1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
// Copyright 2022 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! PageHandler manages the page states of multiple regions.
#![deny(missing_docs)]
use std::fs::File;
use std::mem;
use std::ops::Range;
use std::sync::Arc;
use anyhow::Context;
use base::error;
use base::linux::FileDataIterator;
use base::AsRawDescriptor;
use base::SharedMemory;
use base::VolatileSlice;
use sync::Mutex;
use thiserror::Error as ThisError;
use crate::file::Error as FileError;
use crate::file::SwapFile;
use crate::pagesize::addr_to_page_idx;
use crate::pagesize::bytes_to_pages;
use crate::pagesize::is_hugepage_aligned;
use crate::pagesize::is_page_aligned;
use crate::pagesize::page_base_addr;
use crate::pagesize::page_idx_to_addr;
use crate::pagesize::pages_to_bytes;
use crate::pagesize::round_up_hugepage_size;
use crate::pagesize::THP_SIZE;
use crate::staging::CopyOp;
use crate::staging::Error as StagingError;
use crate::staging::StagingMemory;
use crate::userfaultfd::Error as UffdError;
use crate::userfaultfd::Userfaultfd;
use crate::worker::Channel;
use crate::worker::Task;
use crate::SwapMetrics;
pub(crate) const MLOCK_BUDGET: usize = 16 * 1024 * 1024; // = 16MB
const PREFETCH_THRESHOLD: usize = 4 * 1024 * 1024; // = 4MB
/// Result for PageHandler
pub type Result<T> = std::result::Result<T, Error>;
/// Errors for PageHandler
#[derive(ThisError, Debug)]
pub enum Error {
#[error("the address is invalid {0:#018X}")]
/// the address is invalid
InvalidAddress(usize),
#[error("the regions {0:?} and {1:?} overlap")]
/// regions are overlaps on registering
RegionOverlap(Range<usize>, Range<usize>),
#[error("failed to create page handler {0:?}")]
/// failed to create page handler
CreateFailed(anyhow::Error),
#[error("file operation failed : {0:?}")]
/// file operation failed
File(#[from] FileError),
#[error("staging operation failed : {0:?}")]
/// staging operation failed
Staging(#[from] StagingError),
#[error("userfaultfd failed : {0:?}")]
/// userfaultfd operation failed
Userfaultfd(#[from] UffdError),
#[error("failed to iterate data ranges: {0:?}")]
/// FileDataIterator failed
FileDataIterator(#[from] base::Error),
}
/// Remove the memory range on the guest memory.
///
/// This is an alternative to [vm_memory::GuestMemory::remove_range()] when working with host
/// addresses instead of guest addresses.
///
/// # Safety
///
/// The memory range must be on the guest memory.
#[deny(unsafe_op_in_unsafe_fn)]
unsafe fn remove_memory(addr: usize, len: usize) -> std::result::Result<(), base::Error> {
// SAFETY:
// Safe because the caller guarantees addr is in guest memory, so this does not affect any rust
// managed memory.
let ret = unsafe { libc::madvise(addr as *mut libc::c_void, len, libc::MADV_REMOVE) };
if ret < 0 {
base::errno_result()
} else {
Ok(())
}
}
fn uffd_copy_all(
uffd: &Userfaultfd,
mut page_addr: usize,
mut data_slice: VolatileSlice,
wake: bool,
) -> std::result::Result<(), UffdError> {
loop {
let result = uffd.copy(page_addr, data_slice.size(), data_slice.as_ptr(), wake);
match result {
Err(UffdError::PartiallyCopied(copied)) => {
page_addr += copied;
data_slice.advance(copied);
}
other => {
// Even EEXIST for copy operation should be an error for page fault handling. If
// the page was swapped in before, the page should be cleared from the swap file
// and do `Userfaultfd::zero()` instead.
return other.map(|_| ());
}
}
}
}
/// [Region] represents a memory region and corresponding [SwapFile].
struct Region {
/// the head page index of the region.
head_page_idx: usize,
base_page_idx_in_file: usize,
num_pages: usize,
staging_memory: StagingMemory,
copied_from_file_pages: usize,
copied_from_staging_pages: usize,
zeroed_pages: usize,
swap_in_pages: usize,
/// the amount of pages which were already initialized on page faults.
redundant_pages: usize,
}
/// MoveToStaging copies chunks of consecutive pages next to each other on the guest memory to the
/// staging memory and removes the chunks on the guest memory.
pub struct MoveToStaging {
remove_area: Range<usize>,
copies: Vec<CopyOp>,
}
impl Task for MoveToStaging {
fn execute(self) {
for copy_op in self.copies {
copy_op.execute();
}
// Remove chunks of pages at once to reduce madvise(2) syscall.
// SAFETY:
// Safe because the region is already backed by the file and the content will be
// swapped in on a page fault.
let result = unsafe {
remove_memory(
self.remove_area.start,
self.remove_area.end - self.remove_area.start,
)
};
if let Err(e) = result {
panic!("failed to remove memory: {:?}", e);
}
}
}
struct PageHandleContext<'a> {
file: SwapFile<'a>,
regions: Vec<Region>,
mlock_budget_pages: usize,
}
/// PageHandler manages the page states of multiple regions.
///
/// Handles multiple events derived from userfaultfd and swap out requests.
/// All the addresses and sizes in bytes are converted to page id internally.
pub struct PageHandler<'a> {
ctx: Mutex<PageHandleContext<'a>>,
channel: Arc<Channel<MoveToStaging>>,
}
impl<'a> PageHandler<'a> {
/// Creates [PageHandler] for the given region.
///
/// If any of regions overlaps, this returns [Error::RegionOverlap].
///
/// # Arguments
///
/// * `swap_file` - The swap file.
/// * `staging_shmem` - The staging memory. It must have enough size to hold guest memory.
/// Otherwise monitor process crashes on creating a mmap.
/// * `address_ranges` - The list of address range of the regions. the start address must align
/// with page. the size must be multiple of pagesize.
pub fn create(
swap_file: &'a File,
staging_shmem: &'a SharedMemory,
address_ranges: &[Range<usize>],
stating_move_context: Arc<Channel<MoveToStaging>>,
) -> Result<Self> {
// Truncate the file into the size to hold all regions, otherwise access beyond the end of
// file may cause SIGBUS.
swap_file
.set_len(
address_ranges
.iter()
.map(|r| (r.end.saturating_sub(r.start)) as u64)
.sum(),
)
.context("truncate swap file")
.map_err(Error::CreateFailed)?;
let mut regions: Vec<Region> = Vec::new();
let mut offset_pages = 0;
for address_range in address_ranges {
let head_page_idx = addr_to_page_idx(address_range.start);
if address_range.end < address_range.start {
return Err(Error::CreateFailed(anyhow::anyhow!(
"invalid region end < start"
)));
}
let region_size = address_range.end - address_range.start;
let num_pages = bytes_to_pages(region_size);
// Find an overlapping region
match regions.iter().position(|region| {
if region.head_page_idx < head_page_idx {
region.head_page_idx + region.num_pages > head_page_idx
} else {
region.head_page_idx < head_page_idx + num_pages
}
}) {
Some(i) => {
let region = ®ions[i];
return Err(Error::RegionOverlap(
address_range.clone(),
page_idx_to_addr(region.head_page_idx)
..(page_idx_to_addr(region.head_page_idx + region.num_pages)),
));
}
None => {
let base_addr = address_range.start;
assert!(is_page_aligned(base_addr));
assert!(is_page_aligned(region_size));
let staging_memory = StagingMemory::new(
staging_shmem,
pages_to_bytes(offset_pages) as u64,
num_pages,
)?;
regions.push(Region {
head_page_idx,
base_page_idx_in_file: offset_pages,
num_pages,
staging_memory,
copied_from_file_pages: 0,
copied_from_staging_pages: 0,
zeroed_pages: 0,
swap_in_pages: 0,
redundant_pages: 0,
});
offset_pages += num_pages;
}
}
}
let file = SwapFile::new(swap_file, offset_pages)?;
Ok(Self {
ctx: Mutex::new(PageHandleContext {
file,
regions,
mlock_budget_pages: bytes_to_pages(MLOCK_BUDGET),
}),
channel: stating_move_context,
})
}
fn find_region(regions: &mut [Region], page_idx: usize) -> Option<&mut Region> {
// sequential search the corresponding page map from the list. It should be fast enough
// because there are a few regions (usually only 1).
regions.iter_mut().find(|region| {
region.head_page_idx <= page_idx && page_idx < region.head_page_idx + region.num_pages
})
}
/// Fills the faulted page with zero if the page is not initialized, with the content in the
/// swap file if the page is swapped out.
///
/// # Arguments
///
/// * `uffd` - the reference to the [Userfaultfd] for the faulting process.
/// * `address` - the address that triggered the page fault.
pub fn handle_page_fault(&self, uffd: &Userfaultfd, address: usize) -> Result<()> {
let page_idx = addr_to_page_idx(address);
// the head address of the page.
let page_addr = page_base_addr(address);
let page_size = pages_to_bytes(1);
let mut ctx = self.ctx.lock();
let PageHandleContext { regions, file, .. } = &mut *ctx;
let region = Self::find_region(regions, page_idx).ok_or(Error::InvalidAddress(address))?;
let idx_in_region = page_idx - region.head_page_idx;
let idx_in_file = idx_in_region + region.base_page_idx_in_file;
if let Some(page_slice) = region.staging_memory.page_content(idx_in_region)? {
uffd_copy_all(uffd, page_addr, page_slice, true)?;
// TODO(b/265758094): optimize clear operation.
region
.staging_memory
.clear_range(idx_in_region..idx_in_region + 1)?;
region.copied_from_staging_pages += 1;
Ok(())
} else if let Some(page_slice) = file.page_content(idx_in_file, false)? {
// TODO(kawasin): Unlock regions to proceed swap-in operation background.
uffd_copy_all(uffd, page_addr, page_slice, true)?;
// TODO(b/265758094): optimize clear operation.
// Do not erase the page from the disk for trimming optimization on next swap out.
let munlocked_pages = file.clear_range(idx_in_file..idx_in_file + 1)?;
region.copied_from_file_pages += 1;
ctx.mlock_budget_pages += munlocked_pages;
Ok(())
} else {
// Map a zero page since no swap file has been created yet but the fault
// happened.
// safe because the fault page is notified by uffd.
let result = uffd.zero(page_addr, page_size, true);
match result {
Ok(_) => {
region.zeroed_pages += 1;
Ok(())
}
Err(UffdError::PageExist) => {
// This case can happen if page faults on the same page happen on different
// processes.
uffd.wake(page_addr, page_size)?;
region.redundant_pages += 1;
Ok(())
}
Err(e) => Err(e.into()),
}
}
}
/// Clear the internal state for the pages.
///
/// When pages are removed by madvise with `MADV_DONTNEED` or `MADV_REMOVE`, userfaultfd
/// notifies the event as `UFFD_EVENT_REMOVE`. This handles the remove event.
///
/// In crosvm, balloon frees the guest memory and cause `UFFD_EVENT_REMOVE`.
///
/// # Arguments
///
/// * `start_addr` - the head address of the memory area to be freed.
/// * `end_addr` - the end address of the memory area to be freed. `UFFD_EVENT_REMOVE` tells the
/// head address of the next memory area of the freed area. (i.e. the exact tail address of
/// the memory area is `end_addr - 1`.)
pub fn handle_page_remove(&self, start_addr: usize, end_addr: usize) -> Result<()> {
if !is_page_aligned(start_addr) {
return Err(Error::InvalidAddress(start_addr));
} else if !is_page_aligned(end_addr) {
return Err(Error::InvalidAddress(end_addr));
}
let start_page_idx = addr_to_page_idx(start_addr);
let last_page_idx = addr_to_page_idx(end_addr);
let mut ctx = self.ctx.lock();
// TODO(b/269983521): Clear multiple pages in the same region at once.
for page_idx in start_page_idx..(last_page_idx) {
let page_addr = page_idx_to_addr(page_idx);
// TODO(kawasin): Cache the position if the range does not span multiple regions.
let region = Self::find_region(&mut ctx.regions, page_idx)
.ok_or(Error::InvalidAddress(page_addr))?;
let idx_in_region = page_idx - region.head_page_idx;
let idx_range = idx_in_region..idx_in_region + 1;
if let Err(e) = region.staging_memory.clear_range(idx_range) {
error!("failed to clear removed page from staging: {:?}", e);
}
let idx_in_file = idx_in_region + region.base_page_idx_in_file;
let idx_range = idx_in_file..idx_in_file + 1;
// Erase the pages from the disk because the pages are removed from the guest memory.
let munlocked_pages = ctx.file.free_range(idx_range)?;
ctx.mlock_budget_pages += munlocked_pages;
}
Ok(())
}
/// Move active pages in the memory region to the staging memory.
///
/// It only moves active contents in the guest memory to the swap file and skips empty pages
/// (e.g. pages not touched, freed by balloon) using `lseek(2)` + `SEEK_HOLE/DATA`.
///
/// Returns the count of moved out pages.
///
/// # Arguments
///
/// * `base_addr` - the head address of the memory region.
/// * `memfd` - the file descriptor of the memfd backing the guest memory region.
/// * `base_offset` - the offset of the memory region in the memfd.
///
/// # Safety
///
/// The region must have been registered to all userfaultfd of processes which may touch the
/// region.
///
/// The memory must be protected not to be updated while moving.
///
/// The page fault events for the region from the userfaultfd must be handled by
/// [Self::handle_page_fault()].
///
/// Must call [Channel::wait_complete()] to wait all the copy operation complete within the
/// memory protection period.
#[deny(unsafe_op_in_unsafe_fn)]
pub unsafe fn move_to_staging<T>(
&self,
base_addr: usize,
memfd: &T,
base_offset: u64,
) -> Result<usize>
where
T: AsRawDescriptor,
{
let hugepage_size = *THP_SIZE;
let mut ctx = self.ctx.lock();
let region = Self::find_region(&mut ctx.regions, addr_to_page_idx(base_addr))
.ok_or(Error::InvalidAddress(base_addr))?;
if page_idx_to_addr(region.head_page_idx) != base_addr {
return Err(Error::InvalidAddress(base_addr));
}
let region_size = pages_to_bytes(region.num_pages);
let mut file_data = FileDataIterator::new(memfd, base_offset, region_size as u64);
let mut moved_size = 0;
let mut copies = Vec::new();
let mut remaining_batch_size = hugepage_size;
let mut batch_head_offset = 0;
let mut cur_data = None;
while let Some(data_range) = cur_data
.take()
.map(Ok)
.or_else(|| file_data.next())
.transpose()
.map_err(Error::FileDataIterator)?
{
// Assert offset is page aligned
let offset = (data_range.start - base_offset) as usize;
assert!(is_page_aligned(offset));
// The chunk size must be within usize since the chunk is within the guest memory.
let chunk_size = (data_range.end - data_range.start) as usize;
let data_range = if chunk_size > remaining_batch_size {
// Split the chunk if it is bigger than remaining_batch_size.
let split_size = if chunk_size >= hugepage_size {
// If the chunk size is bigger than or equals to huge page size, the chunk may
// contains a huge page. If we MADV_REMOVE a huge page partially, it can cause
// inconsistency between the actual page table and vmm-swap internal state.
let chunk_addr = base_addr + offset;
if !is_hugepage_aligned(chunk_addr) {
// Split the chunk before the where a huge page could start.
std::cmp::min(
round_up_hugepage_size(chunk_addr) - chunk_addr,
remaining_batch_size,
)
} else {
if remaining_batch_size < hugepage_size {
// Remove the batch since it does not have enough room for a huge page.
self.channel.push(MoveToStaging {
remove_area: base_addr + batch_head_offset..base_addr + offset,
copies: mem::take(&mut copies),
});
remaining_batch_size = hugepage_size;
batch_head_offset = offset;
}
hugepage_size
}
} else {
remaining_batch_size
};
// Cache the rest of splitted chunk to avoid useless lseek(2) syscall.
cur_data = Some(data_range.start + split_size as u64..data_range.end);
data_range.start..data_range.start + split_size as u64
} else {
data_range
};
let size = (data_range.end - data_range.start) as usize;
assert!(is_page_aligned(size));
// SAFETY:
// Safe because:
// * src_addr is aligned with page size
// * the data_range starting from src_addr is on the guest memory.
let copy_op = unsafe {
region.staging_memory.copy(
(base_addr + offset) as *const u8,
bytes_to_pages(offset),
bytes_to_pages(size),
)?
};
copies.push(copy_op);
moved_size += size;
// The size must be smaller than or equals to remaining_batch_size.
remaining_batch_size -= size;
if remaining_batch_size == 0 {
// Remove the batch of pages at once to reduce madvise(2) syscall.
self.channel.push(MoveToStaging {
remove_area: base_addr + batch_head_offset..base_addr + offset + size,
copies: mem::take(&mut copies),
});
remaining_batch_size = hugepage_size;
batch_head_offset = offset + size;
}
}
// Remove the final batch of pages.
self.channel.push(MoveToStaging {
remove_area: base_addr + batch_head_offset..base_addr + region_size,
copies,
});
region.copied_from_file_pages = 0;
region.copied_from_staging_pages = 0;
region.zeroed_pages = 0;
region.swap_in_pages = 0;
region.redundant_pages = 0;
Ok(bytes_to_pages(moved_size))
}
/// Write a chunk of consecutive pages in the staging memory to the swap file.
///
/// If there is no active pages in the staging memory, this returns `Ok(0)`.
///
/// The pages in guest memory have been moved to staging memory by [Self::move_to_staging()].
///
/// Returns the count of swapped out pages.
///
/// Even if swap_out fails on any internal steps, it does not break the page state management
/// and `PageHandler` can continue working with a little pages leaking in staging memory or swap
/// file. The leaked pages are removed when vmm-swap is disabled and `PageHandler` is dropped.
///
/// # Arguments
///
/// * `max_size` - the upper limit of the chunk size to write into the swap file at once. The
/// chunk is splitted if it is bigger than `max_size`.
pub fn swap_out(&self, max_size: usize) -> Result<usize> {
let max_pages = bytes_to_pages(max_size);
let mut ctx = self.ctx.lock();
let PageHandleContext { regions, file, .. } = &mut *ctx;
for region in regions.iter_mut() {
if let Some(idx_range) = region.staging_memory.first_data_range(max_pages) {
let idx_range_in_file = idx_range.start + region.base_page_idx_in_file
..idx_range.end + region.base_page_idx_in_file;
let pages = idx_range.end - idx_range.start;
let slice = region.staging_memory.get_slice(idx_range.clone())?;
// Convert VolatileSlice to &[u8]
// SAFETY:
// Safe because the range of volatile slice is already validated.
let slice = unsafe { std::slice::from_raw_parts(slice.as_ptr(), slice.size()) };
file.write_to_file(idx_range_in_file.start, slice)?;
// TODO(kawasin): clear state_list on each write and MADV_REMOVE several chunk at
// once.
region.staging_memory.clear_range(idx_range)?;
// TODO(kawasin): free the page cache of the swap file.
// TODO(kawasin): use writev() to swap_out several small chunks at once.
return Ok(pages);
}
}
Ok(0)
}
/// Create a new [SwapInContext].
pub fn start_swap_in(&'a self) -> SwapInContext<'a> {
SwapInContext {
ctx: &self.ctx,
cur_staging: 0,
}
}
/// Create a new [TrimContext].
pub fn start_trim(&'a self) -> TrimContext<'a> {
TrimContext {
ctx: &self.ctx,
cur_page: 0,
cur_region: 0,
next_data_in_file: 0..0,
clean_pages: 0,
zero_pages: 0,
}
}
/// Returns count of pages copied from vmm-swap file to the guest memory.
fn compute_copied_from_file_pages(&self) -> usize {
self.ctx
.lock()
.regions
.iter()
.map(|r| r.copied_from_file_pages)
.sum()
}
/// Returns count of pages copied from staging memory to the guest memory.
fn compute_copied_from_staging_pages(&self) -> usize {
self.ctx
.lock()
.regions
.iter()
.map(|r| r.copied_from_staging_pages)
.sum()
}
/// Returns count of pages initialized with zero.
fn compute_zeroed_pages(&self) -> usize {
self.ctx.lock().regions.iter().map(|r| r.zeroed_pages).sum()
}
/// Returns count of pages which were already initialized on page faults.
fn compute_redundant_pages(&self) -> usize {
self.ctx
.lock()
.regions
.iter()
.map(|r| r.redundant_pages)
.sum()
}
/// Returns count of pages present in the staging memory.
fn compute_staging_pages(&self) -> usize {
self.ctx
.lock()
.regions
.iter()
.map(|r| r.staging_memory.present_pages())
.sum()
}
/// Returns count of pages present in the swap files.
fn compute_swap_pages(&self) -> usize {
self.ctx.lock().file.present_pages()
}
/// Fill [SwapMetrics] with page handler metrics.
pub fn load_metrics(&self, metrics: &mut SwapMetrics) {
metrics.copied_from_file_pages = self.compute_copied_from_file_pages() as u64;
metrics.copied_from_staging_pages = self.compute_copied_from_staging_pages() as u64;
metrics.zeroed_pages = self.compute_zeroed_pages() as u64;
metrics.redundant_pages = self.compute_redundant_pages() as u64;
metrics.staging_pages = self.compute_staging_pages() as u64;
metrics.swap_pages = self.compute_swap_pages() as u64;
}
}
/// Context for swap-in operation.
///
/// This holds cursor of indices in the regions for each step for optimization.
pub struct SwapInContext<'a> {
ctx: &'a Mutex<PageHandleContext<'a>>,
cur_staging: usize,
}
impl SwapInContext<'_> {
/// Swap in a chunk of consecutive pages from the staging memory and the swap file.
///
/// If there is no more pages present outside of the guest memory, this returns `Ok(0)`.
///
/// Returns the count of swapped in pages.
///
/// # Arguments
///
/// * `uffd` - the main [Userfaultfd].
/// * `max_size` - the upper limit of the chunk size to swap into the guest memory at once. The
/// chunk is splitted if it is bigger than `max_size`.
pub fn swap_in(&mut self, uffd: &Userfaultfd, max_size: usize) -> Result<usize> {
let mut ctx = self.ctx.lock();
// Request the kernel to pre-populate the present pages in the swap file to page cache
// background. At most 16MB of pages will be populated.
// The threshold is to apply MADV_WILLNEED to bigger chunk of pages. The kernel populates
// consecutive pages at once on MADV_WILLNEED.
if ctx.mlock_budget_pages > bytes_to_pages(PREFETCH_THRESHOLD) {
let mlock_budget_pages = ctx.mlock_budget_pages;
let locked_pages = ctx.file.lock_and_async_prefetch(mlock_budget_pages)?;
ctx.mlock_budget_pages -= locked_pages;
}
let max_pages = bytes_to_pages(max_size);
for region in ctx.regions[self.cur_staging..].iter_mut() {
// TODO(kawasin): swap_in multiple chunks less than max_size at once.
if let Some(idx_range) = region.staging_memory.first_data_range(max_pages) {
let pages = idx_range.end - idx_range.start;
let page_addr = page_idx_to_addr(region.head_page_idx + idx_range.start);
let slice = region.staging_memory.get_slice(idx_range.clone())?;
uffd_copy_all(uffd, page_addr, slice, false)?;
// Clear the staging memory to avoid memory spike.
// TODO(kawasin): reduce the call count of MADV_REMOVE by removing several data
// at once.
region.staging_memory.clear_range(idx_range)?;
region.swap_in_pages += pages;
return Ok(pages);
}
self.cur_staging += 1;
}
if let Some(mut idx_range_in_file) = ctx.file.first_data_range(max_pages) {
let PageHandleContext { regions, file, .. } = &mut *ctx;
for region in regions.iter_mut() {
let region_tail_idx_in_file = region.base_page_idx_in_file + region.num_pages;
if idx_range_in_file.start >= region_tail_idx_in_file {
continue;
} else if idx_range_in_file.start < region.base_page_idx_in_file {
return Err(Error::File(FileError::OutOfRange));
} else if idx_range_in_file.end > region_tail_idx_in_file {
// The consecutive pages can be across regions. Swap-in pages in a region at
// once.
idx_range_in_file.end = region_tail_idx_in_file;
}
let pages = idx_range_in_file.end - idx_range_in_file.start;
let page_addr = page_idx_to_addr(
idx_range_in_file.start - region.base_page_idx_in_file + region.head_page_idx,
);
let slice = file.get_slice(idx_range_in_file.clone())?;
// TODO(kawasin): Unlock regions to proceed page fault handling on the main thread.
// We also need to handle the EEXIST error from UFFD_COPY.
uffd_copy_all(uffd, page_addr, slice, false)?;
// Do not erase each chunk of pages from disk on swap_in. The whole file will be
// truncated when swap_in is completed. Even if swap_in is aborted, the remaining
// disk contents help the trimming optimization on swap_out.
let munlocked_pages = file.clear_range(idx_range_in_file)?;
region.swap_in_pages += pages;
ctx.mlock_budget_pages += munlocked_pages;
return Ok(pages);
}
// File has remaining pages, but regions has been consumed.
return Err(Error::File(FileError::OutOfRange));
}
Ok(0)
}
}
impl Drop for SwapInContext<'_> {
fn drop(&mut self) {
let mut ctx = self.ctx.lock();
if let Err(e) = ctx.file.clear_mlock() {
panic!("failed to clear mlock: {:?}", e);
}
ctx.mlock_budget_pages = bytes_to_pages(MLOCK_BUDGET);
}
}
/// Context for trim operation.
///
/// This drops 2 types of pages in the staging memory to reduce disk write.
///
/// * Clean pages
/// * The pages which have been swapped out to the disk and have not been changed.
/// * Drop the pages in the staging memory and mark it as present on the swap file.
/// * Zero pages
/// * Drop the pages in the staging memory. The pages will be UFFD_ZEROed on page fault.
pub struct TrimContext<'a> {
ctx: &'a Mutex<PageHandleContext<'a>>,
cur_region: usize,
cur_page: usize,
/// The page idx range of pages which have been stored in the swap file.
next_data_in_file: Range<usize>,
clean_pages: usize,
zero_pages: usize,
}
impl TrimContext<'_> {
/// Trim pages in the staging memory.
///
/// This returns the pages trimmed. This returns `None` if it traversed all pages in the staging
/// memory.
///
/// # Arguments
///
/// `max_size` - The maximum pages to be compared.
pub fn trim_pages(&mut self, max_pages: usize) -> anyhow::Result<Option<usize>> {
let mut ctx = self.ctx.lock();
if self.cur_region >= ctx.regions.len() {
return Ok(None);
}
let PageHandleContext { regions, file, .. } = &mut *ctx;
let region = &mut regions[self.cur_region];
let mut n_trimmed = 0;
for _ in 0..max_pages {
if let Some(slice_in_staging) = region
.staging_memory
.page_content(self.cur_page)
.context("get page of staging memory")?
{
let idx_range = self.cur_page..self.cur_page + 1;
let idx_in_file = idx_range.start + region.base_page_idx_in_file;
// Check zero page on the staging memory first. If the page is non-zero and have not
// been changed, zero checking is useless, but less cost than file I/O for the pages
// which were in the swap file and now is zero.
// Check 2 types of page in the same loop to utilize CPU cache for staging memory.
if slice_in_staging.is_all_zero() {
region
.staging_memory
.clear_range(idx_range.clone())
.context("clear a page in staging memory")?;
// The page is on the swap file as well.
let munlocked_pages = file
.free_range(idx_in_file..idx_in_file + 1)
.context("clear a page in swap file")?;
if munlocked_pages != 0 {
// Only either of swap-in or trimming runs at the same time. This is not
// expected path. Just logging an error because leaking
// mlock_budget_pages is not fatal.
error!("pages are mlock(2)ed while trimming");
}
n_trimmed += 1;
self.zero_pages += 1;
} else if let Some(slice_in_file) = file.page_content(idx_in_file, true)? {
// Compare the page with the previous content of the page on the disk.
if slice_in_staging == slice_in_file {
region
.staging_memory
.clear_range(idx_range.clone())
.context("clear a page in staging memory")?;
file.mark_as_present(idx_in_file)?;
n_trimmed += 1;
self.clean_pages += 1;
}
}
}
self.cur_page += 1;
if self.cur_page >= region.num_pages {
self.cur_region += 1;
self.cur_page = 0;
self.next_data_in_file = 0..0;
break;
}
}
Ok(Some(n_trimmed))
}
/// Total trimmed clean pages.
pub fn trimmed_clean_pages(&self) -> usize {
self.clean_pages
}
/// Total trimmed zero pages.
pub fn trimmed_zero_pages(&self) -> usize {
self.zero_pages
}
}