1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
// Copyright 2020 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use std::cell::UnsafeCell;
use std::hint;
use std::ops::Deref;
use std::ops::DerefMut;
use std::sync::atomic::AtomicBool;
use std::sync::atomic::Ordering;
const UNLOCKED: bool = false;
const LOCKED: bool = true;
/// A primitive that provides safe, mutable access to a shared resource.
///
/// Unlike `Mutex`, a `SpinLock` will not voluntarily yield its CPU time until the resource is
/// available and will instead keep spinning until the resource is acquired. For the vast majority
/// of cases, `Mutex` is a better choice than `SpinLock`. If a `SpinLock` must be used then users
/// should try to do as little work as possible while holding the `SpinLock` and avoid any sort of
/// blocking at all costs as it can severely penalize performance.
///
/// # Poisoning
///
/// This `SpinLock` does not implement lock poisoning so it is possible for threads to access
/// poisoned data if a thread panics while holding the lock. If lock poisoning is needed, it can be
/// implemented by wrapping the `SpinLock` in a new type that implements poisoning. See the
/// implementation of `std::sync::Mutex` for an example of how to do this.
#[repr(align(128))]
pub struct SpinLock<T: ?Sized> {
lock: AtomicBool,
value: UnsafeCell<T>,
}
impl<T> SpinLock<T> {
/// Creates a new, unlocked `SpinLock` that's ready for use.
pub fn new(value: T) -> SpinLock<T> {
SpinLock {
lock: AtomicBool::new(UNLOCKED),
value: UnsafeCell::new(value),
}
}
/// Consumes the `SpinLock` and returns the value guarded by it. This method doesn't perform any
/// locking as the compiler guarantees that there are no references to `self`.
pub fn into_inner(self) -> T {
// No need to take the lock because the compiler can statically guarantee
// that there are no references to the SpinLock.
self.value.into_inner()
}
}
impl<T: ?Sized> SpinLock<T> {
/// Acquires exclusive, mutable access to the resource protected by the `SpinLock`, blocking the
/// current thread until it is able to do so. Upon returning, the current thread will be the
/// only thread with access to the resource. The `SpinLock` will be released when the returned
/// `SpinLockGuard` is dropped. Attempting to call `lock` while already holding the `SpinLock`
/// will cause a deadlock.
pub fn lock(&self) -> SpinLockGuard<T> {
loop {
let state = self.lock.load(Ordering::Relaxed);
if state == UNLOCKED
&& self
.lock
.compare_exchange_weak(UNLOCKED, LOCKED, Ordering::Acquire, Ordering::Relaxed)
.is_ok()
{
break;
}
hint::spin_loop();
}
// TODO(b/315998194): Add safety comment
#[allow(clippy::undocumented_unsafe_blocks)]
SpinLockGuard {
lock: self,
value: unsafe { &mut *self.value.get() },
}
}
fn unlock(&self) {
// Don't need to compare and swap because we exclusively hold the lock.
self.lock.store(UNLOCKED, Ordering::Release);
}
/// Returns a mutable reference to the contained value. This method doesn't perform any locking
/// as the compiler will statically guarantee that there are no other references to `self`.
pub fn get_mut(&mut self) -> &mut T {
// SAFETY:
// Safe because the compiler can statically guarantee that there are no other references to
// `self`. This is also why we don't need to acquire the lock.
unsafe { &mut *self.value.get() }
}
}
// TODO(b/315998194): Add safety comment
#[allow(clippy::undocumented_unsafe_blocks)]
unsafe impl<T: ?Sized + Send> Send for SpinLock<T> {}
// TODO(b/315998194): Add safety comment
#[allow(clippy::undocumented_unsafe_blocks)]
unsafe impl<T: ?Sized + Send> Sync for SpinLock<T> {}
impl<T: Default> Default for SpinLock<T> {
fn default() -> Self {
Self::new(Default::default())
}
}
impl<T> From<T> for SpinLock<T> {
fn from(source: T) -> Self {
Self::new(source)
}
}
/// An RAII implementation of a "scoped lock" for a `SpinLock`. When this structure is dropped, the
/// lock will be released. The resource protected by the `SpinLock` can be accessed via the `Deref`
/// and `DerefMut` implementations of this structure.
pub struct SpinLockGuard<'a, T: 'a + ?Sized> {
lock: &'a SpinLock<T>,
value: &'a mut T,
}
impl<'a, T: ?Sized> Deref for SpinLockGuard<'a, T> {
type Target = T;
fn deref(&self) -> &T {
self.value
}
}
impl<'a, T: ?Sized> DerefMut for SpinLockGuard<'a, T> {
fn deref_mut(&mut self) -> &mut T {
self.value
}
}
impl<'a, T: ?Sized> Drop for SpinLockGuard<'a, T> {
fn drop(&mut self) {
self.lock.unlock();
}
}
#[cfg(test)]
mod test {
use std::mem;
use std::sync::atomic::AtomicUsize;
use std::sync::atomic::Ordering;
use std::sync::Arc;
use std::thread;
use super::*;
#[derive(PartialEq, Eq, Debug)]
struct NonCopy(u32);
#[test]
fn it_works() {
let sl = SpinLock::new(NonCopy(13));
assert_eq!(*sl.lock(), NonCopy(13));
}
#[test]
fn smoke() {
let sl = SpinLock::new(NonCopy(7));
mem::drop(sl.lock());
mem::drop(sl.lock());
}
#[test]
fn send() {
let sl = SpinLock::new(NonCopy(19));
thread::spawn(move || {
let value = sl.lock();
assert_eq!(*value, NonCopy(19));
})
.join()
.unwrap();
}
#[test]
fn high_contention() {
const THREADS: usize = 23;
const ITERATIONS: usize = 101;
let mut threads = Vec::with_capacity(THREADS);
let sl = Arc::new(SpinLock::new(0usize));
for _ in 0..THREADS {
let sl2 = sl.clone();
threads.push(thread::spawn(move || {
for _ in 0..ITERATIONS {
*sl2.lock() += 1;
}
}));
}
for t in threads.into_iter() {
t.join().unwrap();
}
assert_eq!(*sl.lock(), THREADS * ITERATIONS);
}
#[test]
fn get_mut() {
let mut sl = SpinLock::new(NonCopy(13));
*sl.get_mut() = NonCopy(17);
assert_eq!(sl.into_inner(), NonCopy(17));
}
#[test]
fn into_inner() {
let sl = SpinLock::new(NonCopy(29));
assert_eq!(sl.into_inner(), NonCopy(29));
}
#[test]
fn into_inner_drop() {
struct NeedsDrop(Arc<AtomicUsize>);
impl Drop for NeedsDrop {
fn drop(&mut self) {
self.0.fetch_add(1, Ordering::AcqRel);
}
}
let value = Arc::new(AtomicUsize::new(0));
let needs_drop = SpinLock::new(NeedsDrop(value.clone()));
assert_eq!(value.load(Ordering::Acquire), 0);
{
let inner = needs_drop.into_inner();
assert_eq!(inner.0.load(Ordering::Acquire), 0);
}
assert_eq!(value.load(Ordering::Acquire), 1);
}
#[test]
fn arc_nested() {
// Tests nested sltexes and access to underlying data.
let sl = SpinLock::new(1);
let arc = Arc::new(SpinLock::new(sl));
thread::spawn(move || {
let nested = arc.lock();
let lock2 = nested.lock();
assert_eq!(*lock2, 1);
})
.join()
.unwrap();
}
#[test]
fn arc_access_in_unwind() {
let arc = Arc::new(SpinLock::new(1));
let arc2 = arc.clone();
thread::spawn(move || {
struct Unwinder {
i: Arc<SpinLock<i32>>,
}
impl Drop for Unwinder {
fn drop(&mut self) {
*self.i.lock() += 1;
}
}
let _u = Unwinder { i: arc2 };
panic!();
})
.join()
.expect_err("thread did not panic");
let lock = arc.lock();
assert_eq!(*lock, 2);
}
#[test]
fn unsized_value() {
let sltex: &SpinLock<[i32]> = &SpinLock::new([1, 2, 3]);
{
let b = &mut *sltex.lock();
b[0] = 4;
b[2] = 5;
}
let expected: &[i32] = &[4, 2, 5];
assert_eq!(&*sltex.lock(), expected);
}
}