitive.
impl Eq for VolatileSlice<'_> {}

impl std::io::Write for VolatileSlice<'_> {
    fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
        let len = buf.len().min(self.size());
        self.copy_from(&buf[..len]);
        self.advance(len);
        Ok(len)
    }

    fn flush(&mut self) -> std::io::Result<()> {
        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use std::io::Write;
    use std::sync::Arc;
    use std::sync::Barrier;
    use std::thread::spawn;

    use super::*;

    #[derive(Clone)]
    struct VecMem {
        mem: Arc<Vec<u8>>,
    }

    impl VecMem {
        fn new(size: usize) -> VecMem {
            VecMem {
                mem: Arc::new(vec![0u8; size]),
            }
        }
    }

    impl VolatileMemory for VecMem {
        fn get_slice(&self, offset: usize, count: usize) -> Result<VolatileSlice> {
            let mem_end = offset
                .checked_add(count)
                .ok_or(VolatileMemoryError::Overflow {
                    base: offset,
                    offset: count,
                })?;
            if mem_end > self.mem.len() {
                return Err(Error::OutOfBounds { addr: mem_end });
            }

            let new_addr = (self.mem.as_ptr() as usize).checked_add(offset).ok_or(
                VolatileMemoryError::Overflow {
                    base: self.mem.as_ptr() as usize,
                    offset,
                },
            )?;

            Ok(
                // SAFETY: trivially safe
                unsafe { VolatileSlice::from_raw_parts(new_addr as *mut u8, count) },
            )
        }
    }

    #[test]
    fn observe_mutate() {
        let a = VecMem::new(1);
        let a_clone = a.clone();
        a.get_slice(0, 1).unwrap().write_bytes(99);

        let start_barrier = Arc::new(Barrier::new(2));
        let thread_start_barrier = start_barrier.clone();
        let end_barrier = Arc::new(Barrier::new(2));
        let thread_end_barrier = end_barrier.clone();
        spawn(move || {
            thread_start_barrier.wait();
            a_clone.get_slice(0, 1).unwrap().write_bytes(0);
            thread_end_barrier.wait();
        });

        let mut byte = [0u8; 1];
        a.get_slice(0, 1).unwrap().copy_to(&mut byte);
        assert_eq!(byte[0], 99);

        start_barrier.wait();
        end_barrier.wait();

        a.get_slice(0, 1).unwrap().copy_to(&mut byte);
        assert_eq!(byte[0], 0);
    }

    #[test]
    fn slice_size() {
        let a = VecMem::new(100);
        let s = a.get_slice(0, 27).unwrap();
        assert_eq!(s.size(), 27);

        let s = a.get_slice(34, 27).unwrap();
        assert_eq!(s.size(), 27);

        let s = s.get_slice(20, 5).unwrap();
        assert_eq!(s.size(), 5);
    }

    #[test]
    fn slice_overflow_error() {
        let a = VecMem::new(1);
        let res = a.get_slice(usize::MAX, 1).unwrap_err();
        assert_eq!(
            res,
            Error::Overflow {
                base: usize::MAX,
                offset: 1,
            }
        );
    }

    #[test]
    fn slice_oob_error() {
        let a = VecMem::new(100);
        a.get_slice(50, 50).unwrap();
        let res = a.get_slice(55, 50).unwrap_err();
        assert_eq!(res, Error::OutOfBounds { addr: 105 });
    }

    #[test]
    fn is_all_zero_16bytes_aligned() {
        let a = VecMem::new(1024);
        let slice = a.get_slice(0, 1024).unwrap();

        assert!(slice.is_all_zero());
        a.get_slice(129, 1).unwrap().write_bytes(1);
        assert!(!slice.is_all_zero());
    }

    #[test]
    fn is_all_zero_head_not_aligned() {
        let a = VecMem::new(1024);
        let slice = a.get_slice(1, 1023).unwrap();

        assert!(slice.is_all_zero());
        a.get_slice(0, 1).unwrap().write_bytes(1);
        assert!(slice.is_all_zero());
        a.get_slice(1, 1).unwrap().write_bytes(1);
        assert!(!slice.is_all_zero());
        a.get_slice(1, 1).unwrap().write_bytes(0);
        a.get_slice(129, 1).unwrap().write_bytes(1);
        assert!(!slice.is_all_zero());
    }

    #[test]
    fn is_all_zero_tail_not_aligned() {
        let a = VecMem::new(1024);
        let slice = a.get_slice(0, 1023).unwrap();

        assert!(slice.is_all_zero());
        a.get_slice(1023, 1).unwrap().write_bytes(1);
        assert!(slice.is_all_zero());
        a.get_slice(1022, 1).unwrap().write_bytes(1);
        assert!(!slice.is_all_zero());
        a.get_slice(1022, 1).unwrap().write_bytes(0);
        a.get_slice(0, 1).unwrap().write_bytes(1);
        assert!(!slice.is_all_zero());
    }

    #[test]
    fn is_all_zero_no_aligned_16bytes() {
        let a = VecMem::new(1024);
        let slice = a.get_slice(1, 16).unwrap();

        assert!(slice.is_all_zero());
        a.get_slice(0, 1).unwrap().write_bytes(1);
        assert!(slice.is_all_zero());
        for i in 1..17 {
            a.get_slice(i, 1).unwrap().write_bytes(1);
            assert!(!slice.is_all_zero());
            a.get_slice(i, 1).unwrap().write_bytes(0);
        }
        a.get_slice(17, 1).unwrap().write_bytes(1);
        assert!(slice.is_all_zero());
    }

    #[test]
    fn write_partial() {
        let mem = VecMem::new(1024);
        let mut slice = mem.get_slice(1, 16).unwrap();
        slice.write_bytes(0xCC);

        // Writing 4 bytes should succeed and advance the slice by 4 bytes.
        let write_len = slice.write(&[1, 2, 3, 4]).unwrap();
        assert_eq!(write_len, 4);
        assert_eq!(slice.size(), 16 - 4);

        // The written data should appear in the memory at offset 1.
        assert_eq!(mem.mem[1..=4], [1, 2, 3, 4]);

        // The next byte of the slice should be unmodified.
        assert_eq!(mem.mem[5], 0xCC);
    }

    #[test]
    fn write_multiple() {
        let mem = VecMem::new(1024);
        let mut slice = mem.get_slice(1, 16).unwrap();
        slice.write_bytes(0xCC);

        // Writing 4 bytes should succeed and advance the slice by 4 bytes.
        let write_len = slice.write(&[1, 2, 3, 4]).unwrap();
        assert_eq!(write_len, 4);
        assert_eq!(slice.size(), 16 - 4);

        // The next byte of the slice should be unmodified.
        assert_eq!(mem.mem[5], 0xCC);

        // Writing another 4 bytes should succeed and advance the slice again.
        let write2_len = slice.write(&[5, 6, 7, 8]).unwrap();
        assert_eq!(write2_len, 4);
        assert_eq!(slice.size(), 16 - 4 - 4);

        // The written data should appear in the memory at offset 1.
        assert_eq!(mem.mem[1..=8], [1, 2, 3, 4, 5, 6, 7, 8]);

        // The next byte of the slice should be unmodified.
        assert_eq!(mem.mem[9], 0xCC);
    }

    #[test]
    fn write_exact_slice_size() {
        let mem = VecMem::new(1024);
        let mut slice = mem.get_slice(1, 4).unwrap();
        slice.write_bytes(0xCC);

        // Writing 4 bytes should succeed and consume the entire slice.
        let write_len = slice.write(&[1, 2, 3, 4]).unwrap();
        assert_eq!(write_len, 4);
        assert_eq!(slice.size(), 0);

        // The written data should appear in the memory at offset 1.
        assert_eq!(mem.mem[1..=4], [1, 2, 3, 4]);

        // The byte after the slice should be unmodified.
        assert_eq!(mem.mem[5], 0);
    }

    #[test]
    fn write_more_than_slice_size() {
        let mem = VecMem::new(1024);
        let mut slice = mem.get_slice(1, 4).unwrap();
        slice.write_bytes(0xCC);

        // Attempting to write 5 bytes should succeed but only write 4 bytes.
        let write_len = slice.write(&[1, 2, 3, 4, 5]).unwrap();
        assert_eq!(write_len, 4);
        assert_eq!(slice.size(), 0);

        // The written data should appear in the memory at offset 1.
        assert_eq!(mem.mem[1..=4], [1, 2, 3, 4]);

        // The byte after the slice should be unmodified.
        assert_eq!(mem.mem[5], 0);
    }

    #[test]
    fn write_empty_slice() {
        let mem = VecMem::new(1024);
        let mut slice = mem.get_slice(1, 0).unwrap();

        // Writing to an empty slice should always return 0.
        assert_eq!(slice.write(&[1, 2, 3, 4]).unwrap(), 0);
        assert_eq!(slice.write(&[5, 6, 7, 8]).unwrap(), 0);
        assert_eq!(slice.write(&[]).unwrap(), 0);
    }
}