1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
// Copyright 2022 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use std::cmp;
use std::ops::RangeInclusive;
use serde::Deserialize;
use serde::Serialize;
/// Represents a range of addresses from `start` to `end`, inclusive.
///
/// Why not use the standard `RangeInclusive`? `RangeInclusive` is not `Copy`, because it tries to
/// be an iterator as well as a range (which also means it is larger than necessary). Additionally,
/// we would also like to implement some convenience functions for our own type.
#[derive(Copy, Clone, Deserialize, Serialize)]
#[serde(deny_unknown_fields)]
pub struct AddressRange {
pub start: u64,
pub end: u64,
}
impl AddressRange {
/// Creates a new `AddressRange` from `start` and `end` (inclusive) addresses.
pub const fn from_start_and_end(start: u64, end: u64) -> Self {
AddressRange { start, end }
}
/// Creates a new `AddressRange` from `start` extending `size` bytes.
///
/// Returns `None` if the generated range is not representable as an `AddressRange`.
pub const fn from_start_and_size(start: u64, size: u64) -> Option<Self> {
if size == 0 {
Some(AddressRange::empty())
} else if let Some(end) = start.checked_add(size - 1) {
Some(AddressRange { start, end })
} else {
None
}
}
/// Returns an empty range.
pub const fn empty() -> Self {
AddressRange { start: 1, end: 0 }
}
/// Returns `true` if this range is empty (contains no addresses).
pub fn is_empty(&self) -> bool {
self.end < self.start
}
/// Returns `true` if this range contains `address`.
pub fn contains(&self, address: u64) -> bool {
address >= self.start && address <= self.end
}
/// Returns `true` if `other` is fully contained within this range.
///
/// Empty ranges are considered to be not contained by any range.
pub fn contains_range(&self, other: AddressRange) -> bool {
!other.is_empty() && other.start >= self.start && other.end <= self.end
}
/// Returns `true` if the two ranges have any addresses in common.
pub fn overlaps(&self, other: AddressRange) -> bool {
!self.intersect(other).is_empty()
}
/// Find the intersection (overlapping region) of two ranges.
///
/// If there is no intersection, the resulting `AddressRange` will be empty.
pub fn intersect(&self, other: AddressRange) -> AddressRange {
let start = cmp::max(self.start, other.start);
let end = cmp::min(self.end, other.end);
AddressRange { start, end }
}
/// Returns the ranges of addresses contained in `self` but not in `other`.
///
/// The first returned range will contain the addresses in `self` that are less than the start
/// of `other`, which will be empty if the starts of the ranges coincide.
///
/// The second returned range will contain the addresses in `self` that are greater than the end
/// of `other`, which will be empty if the ends of the ranges coincide.
pub fn non_overlapping_ranges(&self, other: AddressRange) -> (AddressRange, AddressRange) {
let before = if self.start >= other.start {
Self::empty()
} else {
let start = cmp::min(self.start, other.start);
// We know that self.start != other.start, so the maximum of the two cannot be 0, so it
// is safe to subtract 1.
let end = cmp::max(self.start, other.start) - 1;
// For non-overlapping ranges, don't allow end to extend past self.end.
let end = cmp::min(end, self.end);
AddressRange { start, end }
};
let after = if self.end <= other.end {
Self::empty()
} else {
// We know that self.end != other.end, so the minimum of the two cannot be `u64::MAX`,
// so it is safe to add 1.
let start = cmp::min(self.end, other.end) + 1;
// For non-overlapping ranges, don't allow start to extend before self.start.
let start = cmp::max(start, self.start);
let end = cmp::max(self.end, other.end);
AddressRange { start, end }
};
(before, after)
}
/// Returns the two subsets of this range split at the `split_start` address.
///
/// If `split_start` is not contained in this range, returns the original range and an empty
/// range.
pub fn split_at(&self, split_start: u64) -> (AddressRange, AddressRange) {
// split_start == self.start is handled as a special case so we know that split_start - 1 is
// safe below (and so the empty range is always returned second if present).
if split_start <= self.start || split_start > self.end {
(*self, Self::empty())
} else {
(
AddressRange {
start: self.start,
end: split_start - 1,
},
AddressRange {
start: split_start,
end: self.end,
},
)
}
}
/// Computes the length of an `AddressRange`.
///
/// Returns `None` if the length cannot be represented in `u64` (if the range is
/// `0..=u64::MAX`).
pub fn len(&self) -> Option<u64> {
// Treat any range we consider "empty" (end < start) as having 0 length.
if self.is_empty() {
Some(0)
} else {
(self.end - self.start).checked_add(1)
}
}
fn log(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
if self.is_empty() {
f.write_str("empty")
} else {
f.write_fmt(format_args!("{:#x}..={:#x}", self.start, self.end))
}
}
}
impl std::fmt::Display for AddressRange {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
self.log(f)
}
}
impl std::fmt::Debug for AddressRange {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
self.log(f)
}
}
impl From<RangeInclusive<u64>> for AddressRange {
fn from(range: RangeInclusive<u64>) -> AddressRange {
AddressRange {
start: *range.start(),
end: *range.end(),
}
}
}
impl From<AddressRange> for RangeInclusive<u64> {
fn from(address_range: AddressRange) -> RangeInclusive<u64> {
address_range.start..=address_range.end
}
}
/// Custom comparison function that provides a total order over all possible `AddressRange` values
/// and considers all empty ranges to be equal.
impl cmp::Ord for AddressRange {
fn cmp(&self, other: &Self) -> cmp::Ordering {
match (self.is_empty(), other.is_empty()) {
// Any empty range is equal to any other empty range.
(true, true) => cmp::Ordering::Equal,
// An empty range is less than any non-empty range.
(true, false) => cmp::Ordering::Less,
// Any non-empty range is greater than an empty range.
(false, true) => cmp::Ordering::Greater,
// Two non-empty ranges are ordered based on `start`, and if those are equal, `end`.
(false, false) => self
.start
.cmp(&other.start)
.then_with(|| self.end.cmp(&other.end)),
}
}
}
impl cmp::PartialOrd for AddressRange {
fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
Some(cmp::Ord::cmp(self, other))
}
}
impl cmp::PartialEq for AddressRange {
fn eq(&self, other: &Self) -> bool {
cmp::Ord::cmp(self, other) == cmp::Ordering::Equal
}
}
// The `PartialEq` implementation is reflexive, symmetric, and transitive.
impl cmp::Eq for AddressRange {}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn is_empty() {
assert!(AddressRange { start: 1, end: 0 }.is_empty());
assert!(AddressRange {
start: u64::MAX,
end: 0
}
.is_empty());
assert!(AddressRange {
start: u64::MAX,
end: u64::MAX - 1
}
.is_empty());
assert!(AddressRange::empty().is_empty());
assert!(!AddressRange { start: 0, end: 1 }.is_empty());
assert!(!AddressRange { start: 1, end: 1 }.is_empty());
}
#[test]
fn contains() {
assert!(AddressRange { start: 0, end: 5 }.contains(3));
assert!(AddressRange { start: 0, end: 0 }.contains(0));
assert!(AddressRange {
start: 0,
end: u64::MAX
}
.contains(u64::MAX));
// Empty ranges do not contain any addresses
assert!(!AddressRange { start: 5, end: 0 }.contains(3));
}
#[test]
fn contains_range() {
assert!(AddressRange { start: 0, end: 5 }.contains_range(AddressRange { start: 0, end: 5 }));
assert!(AddressRange { start: 0, end: 5 }.contains_range(AddressRange { start: 1, end: 3 }));
// Partly overlapping ranges
assert!(
!AddressRange { start: 0, end: 5 }.contains_range(AddressRange { start: 3, end: 9 })
);
assert!(
!AddressRange { start: 3, end: 9 }.contains_range(AddressRange { start: 0, end: 5 })
);
// Completely discontiguous ranges
assert!(
!AddressRange { start: 0, end: 5 }.contains_range(AddressRange { start: 6, end: 9 })
);
assert!(
!AddressRange { start: 6, end: 9 }.contains_range(AddressRange { start: 0, end: 5 })
);
// Empty ranges do not contain anything
assert!(
!AddressRange { start: 5, end: 0 }.contains_range(AddressRange { start: 0, end: 5 })
);
assert!(
!AddressRange { start: 5, end: 0 }.contains_range(AddressRange { start: 5, end: 0 })
);
assert!(
!AddressRange { start: 5, end: 0 }.contains_range(AddressRange { start: 1, end: 3 })
);
// An empty range is not contained by anything
assert!(
!AddressRange { start: 0, end: 5 }.contains_range(AddressRange { start: 3, end: 1 })
);
}
fn test_intersect(a: (u64, u64), b: (u64, u64), answer: (u64, u64)) {
let a = AddressRange {
start: a.0,
end: a.1,
};
let b = AddressRange {
start: b.0,
end: b.1,
};
let answer = AddressRange {
start: answer.0,
end: answer.1,
};
// intersect() should be commutative, so try it both ways
assert_eq!(a.intersect(b), answer);
assert_eq!(b.intersect(a), answer);
}
#[test]
fn intersect() {
test_intersect((0, 5), (0, 5), (0, 5));
test_intersect((0, 5), (0, 3), (0, 3));
test_intersect((0, 5), (3, 5), (3, 5));
test_intersect((0, 5), (5, 5), (5, 5));
test_intersect((0, 5), (4, 9), (4, 5));
test_intersect((0, u64::MAX), (3, 5), (3, 5));
test_intersect((10, 20), (5, 15), (10, 15));
}
fn test_intersect_empty(a: (u64, u64), b: (u64, u64)) {
let a = AddressRange {
start: a.0,
end: a.1,
};
let b = AddressRange {
start: b.0,
end: b.1,
};
assert!(a.intersect(b).is_empty());
assert!(b.intersect(a).is_empty());
}
#[test]
fn intersect_empty() {
test_intersect_empty((0, 5), (10, 20));
test_intersect_empty((5, 0), (3, 4));
test_intersect_empty((10, 20), (20, 10));
test_intersect_empty((10, 20), (30, 40));
}
#[test]
fn non_overlapping_ranges() {
// Two identical ranges have no non-overlapping ranges.
assert_eq!(
AddressRange { start: 0, end: 100 }
.non_overlapping_ranges(AddressRange { start: 0, end: 100 }),
(AddressRange::empty(), AddressRange::empty())
);
// Non-overlapping regions on both sides.
assert_eq!(
AddressRange { start: 0, end: 100 }
.non_overlapping_ranges(AddressRange { start: 10, end: 20 }),
(
AddressRange { start: 0, end: 9 },
AddressRange {
start: 21,
end: 100
}
)
);
// Non-overlapping region on the left but not on the right.
assert_eq!(
AddressRange { start: 0, end: 100 }.non_overlapping_ranges(AddressRange {
start: 10,
end: 100
}),
(AddressRange { start: 0, end: 9 }, AddressRange::empty())
);
// Non-overlapping region on the right but not on the left.
assert_eq!(
AddressRange { start: 0, end: 100 }
.non_overlapping_ranges(AddressRange { start: 0, end: 50 }),
(
AddressRange::empty(),
AddressRange {
start: 51,
end: 100
}
)
);
// Other range not contained within this range and greater than this range.
assert_eq!(
AddressRange { start: 0, end: 100 }.non_overlapping_ranges(AddressRange {
start: 200,
end: 300
}),
(AddressRange { start: 0, end: 100 }, AddressRange::empty())
);
// Other range not contained within this range and less than this range.
assert_eq!(
AddressRange {
start: 200,
end: 300
}
.non_overlapping_ranges(AddressRange { start: 0, end: 100 }),
(
AddressRange::empty(),
AddressRange {
start: 200,
end: 300
}
)
);
// Partially overlapping region with non-overlapping region on the left.
assert_eq!(
AddressRange { start: 10, end: 20 }
.non_overlapping_ranges(AddressRange { start: 15, end: 35 }),
(AddressRange { start: 10, end: 14 }, AddressRange::empty())
);
// Partially overlapping region with non-overlapping region on the right.
assert_eq!(
AddressRange { start: 10, end: 20 }
.non_overlapping_ranges(AddressRange { start: 5, end: 15 }),
(AddressRange::empty(), AddressRange { start: 16, end: 20 })
);
}
#[test]
fn split_at() {
assert_eq!(
AddressRange { start: 10, end: 20 }.split_at(15),
(
AddressRange { start: 10, end: 14 },
AddressRange { start: 15, end: 20 }
)
);
assert_eq!(
AddressRange { start: 10, end: 20 }.split_at(20),
(
AddressRange { start: 10, end: 19 },
AddressRange { start: 20, end: 20 }
)
);
assert_eq!(
AddressRange { start: 10, end: 20 }.split_at(10),
(AddressRange { start: 10, end: 20 }, AddressRange::empty())
);
assert_eq!(
AddressRange { start: 10, end: 20 }.split_at(21),
(AddressRange { start: 10, end: 20 }, AddressRange::empty())
);
assert_eq!(
AddressRange { start: 10, end: 20 }.split_at(9),
(AddressRange { start: 10, end: 20 }, AddressRange::empty())
);
}
#[test]
fn from_start_and_size_valid() {
assert_eq!(
AddressRange::from_start_and_size(0x100, 0x20),
Some(AddressRange {
start: 0x100,
end: 0x11f
})
);
// Max-sized range based at 0
assert_eq!(
AddressRange::from_start_and_size(0, u64::MAX),
Some(AddressRange {
start: 0,
end: u64::MAX - 1
})
);
// Max-sized range based at 1
assert_eq!(
AddressRange::from_start_and_size(1, u64::MAX),
Some(AddressRange {
start: 1,
end: u64::MAX
})
);
// One-byte range based at u64::MAX
assert_eq!(
AddressRange::from_start_and_size(u64::MAX, 1),
Some(AddressRange {
start: u64::MAX,
end: u64::MAX
})
);
// Empty range (size = 0) with arbitrary start
assert!(AddressRange::from_start_and_size(u64::MAX, 0)
.unwrap()
.is_empty());
}
#[test]
fn from_start_and_size_invalid() {
// 2 + u64::MAX - 1 overflows
assert_eq!(AddressRange::from_start_and_size(2, u64::MAX), None);
// 0x100 + u64::MAX - 1 overflows
assert_eq!(AddressRange::from_start_and_size(0x100, u64::MAX), None);
// 0x100 + (u64::MAX - 0xfe) - 1 overflows
assert_eq!(
AddressRange::from_start_and_size(0x100, u64::MAX - 0xfe),
None
);
}
#[test]
fn display() {
assert_eq!(
format!(
"{}",
AddressRange {
start: 0x1234,
end: 0x5678
}
),
"0x1234..=0x5678"
);
assert_eq!(format!("{}", AddressRange::empty()), "empty");
}
#[test]
fn cmp() {
assert!(
AddressRange {
start: 0x1000,
end: 0x2000
} < AddressRange {
start: 0x3000,
end: 0x4000
}
);
assert!(
AddressRange {
start: 0x1000,
end: 0x2000
} == AddressRange {
start: 0x1000,
end: 0x2000
}
);
assert!(
AddressRange {
start: 0x3000,
end: 0x4000
} > AddressRange {
start: 0x1000,
end: 0x2000
}
);
assert!(
AddressRange {
start: 0x1000,
end: 0x2000
} < AddressRange {
start: 0x1000,
end: 0x3000
}
);
}
#[test]
fn cmp_empty() {
// Empty ranges are less than any non-empty range and equal to any other empty range.
assert!(
AddressRange {
start: 0x1000,
end: 0x2000
} > AddressRange::empty()
);
assert!(
AddressRange::empty()
< AddressRange {
start: 0x1000,
end: 0x2000
}
);
assert!(AddressRange { start: 5, end: 3 } == AddressRange { start: 10, end: 1 });
}
}