1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
// Copyright 2022 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use std::collections::BTreeMap;
use std::collections::VecDeque;
use std::os::raw::c_int;
use std::ptr;
use std::sync::Arc;
use std::sync::Weak;
use anyhow::anyhow;
use anyhow::Context;
use base::error;
use base::AsRawDescriptor;
use base::MappedRegion;
use base::MemoryMappingArena;
use ffmpeg::avcodec::AvBufferSource;
use ffmpeg::avcodec::AvCodec;
use ffmpeg::avcodec::AvCodecContext;
use ffmpeg::avcodec::AvCodecIterator;
use ffmpeg::avcodec::AvFrame;
use ffmpeg::avcodec::AvPacket;
use ffmpeg::avcodec::Dimensions;
use ffmpeg::avcodec::TryReceiveResult;
use ffmpeg::max_buffer_alignment;
use ffmpeg::AVPictureType_AV_PICTURE_TYPE_I;
use ffmpeg::AVRational;
use ffmpeg::AV_PKT_FLAG_KEY;
use crate::virtio::video::encoder::backend::Encoder;
use crate::virtio::video::encoder::backend::EncoderSession;
use crate::virtio::video::encoder::EncoderCapabilities;
use crate::virtio::video::encoder::EncoderEvent;
use crate::virtio::video::encoder::InputBufferId;
use crate::virtio::video::encoder::OutputBufferId;
use crate::virtio::video::encoder::SessionConfig;
use crate::virtio::video::error::VideoError;
use crate::virtio::video::error::VideoResult;
use crate::virtio::video::ffmpeg::TryAsAvFrameExt;
use crate::virtio::video::format::Bitrate;
use crate::virtio::video::format::Format;
use crate::virtio::video::format::FormatDesc;
use crate::virtio::video::format::FormatRange;
use crate::virtio::video::format::FrameFormat;
use crate::virtio::video::format::Profile;
use crate::virtio::video::resource::BufferHandle;
use crate::virtio::video::resource::GuestResource;
use crate::virtio::video::resource::GuestResourceHandle;
use crate::virtio::video::utils::EventQueue;
use crate::virtio::video::utils::SyncEventQueue;
/// Structure wrapping a backing memory mapping for an input frame that can be used as a libavcodec
/// buffer source. It also sends a `ProcessedInputBuffer` event when dropped.
struct InputBuffer {
/// Memory mapping to the input frame.
mapping: MemoryMappingArena,
/// Bistream ID that will be sent as part of the `ProcessedInputBuffer` event.
buffer_id: InputBufferId,
/// Pointer to the event queue to send the `ProcessedInputBuffer` event to. The event will
/// not be sent if the pointer becomes invalid.
event_queue: Weak<SyncEventQueue<EncoderEvent>>,
}
impl Drop for InputBuffer {
fn drop(&mut self) {
match self.event_queue.upgrade() {
None => (),
// If the event queue is still valid, send the event signaling we can be reused.
Some(event_queue) => event_queue
.queue_event(EncoderEvent::ProcessedInputBuffer { id: self.buffer_id })
.unwrap_or_else(|e| {
error!("cannot send end of input buffer notification: {:#}", e)
}),
}
}
}
impl AvBufferSource for InputBuffer {
fn as_ptr(&self) -> *const u8 {
self.mapping.as_ptr()
}
fn len(&self) -> usize {
self.mapping.size()
}
fn is_empty(&self) -> bool {
self.len() == 0
}
}
enum CodecJob {
Frame(AvFrame),
Flush,
}
pub struct FfmpegEncoderSession {
/// Queue of events waiting to be read by the client.
event_queue: Arc<SyncEventQueue<EncoderEvent>>,
/// FIFO of jobs submitted by the client and waiting to be performed.
codec_jobs: VecDeque<CodecJob>,
/// Queue of (unfilled) output buffers to fill with upcoming encoder output.
output_queue: VecDeque<(OutputBufferId, MemoryMappingArena)>,
/// `true` if a flush is pending. While a pending flush exist, input buffers are temporarily
/// held on and not sent to the encoder. An actual flush call will be issued when we run out of
/// output buffers (to defend against FFmpeg bugs), and we'll try to receive outputs again
/// until we receive another code indicating the flush has completed, at which point this
/// flag will be reset.
is_flushing: bool,
/// The libav context for this session.
context: AvCodecContext,
next_input_buffer_id: InputBufferId,
next_output_buffer_id: OutputBufferId,
}
impl FfmpegEncoderSession {
/// Try to send one input frame to the codec for encode.
///
/// Returns `Ok(true)` if the frame was successfully queued, `Ok(false)` if the frame was not
/// queued due to the queue being full or an in-progress flushing, and `Err` in case of errors.
fn try_send_input_job(&mut self) -> VideoResult<bool> {
// When a flush is queued, drain buffers.
if self.is_flushing {
return Ok(false);
}
match self.codec_jobs.front() {
Some(CodecJob::Frame(b)) => {
let result = self
.context
.try_send_frame(b)
.context("while sending frame")
.map_err(VideoError::BackendFailure);
// This look awkward but we have to do it like this since VideoResult doesn't
// implement PartialEq.
if let Ok(false) = result {
} else {
self.codec_jobs.pop_front().unwrap();
}
result
}
Some(CodecJob::Flush) => {
self.codec_jobs.pop_front().unwrap();
// Queue a flush. The actual flush will be performed when receive returns EAGAIN.
self.is_flushing = true;
Ok(true)
}
None => Ok(false),
}
}
/// Try to retrieve one encoded packet from the codec, and if success, deliver it to the guest.
///
/// Returns `Ok(true)` if the packet was successfully retrieved and the guest was signaled,
/// `Ok(false)` if there's no full packet available right now, and `Err` in case of error.
fn try_receive_packet(&mut self) -> VideoResult<bool> {
let (buffer_id, out_buf) = match self.output_queue.front_mut() {
Some(p) => p,
None => return Ok(false),
};
let mut packet = AvPacket::empty();
match self
.context
.try_receive_packet(&mut packet)
.context("while receiving packet")
{
Ok(TryReceiveResult::TryAgain) => {
if !self.is_flushing {
return Ok(false);
}
// Flush the encoder, then move on to draining.
if let Err(err) = self.context.flush_encoder() {
self.is_flushing = false;
self.event_queue
.queue_event(EncoderEvent::FlushResponse { flush_done: false })
.context("while flushing")
.map_err(VideoError::BackendFailure)?;
return Err(err)
.context("while flushing")
.map_err(VideoError::BackendFailure);
}
self.try_receive_packet()
}
Ok(TryReceiveResult::FlushCompleted) => {
self.is_flushing = false;
self.event_queue
.queue_event(EncoderEvent::FlushResponse { flush_done: true })
.map_err(Into::into)
.map_err(VideoError::BackendFailure)?;
self.context.reset();
Ok(false)
}
Ok(TryReceiveResult::Received) => {
let packet_size = packet.as_ref().size as usize;
if packet_size > out_buf.size() {
return Err(VideoError::BackendFailure(anyhow!(
"encoded packet does not fit in output buffer"
)));
}
// SAFETY:
// Safe because packet.as_ref().data and out_buf.as_ptr() are valid references and
// we did bound check above.
unsafe {
ptr::copy_nonoverlapping(packet.as_ref().data, out_buf.as_ptr(), packet_size);
}
self.event_queue
.queue_event(EncoderEvent::ProcessedOutputBuffer {
id: *buffer_id,
bytesused: packet.as_ref().size as _,
keyframe: (packet.as_ref().flags as u32 & AV_PKT_FLAG_KEY) != 0,
timestamp: packet.as_ref().dts as _,
})
.map_err(Into::into)
.map_err(VideoError::BackendFailure)?;
self.output_queue.pop_front();
Ok(true)
}
Err(e) => Err(VideoError::BackendFailure(e)),
}
}
/// Try to progress through the encoding pipeline, either by sending input frames or by
/// retrieving output packets and delivering them to the guest.
fn try_encode(&mut self) -> VideoResult<()> {
// Go through the pipeline stages as long as it makes some kind of progress.
loop {
let mut progress = false;
// Use |= instead of || to avoid short-circuiting, which is harmless but makes the
// execution order weird.
progress |= self.try_send_input_job()?;
progress |= self.try_receive_packet()?;
if !progress {
break;
}
}
Ok(())
}
}
impl EncoderSession for FfmpegEncoderSession {
fn encode(
&mut self,
resource: GuestResource,
timestamp: u64,
force_keyframe: bool,
) -> VideoResult<InputBufferId> {
let buffer_id = self.next_input_buffer_id;
self.next_input_buffer_id = buffer_id.wrapping_add(1);
let mut frame: AvFrame = resource
.try_as_av_frame(|mapping| InputBuffer {
mapping,
buffer_id,
event_queue: Arc::downgrade(&self.event_queue),
})
.context("while creating input AvFrame")
.map_err(VideoError::BackendFailure)?;
if force_keyframe {
frame.set_pict_type(AVPictureType_AV_PICTURE_TYPE_I);
}
frame.set_pts(timestamp as i64);
self.codec_jobs.push_back(CodecJob::Frame(frame));
self.try_encode()?;
Ok(buffer_id)
}
fn use_output_buffer(
&mut self,
resource: GuestResourceHandle,
offset: u32,
size: u32,
) -> VideoResult<OutputBufferId> {
let buffer_id = self.next_output_buffer_id;
self.next_output_buffer_id = buffer_id.wrapping_add(1);
let mapping = resource
.get_mapping(offset as usize, size as usize)
.context("while mapping output buffer")
.map_err(VideoError::BackendFailure)?;
self.output_queue.push_back((buffer_id, mapping));
self.try_encode()?;
Ok(buffer_id)
}
fn flush(&mut self) -> VideoResult<()> {
if self.is_flushing {
return Err(VideoError::BackendFailure(anyhow!(
"flush is already in progress"
)));
}
self.codec_jobs.push_back(CodecJob::Flush);
self.try_encode()?;
Ok(())
}
fn request_encoding_params_change(
&mut self,
bitrate: Bitrate,
framerate: u32,
) -> VideoResult<()> {
match bitrate {
Bitrate::Cbr { target } => {
self.context.set_bit_rate(target as u64);
}
Bitrate::Vbr { target, peak } => {
self.context.set_bit_rate(target as u64);
self.context.set_max_bit_rate(peak as u64);
}
}
// TODO(b/241492607): support fractional frame rates.
self.context.set_time_base(AVRational {
num: 1,
den: framerate as c_int,
});
Ok(())
}
fn event_pipe(&self) -> &dyn AsRawDescriptor {
self.event_queue.as_ref()
}
fn read_event(&mut self) -> VideoResult<EncoderEvent> {
self.event_queue
.dequeue_event()
.context("while reading encoder event")
.map_err(VideoError::BackendFailure)
}
}
pub struct FfmpegEncoder {
codecs: BTreeMap<Format, AvCodec>,
}
impl FfmpegEncoder {
/// Create a new ffmpeg encoder backend instance.
pub fn new() -> Self {
// Find all the encoders supported by libav and store them.
let codecs = AvCodecIterator::new()
.filter_map(|codec| {
if !codec.is_encoder() {
return None;
}
let codec_name = codec.name();
// Only retain software encoders we know with their corresponding format. Other
// encoder might depend on hardware (e.g. *_qsv) which we can't use.
let format = match codec_name {
"libx264" => Format::H264,
"libvpx" => Format::VP8,
"libvpx-vp9" => Format::VP9,
"libx265" => Format::Hevc,
_ => return None,
};
Some((format, codec))
})
.collect();
Self { codecs }
}
}
impl Encoder for FfmpegEncoder {
type Session = FfmpegEncoderSession;
fn query_capabilities(&self) -> VideoResult<EncoderCapabilities> {
let codecs = &self.codecs;
let mut format_idx = BTreeMap::new();
let mut input_format_descs = vec![];
let output_format_descs = codecs
.iter()
.enumerate()
.map(|(i, (&format, codec))| {
let mut in_formats = 0;
for in_format in codec.pixel_format_iter() {
if let Ok(in_format) = Format::try_from(in_format) {
let idx = format_idx.entry(in_format).or_insert_with(|| {
let idx = input_format_descs.len();
input_format_descs.push(FormatDesc {
mask: 0,
format: in_format,
frame_formats: vec![FrameFormat {
// These frame sizes are arbitrary, but avcodec does not seem to
// have any specific restriction in that regard (or any way to
// query the supported resolutions).
width: FormatRange {
min: 64,
max: 16384,
step: 1,
},
height: FormatRange {
min: 64,
max: 16384,
step: 1,
},
bitrates: Default::default(),
}],
plane_align: max_buffer_alignment() as u32,
});
idx
});
input_format_descs[*idx].mask |= 1 << i;
in_formats |= 1 << *idx;
}
}
FormatDesc {
mask: in_formats,
format,
frame_formats: vec![FrameFormat {
// These frame sizes are arbitrary, but avcodec does not seem to have any
// specific restriction in that regard (or any way to query the supported
// resolutions).
width: FormatRange {
min: 64,
max: 16384,
step: 1,
},
height: FormatRange {
min: 64,
max: 16384,
step: 1,
},
bitrates: Default::default(),
}],
plane_align: max_buffer_alignment() as u32,
}
})
.collect();
// TODO(ishitatsuyuki): right now we haven't plumbed the profile handling yet and will use
// a hard coded set of profiles. Make this support more profiles when
// we implement the conversion between virtio and ffmpeg profiles.
let coded_format_profiles = codecs
.iter()
.map(|(&format, _codec)| {
(
format,
match format {
Format::H264 => vec![Profile::H264Baseline],
Format::Hevc => vec![Profile::HevcMain],
Format::VP8 => vec![Profile::VP8Profile0],
Format::VP9 => vec![Profile::VP9Profile0],
_ => vec![],
},
)
})
.collect();
let caps = EncoderCapabilities {
input_format_descs,
output_format_descs,
coded_format_profiles,
};
Ok(caps)
}
fn start_session(&mut self, config: SessionConfig) -> VideoResult<Self::Session> {
let dst_format = config
.dst_params
.format
.ok_or(VideoError::InvalidOperation)?;
let codec = self
.codecs
.get(&dst_format)
.ok_or(VideoError::InvalidFormat)?;
let pix_fmt = config
.src_params
.format
.ok_or(VideoError::InvalidOperation)?
.try_into()
.map_err(|_| VideoError::InvalidFormat)?;
let context = codec
.build_encoder()
.and_then(|mut b| {
b.set_pix_fmt(pix_fmt);
b.set_dimensions(Dimensions {
width: config.src_params.frame_width,
height: config.src_params.frame_height,
});
b.set_time_base(AVRational {
num: 1,
den: config.frame_rate as _,
});
b.build()
})
.context("while creating new session")
.map_err(VideoError::BackendFailure)?;
let session = FfmpegEncoderSession {
event_queue: Arc::new(
EventQueue::new()
.context("while creating encoder session")
.map_err(VideoError::BackendFailure)?
.into(),
),
codec_jobs: Default::default(),
output_queue: Default::default(),
is_flushing: false,
context,
next_input_buffer_id: 0,
next_output_buffer_id: 0,
};
session
.event_queue
.queue_event(EncoderEvent::RequireInputBuffers {
input_count: 4,
input_frame_height: config.src_params.frame_height,
input_frame_width: config.src_params.frame_width,
output_buffer_size: 16 * 1024 * 1024,
})
.context("while sending buffer request")
.map_err(VideoError::BackendFailure)?;
Ok(session)
}
fn stop_session(&mut self, _session: Self::Session) -> VideoResult<()> {
// Just Drop.
Ok(())
}
}