1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
// Copyright 2022 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use std::fs::File;
use std::sync::Arc;
use std::u32;

use anyhow::bail;
use anyhow::Context;
use anyhow::Result;
use base::error;
#[cfg(any(target_os = "android", target_os = "linux"))]
use base::linux::MemoryMappingBuilderUnix;
use base::pagesize;
use base::AsRawDescriptor;
use base::AsRawDescriptors;
use base::Event;
use base::MappedRegion;
use base::MemoryMapping;
use base::MemoryMappingBuilder;
#[cfg(windows)]
use base::MemoryMappingBuilderWindows;
use base::Protection;
use base::RawDescriptor;
use hypervisor::MemCacheType;
use hypervisor::Vm;
use resources::SystemAllocator;
use vfio_sys::*;
use vm_control::api::VmMemoryClient;
use vm_control::VmMemoryDestination;
use vm_control::VmMemorySource;
use vm_memory::GuestAddress;

use crate::pci::CrosvmDeviceId;
use crate::vfio::VfioDevice;
use crate::vfio::VfioError;
use crate::vfio::VfioIrq;
use crate::BusAccessInfo;
use crate::BusDevice;
use crate::BusDeviceObj;
use crate::DeviceId;
use crate::IommuDevType;
use crate::IrqEdgeEvent;
use crate::IrqLevelEvent;
use crate::Suspendable;

struct MmioInfo {
    index: usize,
    start: u64,
    length: u64,
}

pub struct VfioPlatformDevice {
    device: Arc<VfioDevice>,
    interrupt_edge_evt: Vec<IrqEdgeEvent>,
    interrupt_level_evt: Vec<IrqLevelEvent>,
    mmio_regions: Vec<MmioInfo>,
    vm_memory_client: VmMemoryClient,
    // scratch MemoryMapping to avoid unmap beform vm exit
    mem: Vec<MemoryMapping>,
}

impl BusDevice for VfioPlatformDevice {
    fn device_id(&self) -> DeviceId {
        CrosvmDeviceId::VfioPlatformDevice.into()
    }

    fn debug_label(&self) -> String {
        format!("vfio {} device", self.device.device_name())
    }

    fn read(&mut self, info: BusAccessInfo, data: &mut [u8]) {
        self.read_mmio(info.address, data)
    }

    fn write(&mut self, info: BusAccessInfo, data: &[u8]) {
        self.write_mmio(info.address, data)
    }
}

impl Suspendable for VfioPlatformDevice {}

impl BusDeviceObj for VfioPlatformDevice {
    fn as_platform_device(&self) -> Option<&VfioPlatformDevice> {
        Some(self)
    }
    fn as_platform_device_mut(&mut self) -> Option<&mut VfioPlatformDevice> {
        Some(self)
    }
    fn into_platform_device(self: Box<Self>) -> Option<Box<VfioPlatformDevice>> {
        Some(self)
    }
}

impl VfioPlatformDevice {
    /// Constructs a new Vfio Platform device for the given Vfio device
    pub fn new(device: VfioDevice, vm_memory_client: VmMemoryClient) -> Self {
        let dev = Arc::new(device);
        VfioPlatformDevice {
            device: dev,
            interrupt_edge_evt: Vec::new(),
            interrupt_level_evt: Vec::new(),
            mmio_regions: Vec::new(),
            vm_memory_client,
            mem: Vec::new(),
        }
    }

    pub fn get_platform_irqs(&self) -> Result<Vec<VfioIrq>, VfioError> {
        self.device.get_irqs()
    }

    pub fn irq_is_automask(&self, irq: &VfioIrq) -> bool {
        irq.flags & VFIO_IRQ_INFO_AUTOMASKED != 0
    }

    fn setup_irq_resample(&mut self, resample_evt: &Event, index: u32) -> Result<()> {
        self.device.irq_mask(index).context("Intx mask failed")?;
        self.device
            .resample_virq_enable(resample_evt, index)
            .context("resample enable failed")?;
        self.device
            .irq_unmask(index)
            .context("Intx unmask failed")?;
        Ok(())
    }

    pub fn assign_edge_platform_irq(&mut self, irq_evt: &IrqEdgeEvent, index: u32) -> Result<()> {
        let interrupt_evt = irq_evt.try_clone().context("failed to clone irq event")?;
        self.device
            .irq_enable(&[Some(interrupt_evt.get_trigger())], index, 0)
            .context("platform irq enable failed")?;
        self.interrupt_edge_evt.push(interrupt_evt);
        Ok(())
    }

    pub fn assign_level_platform_irq(&mut self, irq_evt: &IrqLevelEvent, index: u32) -> Result<()> {
        let interrupt_evt = irq_evt.try_clone().context("failed to clone irq event")?;
        self.device
            .irq_enable(&[Some(interrupt_evt.get_trigger())], index, 0)
            .context("platform irq enable failed")?;
        if let Err(e) = self.setup_irq_resample(interrupt_evt.get_resample(), index) {
            self.disable_irqs(index);
            bail!("failed to set up irq resampling: {}", e);
        }
        self.interrupt_level_evt.push(interrupt_evt);
        Ok(())
    }

    fn find_region(&self, addr: u64) -> Option<MmioInfo> {
        for mmio_info in self.mmio_regions.iter() {
            if addr >= mmio_info.start && addr < mmio_info.start + mmio_info.length {
                return Some(MmioInfo {
                    index: mmio_info.index,
                    start: mmio_info.start,
                    length: mmio_info.length,
                });
            }
        }
        None
    }

    pub fn allocate_regions(
        &mut self,
        resources: &mut SystemAllocator,
    ) -> Result<Vec<(u64, u64)>, resources::Error> {
        let mut ranges = Vec::new();
        for i in 0..self.device.get_region_count() {
            let size = self.device.get_region_size(i);
            let alloc_id = resources.get_anon_alloc();
            let allocator = resources
                .mmio_platform_allocator()
                .ok_or(resources::Error::MissingPlatformMMIOAddresses)?;
            let start_addr = allocator.allocate_with_align(
                size,
                alloc_id,
                "vfio_mmio".to_string(),
                pagesize() as u64,
            )?;
            ranges.push((start_addr, size));

            self.mmio_regions.push(MmioInfo {
                index: i,
                start: start_addr,
                length: size,
            });
        }
        Ok(ranges)
    }

    fn region_mmap_early(&self, vm: &mut impl Vm, index: usize, start_addr: u64) {
        if self.device.get_region_flags(index) & VFIO_REGION_INFO_FLAG_MMAP == 0 {
            return;
        }

        for mmap in &self.device.get_region_mmap(index) {
            let mmap_offset = mmap.offset;
            let mmap_size = mmap.size;
            let guest_map_start = start_addr + mmap_offset;
            let region_offset = self.device.get_region_offset(index);
            let offset = region_offset + mmap_offset;

            let mmap = match MemoryMappingBuilder::new(mmap_size as usize)
                .from_descriptor(self.device.device_file())
                .offset(offset)
                .build()
            {
                Ok(v) => v,
                Err(e) => {
                    error!("{e}, index: {index}, start_addr:{start_addr:#x}, offset:{offset:#x}");
                    break;
                }
            };

            let host = mmap.as_ptr();
            let guest_addr = GuestAddress(guest_map_start);
            if let Err(e) = vm.add_memory_region(
                guest_addr,
                Box::new(mmap),
                false,
                false,
                MemCacheType::CacheCoherent,
            ) {
                error!("{e}, index: {index}, guest_addr:{guest_addr}, host:{host:?}");
                break;
            }
        }
    }

    /// Force adding the MMIO regions to the guest memory space.
    ///
    /// By default, MMIO regions are mapped lazily when the guest first accesses them. Instead,
    /// this function maps them, even if the guest might end up not accessing them. It only runs in
    /// the current thread and can therefore be called before the VM is started.
    pub fn regions_mmap_early(&mut self, vm: &mut impl Vm) {
        for mmio_info in self.mmio_regions.iter() {
            self.region_mmap_early(vm, mmio_info.index, mmio_info.start);
        }
    }

    fn region_mmap(&self, index: usize, start_addr: u64) -> Vec<MemoryMapping> {
        let mut mem_map: Vec<MemoryMapping> = Vec::new();
        if self.device.get_region_flags(index) & VFIO_REGION_INFO_FLAG_MMAP != 0 {
            let mmaps = self.device.get_region_mmap(index);
            if mmaps.is_empty() {
                return mem_map;
            }

            for mmap in mmaps.iter() {
                let mmap_offset = mmap.offset;
                let mmap_size = mmap.size;
                let guest_map_start = start_addr + mmap_offset;
                let region_offset = self.device.get_region_offset(index);
                let offset = region_offset + mmap_offset;
                let descriptor = match self.device.device_file().try_clone() {
                    Ok(device_file) => device_file.into(),
                    Err(_) => break,
                };
                match self.vm_memory_client.register_memory(
                    VmMemorySource::Descriptor {
                        descriptor,
                        offset,
                        size: mmap_size,
                    },
                    VmMemoryDestination::GuestPhysicalAddress(guest_map_start),
                    Protection::read_write(),
                    MemCacheType::CacheCoherent,
                ) {
                    Ok(_region) => {
                        // Even if vm has mapped this region, but it is in vm main process,
                        // device process doesn't has this mapping, but vfio_dma_map() need it
                        // in device process, so here map it again.
                        let mmap = match MemoryMappingBuilder::new(mmap_size as usize)
                            .from_file(self.device.device_file())
                            .offset(offset)
                            .build()
                        {
                            Ok(v) => v,
                            Err(_e) => break,
                        };
                        let host = mmap.as_ptr() as u64;
                        // SAFETY:
                        // Safe because the given guest_map_start is valid guest bar address. and
                        // the host pointer is correct and valid guaranteed by MemoryMapping
                        // interface.
                        match unsafe {
                            self.device
                                .vfio_dma_map(guest_map_start, mmap_size, host, true)
                        } {
                            Ok(_) => mem_map.push(mmap),
                            Err(e) => {
                                error!(
                                    "{}, index: {}, start_addr:0x{:x}, host:0x{:x}",
                                    e, index, start_addr, host
                                );
                                break;
                            }
                        }
                    }
                    Err(e) => {
                        error!("register_memory failed: {}", e);
                        break;
                    }
                }
            }
        }

        mem_map
    }

    fn regions_mmap(&mut self) {
        for mmio_info in self.mmio_regions.iter() {
            let mut mem_map = self.region_mmap(mmio_info.index, mmio_info.start);
            self.mem.append(&mut mem_map);
        }
    }

    fn disable_irqs(&mut self, index: u32) {
        if let Err(e) = self.device.irq_disable(index) {
            error!("Platform irq disable failed: {}", e);
        }
    }

    fn read_mmio(&mut self, addr: u64, data: &mut [u8]) {
        if let Some(mmio_info) = self.find_region(addr) {
            let offset = addr - mmio_info.start;
            let index = mmio_info.index;
            self.device.region_read(index, data, offset);
        }
        // We have no other way than wait for 1st access and then do the mmap,
        // so that next accesses are dual-stage MMU accelerated.
        self.regions_mmap();
    }

    fn write_mmio(&mut self, addr: u64, data: &[u8]) {
        if let Some(mmio_info) = self.find_region(addr) {
            let offset = addr - mmio_info.start;
            let index = mmio_info.index;
            self.device.region_write(index, data, offset);
        }
        // We have no other way than wait for 1st access and then do the mmap,
        // so that next accesses are dual-stage MMU accelerated.
        self.regions_mmap();
    }

    pub fn keep_rds(&self) -> Vec<RawDescriptor> {
        let mut rds = self.device.keep_rds();

        for irq_evt in self.interrupt_edge_evt.iter() {
            rds.extend(irq_evt.as_raw_descriptors());
        }

        for irq_evt in self.interrupt_level_evt.iter() {
            rds.extend(irq_evt.as_raw_descriptors());
        }

        rds.push(self.vm_memory_client.as_raw_descriptor());
        rds
    }

    /// Gets the vfio device backing `File`.
    pub fn device_file(&self) -> &File {
        self.device.device_file()
    }

    /// Returns the DT symbol (node label) of the VFIO device.
    pub fn dt_symbol(&self) -> Option<&str> {
        self.device.dt_symbol()
    }

    /// Returns the type and indentifier (if applicable) of the IOMMU used by this VFIO device and
    /// its master IDs.
    pub fn iommu(&self) -> Option<(IommuDevType, Option<u32>, &[u32])> {
        self.device.iommu()
    }
}