1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
// Copyright 2019 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use std::collections::VecDeque;
use std::io::Read;
use std::io::Write;

use base::warn;
use base::AsRawDescriptor;
use base::RawDescriptor;
use linux_input_sys::constants::*;
use linux_input_sys::input_event;
use linux_input_sys::virtio_input_event;
use linux_input_sys::InputEventDecoder;
use zerocopy::AsBytes;

use super::evdev::grab_evdev;
use super::evdev::ungrab_evdev;
use super::InputError;
use super::Result;

/// Encapsulates a socket or device node into an abstract event source, providing a common
/// interface.
/// It supports read and write operations to provide and accept events just like an event device
/// node would, except that it handles virtio_input_event instead of input_event structures.
/// It's necessary to call receive_events() before events are available for read.
pub trait EventSource: AsRawDescriptor {
    /// Perform any necessary initialization before receiving and sending events from/to the source.
    fn init(&mut self) -> Result<()> {
        Ok(())
    }
    /// Perform any necessary cleanup when the device will no longer be used.
    fn finalize(&mut self) -> Result<()> {
        Ok(())
    }

    /// Receive events from the source, filters them and stores them in a queue for future
    /// consumption by reading from this object. Returns the number of new non filtered events
    /// received. This function may block waiting for events to be available.
    fn receive_events(&mut self) -> Result<usize>;
    /// Returns the number of received events that have not been filtered or consumed yet.
    fn available_events_count(&self) -> usize;
    /// Returns the next available event
    fn pop_available_event(&mut self) -> Option<virtio_input_event>;
    /// Sends a status update event to the source
    fn send_event(&mut self, vio_evt: &virtio_input_event) -> Result<()>;
}

/// Encapsulates implementation details common to all kinds of event sources.
pub struct EventSourceImpl<T> {
    source: T,
    queue: VecDeque<virtio_input_event>,
    read_buffer: Vec<u8>,
    read_idx: usize,
}

impl<T: AsRawDescriptor> EventSourceImpl<T> {
    fn as_raw_descriptor(&self) -> RawDescriptor {
        self.source.as_raw_descriptor()
    }
}

impl<T> EventSourceImpl<T>
where
    T: Read + Write,
{
    // Receive events from the source and store them in a queue.
    fn receive_events<E: InputEventDecoder>(&mut self) -> Result<usize> {
        let read = self
            .source
            .read(&mut self.read_buffer[self.read_idx..])
            .map_err(InputError::EventsReadError)?;
        let buff_size = read + self.read_idx;

        for evt_slice in self.read_buffer[..buff_size].chunks_exact(E::SIZE) {
            self.queue.push_back(E::decode(evt_slice));
        }

        let remainder = buff_size % E::SIZE;
        // If there is an incomplete event at the end of the buffer, it needs to be moved to the
        // beginning and the next read operation must write right after it.
        if remainder != 0 {
            warn!("read incomplete event from source");
            // The copy should only happen if there is at least one complete event in the buffer,
            // otherwise source and destination would be the same.
            if buff_size != remainder {
                let (des, src) = self.read_buffer.split_at_mut(buff_size - remainder);
                des[..remainder].copy_from_slice(&src[..remainder]);
            }
        }
        self.read_idx = remainder;

        let received_events = buff_size / E::SIZE;

        Ok(received_events)
    }

    fn available_events(&self) -> usize {
        self.queue.len()
    }

    fn pop_available_event(&mut self) -> Option<virtio_input_event> {
        self.queue.pop_front()
    }

    fn send_event(&mut self, vio_evt: &virtio_input_event, encoding: EventType) -> Result<()> {
        // Miscellaneous events produced by the device are sent back to it by the kernel input
        // subsystem, but because these events are handled by the host kernel as well as the
        // guest the device would get them twice. Which would prompt the device to send the
        // event to the guest again entering an infinite loop.
        if vio_evt.type_ != EV_MSC {
            let evt;
            let event_bytes = match encoding {
                EventType::InputEvent => {
                    evt = input_event::from_virtio_input_event(vio_evt);
                    evt.as_bytes()
                }
                EventType::VirtioInputEvent => vio_evt.as_bytes(),
            };
            self.source
                .write_all(event_bytes)
                .map_err(InputError::EventsWriteError)?;
        }
        Ok(())
    }

    fn new(source: T, capacity: usize) -> EventSourceImpl<T> {
        EventSourceImpl {
            source,
            queue: VecDeque::new(),
            read_buffer: vec![0; capacity],
            read_idx: 0,
        }
    }
}

enum EventType {
    VirtioInputEvent,
    InputEvent,
}

/// Encapsulates a (unix) socket as an event source.
pub struct SocketEventSource<T> {
    evt_source_impl: EventSourceImpl<T>,
}

impl<T> SocketEventSource<T>
where
    T: Read + Write + AsRawDescriptor,
{
    pub fn new(source: T) -> SocketEventSource<T> {
        SocketEventSource {
            evt_source_impl: EventSourceImpl::new(source, 16 * virtio_input_event::SIZE),
        }
    }
}

impl<T: AsRawDescriptor> AsRawDescriptor for SocketEventSource<T> {
    fn as_raw_descriptor(&self) -> RawDescriptor {
        self.evt_source_impl.as_raw_descriptor()
    }
}

impl<T> EventSource for SocketEventSource<T>
where
    T: Read + Write + AsRawDescriptor,
{
    fn init(&mut self) -> Result<()> {
        Ok(())
    }

    fn finalize(&mut self) -> Result<()> {
        Ok(())
    }

    fn receive_events(&mut self) -> Result<usize> {
        self.evt_source_impl.receive_events::<virtio_input_event>()
    }

    fn available_events_count(&self) -> usize {
        self.evt_source_impl.available_events()
    }

    fn pop_available_event(&mut self) -> Option<virtio_input_event> {
        self.evt_source_impl.pop_available_event()
    }

    fn send_event(&mut self, vio_evt: &virtio_input_event) -> Result<()> {
        self.evt_source_impl
            .send_event(vio_evt, EventType::VirtioInputEvent)
    }
}

/// Encapsulates an event device node as an event source
pub struct EvdevEventSource<T> {
    evt_source_impl: EventSourceImpl<T>,
}

impl<T> EvdevEventSource<T>
where
    T: Read + Write + AsRawDescriptor,
{
    pub fn new(source: T) -> EvdevEventSource<T> {
        EvdevEventSource {
            evt_source_impl: EventSourceImpl::new(source, 16 * input_event::SIZE),
        }
    }
}

impl<T: AsRawDescriptor> AsRawDescriptor for EvdevEventSource<T> {
    fn as_raw_descriptor(&self) -> RawDescriptor {
        self.evt_source_impl.as_raw_descriptor()
    }
}

impl<T> EventSource for EvdevEventSource<T>
where
    T: Read + Write + AsRawDescriptor,
{
    fn init(&mut self) -> Result<()> {
        grab_evdev(self)
    }

    fn finalize(&mut self) -> Result<()> {
        ungrab_evdev(self)
    }

    fn receive_events(&mut self) -> Result<usize> {
        self.evt_source_impl.receive_events::<input_event>()
    }

    fn available_events_count(&self) -> usize {
        self.evt_source_impl.available_events()
    }

    fn pop_available_event(&mut self) -> Option<virtio_input_event> {
        self.evt_source_impl.pop_available_event()
    }

    fn send_event(&mut self, vio_evt: &virtio_input_event) -> Result<()> {
        self.evt_source_impl
            .send_event(vio_evt, EventType::InputEvent)
    }
}

#[cfg(test)]
mod tests {
    use std::cmp::min;
    use std::io::Read;
    use std::io::Write;

    use data_model::Le16;
    use data_model::SLe32;
    use linux_input_sys::InputEventDecoder;
    use zerocopy::AsBytes;

    use crate::virtio::input::event_source::input_event;
    use crate::virtio::input::event_source::virtio_input_event;
    use crate::virtio::input::event_source::EventSourceImpl;

    struct SourceMock {
        events: Vec<u8>,
    }

    impl SourceMock {
        fn new(evts: &[input_event]) -> SourceMock {
            let mut events: Vec<u8> = vec![];
            for evt in evts {
                for byte in evt.as_bytes() {
                    events.push(*byte);
                }
            }
            SourceMock { events }
        }
    }

    impl Read for SourceMock {
        fn read(&mut self, buf: &mut [u8]) -> std::result::Result<usize, std::io::Error> {
            let copy_size = min(buf.len(), self.events.len());
            buf[..copy_size].copy_from_slice(&self.events[..copy_size]);
            Ok(copy_size)
        }
    }
    impl Write for SourceMock {
        fn write(&mut self, buf: &[u8]) -> std::result::Result<usize, std::io::Error> {
            Ok(buf.len())
        }

        fn flush(&mut self) -> std::result::Result<(), std::io::Error> {
            Ok(())
        }
    }

    #[test]
    fn empty_new() {
        let mut source = EventSourceImpl::new(SourceMock::new(&[]), 128);
        assert_eq!(
            source.available_events(),
            0,
            "zero events should be available"
        );
        assert_eq!(
            source.pop_available_event().is_none(),
            true,
            "no events should be available"
        );
    }

    #[test]
    fn empty_receive() {
        let mut source = EventSourceImpl::new(SourceMock::new(&[]), 128);
        assert_eq!(
            source.receive_events::<input_event>().unwrap(),
            0,
            "zero events should be received"
        );
        assert_eq!(
            source.pop_available_event().is_none(),
            true,
            "no events should be available"
        );
    }

    fn instantiate_input_events(count: usize) -> Vec<input_event> {
        let mut ret: Vec<input_event> = Vec::with_capacity(count);
        for idx in 0..count {
            ret.push(input_event {
                timestamp_fields: [0, 0],
                type_: 3 * (idx as u16) + 1,
                code: 3 * (idx as u16) + 2,
                value: if idx % 2 == 0 {
                    3 * (idx as i32) + 3
                } else {
                    -3 * (idx as i32) - 3
                },
            });
        }
        ret
    }

    fn assert_events_match(e1: &virtio_input_event, e2: &input_event) {
        assert_eq!(e1.type_, Le16::from(e2.type_), "type should match");
        assert_eq!(e1.code, Le16::from(e2.code), "code should match");
        assert_eq!(e1.value, SLe32::from(e2.value), "value should match");
    }

    #[test]
    fn partial_pop() {
        let evts = instantiate_input_events(4usize);
        let mut source = EventSourceImpl::new(SourceMock::new(&evts), input_event::SIZE * 4);
        assert_eq!(
            source.receive_events::<input_event>().unwrap(),
            evts.len(),
            "should receive all events"
        );
        let evt_opt = source.pop_available_event();
        assert_eq!(evt_opt.is_some(), true, "event should have been poped");
        let evt = evt_opt.unwrap();
        assert_events_match(&evt, &evts[0]);
    }

    #[test]
    fn total_pop() {
        const EVENT_COUNT: usize = 4;
        let evts = instantiate_input_events(EVENT_COUNT);
        let mut source = EventSourceImpl::new(SourceMock::new(&evts), input_event::SIZE * 4);
        assert_eq!(
            source.receive_events::<input_event>().unwrap(),
            evts.len(),
            "should receive all events"
        );
        for expected_evt in evts[..EVENT_COUNT].iter() {
            let evt = source.pop_available_event().unwrap();
            assert_events_match(&evt, expected_evt);
        }
        assert_eq!(
            source.available_events(),
            0,
            "there should be no events left"
        );
        assert_eq!(
            source.pop_available_event().is_none(),
            true,
            "no events should pop"
        );
    }
}