1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
// Copyright 2020 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Implementation of an Intel ICH10 Input/Output Advanced Programmable Interrupt Controller
// See https://www.intel.com/content/dam/doc/datasheet/io-controller-hub-10-family-datasheet.pdf
// for a specification.
use anyhow::Context;
use base::error;
use base::warn;
use base::Error;
use base::Event;
use base::Result;
use base::Tube;
use base::TubeError;
use hypervisor::IoapicRedirectionTableEntry;
use hypervisor::IoapicState;
use hypervisor::MsiAddressMessage;
use hypervisor::MsiDataMessage;
use hypervisor::TriggerMode;
use hypervisor::NUM_IOAPIC_PINS;
use remain::sorted;
use serde::Deserialize;
use serde::Serialize;
use thiserror::Error;
use vm_control::VmIrqRequest;
use vm_control::VmIrqResponse;
use super::IrqEvent;
use crate::bus::BusAccessInfo;
use crate::pci::CrosvmDeviceId;
use crate::BusDevice;
use crate::DeviceId;
use crate::IrqEventSource;
use crate::Suspendable;
// ICH10 I/O APIC version: 0x20
const IOAPIC_VERSION_ID: u32 = 0x00000020;
pub const IOAPIC_BASE_ADDRESS: u64 = 0xfec00000;
// The Intel manual does not specify this size, but KVM uses it.
pub const IOAPIC_MEM_LENGTH_BYTES: u64 = 0x100;
// Constants for IOAPIC direct register offset.
const IOAPIC_REG_ID: u8 = 0x00;
const IOAPIC_REG_VERSION: u8 = 0x01;
const IOAPIC_REG_ARBITRATION_ID: u8 = 0x02;
// Register offsets
const IOREGSEL_OFF: u8 = 0x0;
const IOREGSEL_DUMMY_UPPER_32_BITS_OFF: u8 = 0x4;
const IOWIN_OFF: u8 = 0x10;
const IOEOIR_OFF: u8 = 0x40;
const IOWIN_SCALE: u8 = 0x2;
/// Given an IRQ and whether or not the selector should refer to the high bits, return a selector
/// suitable to use as an offset to read to/write from.
#[allow(dead_code)]
fn encode_selector_from_irq(irq: usize, is_high_bits: bool) -> u8 {
(irq as u8) * IOWIN_SCALE + IOWIN_OFF + (is_high_bits as u8)
}
/// Given an offset that was read from/written to, return a tuple of the relevant IRQ and whether
/// the offset refers to the high bits of that register.
fn decode_irq_from_selector(selector: u8) -> (usize, bool) {
(
((selector - IOWIN_OFF) / IOWIN_SCALE) as usize,
selector & 1 != 0,
)
}
// The RTC needs special treatment to work properly for Windows (or other OSs that use tick
// stuffing). In order to avoid time drift, we need to guarantee that the correct number of RTC
// interrupts are injected into the guest. This hack essentialy treats RTC interrupts as level
// triggered, which allows the IOAPIC to be responsible for interrupt coalescing and allows the
// IOAPIC to pass back whether or not the interrupt was coalesced to the CMOS (which allows the
// CMOS to perform tick stuffing). This deviates from the IOAPIC spec in ways very similar to (but
// not exactly the same as) KVM's IOAPIC.
const RTC_IRQ: usize = 0x8;
/// This struct is essentially the complete serialized form of [IrqEvent] as used in
/// [Ioapic::out_events].
///
/// [Ioapic] stores MSIs used to back GSIs, but not enough information to re-create these MSIs
/// (it is missing the address & data). It also includes data that is unused by the userspace
/// ioapic (the per gsi resample event, [IrqEvent::resample_event], is always None). This
/// struct incorporates the necessary information for snapshotting, and excludes that which
/// is not required.
#[derive(Clone, Serialize, Deserialize)]
struct OutEventSnapshot {
gsi: u32,
msi_address: u64,
msi_data: u32,
source: IrqEventSource,
}
/// Snapshot of [Ioapic] state. Some fields were intentionally excluded:
/// * [Ioapic::resample_events]: these will get re-registered when the VM is created (e.g. prior to
/// restoring a snapshot).
/// * [Ioapic::out_events]: this isn't serializable as it contains Events. Replaced by
/// [IoapicSnapshot::out_event_snapshots].
/// * [Ioapic::irq_tube]: will be set up as part of creating the VM.
///
/// See [Ioapic] for descriptions of fields by the same names.
#[derive(Serialize, Deserialize)]
struct IoapicSnapshot {
num_pins: usize,
ioregsel: u8,
ioapicid: u32,
rtc_remote_irr: bool,
out_event_snapshots: Vec<Option<OutEventSnapshot>>,
redirect_table: Vec<IoapicRedirectionTableEntry>,
interrupt_level: Vec<bool>,
}
/// Stores the outbound IRQ line in runtime & serializable forms.
struct OutEvent {
/// The actual IrqEvent used to dispatch IRQs when the VM is running.
irq_event: IrqEvent,
/// Serializable form of this IRQ line so that it can be re-created when
/// the VM is snapshotted & resumed. Will be None until the line is
/// completely set up.
snapshot: Option<OutEventSnapshot>,
}
pub struct Ioapic {
/// Number of supported IO-APIC inputs / redirection entries.
num_pins: usize,
/// ioregsel register. Used for selecting which entry of the redirect table to read/write.
ioregsel: u8,
/// ioapicid register. Bits 24 - 27 contain the APIC ID for this device.
ioapicid: u32,
/// Remote IRR for Edge Triggered Real Time Clock interrupts, which allows the CMOS to know
/// when one of its interrupts is being coalesced.
rtc_remote_irr: bool,
/// Outgoing irq events that are used to inject MSI interrupts.
/// Also contains the serializable form used for snapshotting.
out_events: Vec<Option<OutEvent>>,
/// Events that should be triggered on an EOI. The outer Vec is indexed by GSI, and the inner
/// Vec is an unordered list of registered resample events for the GSI.
resample_events: Vec<Vec<Event>>,
/// Redirection settings for each irq line.
redirect_table: Vec<IoapicRedirectionTableEntry>,
/// Interrupt activation state.
interrupt_level: Vec<bool>,
/// Tube used to route MSI irqs.
irq_tube: Tube,
}
impl BusDevice for Ioapic {
fn debug_label(&self) -> String {
"userspace IOAPIC".to_string()
}
fn device_id(&self) -> DeviceId {
CrosvmDeviceId::Ioapic.into()
}
fn read(&mut self, info: BusAccessInfo, data: &mut [u8]) {
if data.len() > 8 || data.is_empty() {
warn!("IOAPIC: Bad read size: {}", data.len());
return;
}
if info.offset >= IOAPIC_MEM_LENGTH_BYTES {
warn!("IOAPIC: Bad read from {}", info);
}
let out = match info.offset as u8 {
IOREGSEL_OFF => self.ioregsel.into(),
IOREGSEL_DUMMY_UPPER_32_BITS_OFF => 0,
IOWIN_OFF => self.ioapic_read(),
IOEOIR_OFF => 0,
_ => {
warn!("IOAPIC: Bad read from {}", info);
return;
}
};
let out_arr = out.to_ne_bytes();
for i in 0..4 {
if i < data.len() {
data[i] = out_arr[i];
}
}
}
fn write(&mut self, info: BusAccessInfo, data: &[u8]) {
if data.len() > 8 || data.is_empty() {
warn!("IOAPIC: Bad write size: {}", data.len());
return;
}
if info.offset >= IOAPIC_MEM_LENGTH_BYTES {
warn!("IOAPIC: Bad write to {}", info);
}
match info.offset as u8 {
IOREGSEL_OFF => self.ioregsel = data[0],
IOREGSEL_DUMMY_UPPER_32_BITS_OFF => {} // Ignored.
IOWIN_OFF => {
if data.len() != 4 {
warn!("IOAPIC: Bad write size for iowin: {}", data.len());
return;
}
let data_arr = [data[0], data[1], data[2], data[3]];
let val = u32::from_ne_bytes(data_arr);
self.ioapic_write(val);
}
IOEOIR_OFF => self.end_of_interrupt(data[0]),
_ => {
warn!("IOAPIC: Bad write to {}", info);
}
}
}
}
impl Ioapic {
pub fn new(irq_tube: Tube, num_pins: usize) -> Result<Ioapic> {
// TODO(dverkamp): clean this up once we are sure all callers use 24 pins.
assert_eq!(num_pins, NUM_IOAPIC_PINS);
let mut entry = IoapicRedirectionTableEntry::new();
entry.set_interrupt_mask(true);
Ok(Ioapic {
num_pins,
ioregsel: 0,
ioapicid: 0,
rtc_remote_irr: false,
out_events: (0..num_pins).map(|_| None).collect(),
resample_events: Vec::new(),
redirect_table: (0..num_pins).map(|_| entry).collect(),
interrupt_level: (0..num_pins).map(|_| false).collect(),
irq_tube,
})
}
pub fn get_ioapic_state(&self) -> IoapicState {
// Convert vector of first NUM_IOAPIC_PINS active interrupts into an u32 value.
let level_bitmap = self
.interrupt_level
.iter()
.take(NUM_IOAPIC_PINS)
.rev()
.fold(0, |acc, &l| acc * 2 + l as u32);
let mut state = IoapicState {
base_address: IOAPIC_BASE_ADDRESS,
ioregsel: self.ioregsel,
ioapicid: self.ioapicid,
current_interrupt_level_bitmap: level_bitmap,
..Default::default()
};
for (dst, src) in state
.redirect_table
.iter_mut()
.zip(self.redirect_table.iter())
{
*dst = *src;
}
state
}
pub fn set_ioapic_state(&mut self, state: &IoapicState) {
self.ioregsel = state.ioregsel;
self.ioapicid = state.ioapicid & 0x0f00_0000;
for (src, dst) in state
.redirect_table
.iter()
.zip(self.redirect_table.iter_mut())
{
*dst = *src;
}
for (i, level) in self
.interrupt_level
.iter_mut()
.take(NUM_IOAPIC_PINS)
.enumerate()
{
*level = state.current_interrupt_level_bitmap & (1 << i) != 0;
}
}
pub fn register_resample_events(&mut self, resample_events: Vec<Vec<Event>>) {
self.resample_events = resample_events;
}
// The ioapic must be informed about EOIs in order to avoid sending multiple interrupts of the
// same type at the same time.
pub fn end_of_interrupt(&mut self, vector: u8) {
if self.redirect_table[RTC_IRQ].get_vector() == vector && self.rtc_remote_irr {
// Specifically clear RTC IRQ field
self.rtc_remote_irr = false;
}
for i in 0..self.num_pins {
if self.redirect_table[i].get_vector() == vector
&& self.redirect_table[i].get_trigger_mode() == TriggerMode::Level
{
if self
.resample_events
.get(i)
.map_or(false, |events| !events.is_empty())
{
self.service_irq(i, false);
}
if let Some(resample_events) = self.resample_events.get(i) {
for resample_evt in resample_events {
resample_evt.signal().unwrap();
}
}
self.redirect_table[i].set_remote_irr(false);
}
// There is an inherent race condition in hardware if the OS is finished processing an
// interrupt and a new interrupt is delivered between issuing an EOI and the EOI being
// completed. When that happens the ioapic is supposed to re-inject the interrupt.
if self.interrupt_level[i] {
self.service_irq(i, true);
}
}
}
pub fn service_irq(&mut self, irq: usize, level: bool) -> bool {
let entry = &mut self.redirect_table[irq];
// De-assert the interrupt.
if !level {
self.interrupt_level[irq] = false;
return true;
}
// If it's an edge-triggered interrupt that's already high we ignore it.
if entry.get_trigger_mode() == TriggerMode::Edge && self.interrupt_level[irq] {
return false;
}
self.interrupt_level[irq] = true;
// Interrupts are masked, so don't inject.
if entry.get_interrupt_mask() {
return false;
}
// Level-triggered and remote irr is already active, so we don't inject a new interrupt.
// (Coalesce with the prior one(s)).
if entry.get_trigger_mode() == TriggerMode::Level && entry.get_remote_irr() {
return false;
}
// Coalesce RTC interrupt to make tick stuffing work.
if irq == RTC_IRQ && self.rtc_remote_irr {
return false;
}
let injected = match self.out_events.get(irq) {
Some(Some(out_event)) => out_event.irq_event.event.signal().is_ok(),
_ => false,
};
if entry.get_trigger_mode() == TriggerMode::Level && level && injected {
entry.set_remote_irr(true);
} else if irq == RTC_IRQ && injected {
self.rtc_remote_irr = true;
}
injected
}
fn ioapic_write(&mut self, val: u32) {
match self.ioregsel {
IOAPIC_REG_VERSION => { /* read-only register */ }
IOAPIC_REG_ID => self.ioapicid = val & 0x0f00_0000,
IOAPIC_REG_ARBITRATION_ID => { /* read-only register */ }
_ => {
if self.ioregsel < IOWIN_OFF {
// Invalid write; ignore.
return;
}
let (index, is_high_bits) = decode_irq_from_selector(self.ioregsel);
if index >= self.num_pins {
// Invalid write; ignore.
return;
}
let entry = &mut self.redirect_table[index];
if is_high_bits {
entry.set(32, 32, val.into());
} else {
let before = *entry;
entry.set(0, 32, val.into());
// respect R/O bits.
entry.set_delivery_status(before.get_delivery_status());
entry.set_remote_irr(before.get_remote_irr());
// Clear remote_irr when switching to edge_triggered.
if entry.get_trigger_mode() == TriggerMode::Edge {
entry.set_remote_irr(false);
}
// NOTE: on pre-4.0 kernels, there's a race we would need to work around.
// "KVM: x86: ioapic: Fix level-triggered EOI and IOAPIC reconfigure race"
// is the fix for this.
}
if self.redirect_table[index].get_trigger_mode() == TriggerMode::Level
&& self.interrupt_level[index]
&& !self.redirect_table[index].get_interrupt_mask()
{
self.service_irq(index, true);
}
let mut address = MsiAddressMessage::new();
let mut data = MsiDataMessage::new();
let entry = &self.redirect_table[index];
address.set_destination_mode(entry.get_dest_mode());
address.set_destination_id(entry.get_dest_id());
address.set_always_0xfee(0xfee);
data.set_vector(entry.get_vector());
data.set_delivery_mode(entry.get_delivery_mode());
data.set_trigger(entry.get_trigger_mode());
let msi_address = address.get(0, 32);
let msi_data = data.get(0, 32);
if let Err(e) = self.setup_msi(index, msi_address, msi_data as u32) {
error!("IOAPIC failed to set up MSI for index {}: {}", index, e);
}
}
}
}
fn setup_msi(
&mut self,
index: usize,
msi_address: u64,
msi_data: u32,
) -> std::result::Result<(), IoapicError> {
if msi_data == 0 {
// During boot, Linux first configures all ioapic pins with msi_data == 0; the routes
// aren't yet assigned to devices and aren't usable. We skip MSI setup if msi_data is
// 0.
return Ok(());
}
// Allocate a GSI and event for the outgoing route, if we haven't already done it.
// The event will be used on the "outgoing" end of the ioapic to send an interrupt to the
// apics: when an incoming ioapic irq line gets signalled, the ioapic writes to the
// corresponding outgoing event. The GSI number is used to update the routing info (MSI
// data and addr) for the event. The GSI and event are allocated only once for each ioapic
// irq line, when the guest first sets up the ioapic with a valid route. If the guest
// later reconfigures an ioapic irq line, the same GSI and event are reused, and we change
// the GSI's route to the new MSI data+addr destination.
let name = self.debug_label();
let gsi = if let Some(evt) = &self.out_events[index] {
evt.irq_event.gsi
} else {
let event = Event::new().map_err(IoapicError::CreateEvent)?;
let request = VmIrqRequest::AllocateOneMsi {
irqfd: event,
device_id: self.device_id().into(),
queue_id: index, // Use out_events index as queue_id for outgoing ioapic MSIs
device_name: name.clone(),
};
self.irq_tube
.send(&request)
.map_err(IoapicError::AllocateOneMsiSend)?;
match self
.irq_tube
.recv()
.map_err(IoapicError::AllocateOneMsiRecv)?
{
VmIrqResponse::AllocateOneMsi { gsi, .. } => {
self.out_events[index] = Some(OutEvent {
irq_event: IrqEvent {
gsi,
event: match request {
VmIrqRequest::AllocateOneMsi { irqfd, .. } => irqfd,
_ => unreachable!(),
},
resample_event: None,
// This source isn't currently used for anything, we already sent the
// relevant source information to the main thread via the AllocateOneMsi
// request, but we populate it anyways for debugging.
source: IrqEventSource {
device_id: self.device_id(),
queue_id: index,
device_name: name,
},
},
snapshot: None,
});
gsi
}
VmIrqResponse::Err(e) => return Err(IoapicError::AllocateOneMsi(e)),
_ => unreachable!(),
}
};
// Set the MSI route for the GSI. This controls which apic(s) get the interrupt when the
// ioapic's outgoing event is written, and various attributes of how the interrupt is
// delivered.
let request = VmIrqRequest::AddMsiRoute {
gsi,
msi_address,
msi_data,
};
self.irq_tube
.send(&request)
.map_err(IoapicError::AddMsiRouteSend)?;
if let VmIrqResponse::Err(e) = self.irq_tube.recv().map_err(IoapicError::AddMsiRouteRecv)? {
return Err(IoapicError::AddMsiRoute(e));
}
// Track this MSI route for snapshotting so it can be restored.
self.out_events[index]
.as_mut()
.expect("IRQ is guaranteed initialized")
.snapshot = Some(OutEventSnapshot {
gsi,
msi_address,
msi_data,
source: IrqEventSource {
device_id: self.device_id(),
queue_id: index,
device_name: self.debug_label(),
},
});
Ok(())
}
/// Similar to [Ioapic::setup_msi], but used only to re-create an MSI as
/// part of the snapshot restore process, which allows us to assume certain
/// invariants (like msi_data != 0) already hold.
fn restore_msi(
&mut self,
index: usize,
gsi: u32,
msi_address: u64,
msi_data: u32,
) -> std::result::Result<(), IoapicError> {
let event = Event::new().map_err(IoapicError::CreateEvent)?;
let name = self.debug_label();
let request = VmIrqRequest::AllocateOneMsiAtGsi {
irqfd: event,
gsi,
device_id: self.device_id().into(),
queue_id: index, // Use out_events index as queue_id for outgoing ioapic MSIs
device_name: name.clone(),
};
self.irq_tube
.send(&request)
.map_err(IoapicError::AllocateOneMsiSend)?;
if let VmIrqResponse::Err(e) = self
.irq_tube
.recv()
.map_err(IoapicError::AllocateOneMsiRecv)?
{
return Err(IoapicError::AllocateOneMsi(e));
}
self.out_events[index] = Some(OutEvent {
irq_event: IrqEvent {
gsi,
event: match request {
VmIrqRequest::AllocateOneMsiAtGsi { irqfd, .. } => irqfd,
_ => unreachable!(),
},
resample_event: None,
// This source isn't currently used for anything, we already sent the
// relevant source information to the main thread via the AllocateOneMsi
// request, but we populate it anyways for debugging.
source: IrqEventSource {
device_id: self.device_id(),
queue_id: index,
device_name: name,
},
},
snapshot: None,
});
// Set the MSI route for the GSI. This controls which apic(s) get the interrupt when the
// ioapic's outgoing event is written, and various attributes of how the interrupt is
// delivered.
let request = VmIrqRequest::AddMsiRoute {
gsi,
msi_address,
msi_data,
};
self.irq_tube
.send(&request)
.map_err(IoapicError::AddMsiRouteSend)?;
if let VmIrqResponse::Err(e) = self.irq_tube.recv().map_err(IoapicError::AddMsiRouteRecv)? {
return Err(IoapicError::AddMsiRoute(e));
}
// Track this MSI route for snapshotting so it can be restored.
self.out_events[index]
.as_mut()
.expect("IRQ is guaranteed initialized")
.snapshot = Some(OutEventSnapshot {
gsi,
msi_address,
msi_data,
source: IrqEventSource {
device_id: self.device_id(),
queue_id: index,
device_name: self.debug_label(),
},
});
Ok(())
}
/// On warm restore, there could already be MSIs registered. We need to
/// release them in case the routing has changed (e.g. different
/// data <-> GSI).
fn release_all_msis(&mut self) -> std::result::Result<(), IoapicError> {
for out_event in self.out_events.drain(..).flatten() {
let request = VmIrqRequest::ReleaseOneIrq {
gsi: out_event.irq_event.gsi,
irqfd: out_event.irq_event.event,
};
self.irq_tube
.send(&request)
.map_err(IoapicError::ReleaseOneIrqSend)?;
if let VmIrqResponse::Err(e) = self
.irq_tube
.recv()
.map_err(IoapicError::ReleaseOneIrqRecv)?
{
return Err(IoapicError::ReleaseOneIrq(e));
}
}
Ok(())
}
fn ioapic_read(&mut self) -> u32 {
match self.ioregsel {
IOAPIC_REG_VERSION => ((self.num_pins - 1) as u32) << 16 | IOAPIC_VERSION_ID,
IOAPIC_REG_ID | IOAPIC_REG_ARBITRATION_ID => self.ioapicid,
_ => {
if self.ioregsel < IOWIN_OFF {
// Invalid read; ignore and return 0.
0
} else {
let (index, is_high_bits) = decode_irq_from_selector(self.ioregsel);
if index < self.num_pins {
let offset = if is_high_bits { 32 } else { 0 };
self.redirect_table[index].get(offset, 32) as u32
} else {
!0 // Invalid index - return all 1s
}
}
}
}
}
}
impl Suspendable for Ioapic {
fn snapshot(&mut self) -> anyhow::Result<serde_json::Value> {
serde_json::to_value(IoapicSnapshot {
num_pins: self.num_pins,
ioregsel: self.ioregsel,
ioapicid: self.ioapicid,
rtc_remote_irr: self.rtc_remote_irr,
out_event_snapshots: self
.out_events
.iter()
.map(|out_event_opt| {
if let Some(out_event) = out_event_opt {
out_event.snapshot.clone()
} else {
None
}
})
.collect(),
redirect_table: self.redirect_table.clone(),
interrupt_level: self.interrupt_level.clone(),
})
.context("failed serializing Ioapic")
}
fn restore(&mut self, data: serde_json::Value) -> anyhow::Result<()> {
let snap: IoapicSnapshot =
serde_json::from_value(data).context("failed to deserialize Ioapic snapshot")?;
self.num_pins = snap.num_pins;
self.ioregsel = snap.ioregsel;
self.ioapicid = snap.ioapicid;
self.rtc_remote_irr = snap.rtc_remote_irr;
self.redirect_table = snap.redirect_table;
self.interrupt_level = snap.interrupt_level;
self.release_all_msis()
.context("failed to clear MSIs prior to restore")?;
self.out_events = (0..snap.num_pins).map(|_| None).collect();
for (index, maybe_out_event) in snap.out_event_snapshots.iter().enumerate() {
if let Some(out_event) = maybe_out_event {
self.restore_msi(
index,
out_event.gsi,
out_event.msi_address,
out_event.msi_data,
)?;
}
}
Ok(())
}
fn sleep(&mut self) -> anyhow::Result<()> {
Ok(())
}
fn wake(&mut self) -> anyhow::Result<()> {
Ok(())
}
}
#[sorted]
#[derive(Error, Debug)]
enum IoapicError {
#[error("AddMsiRoute failed: {0}")]
AddMsiRoute(Error),
#[error("failed to receive AddMsiRoute response: {0}")]
AddMsiRouteRecv(TubeError),
#[error("failed to send AddMsiRoute request: {0}")]
AddMsiRouteSend(TubeError),
#[error("AllocateOneMsi failed: {0}")]
AllocateOneMsi(Error),
#[error("failed to receive AllocateOneMsi response: {0}")]
AllocateOneMsiRecv(TubeError),
#[error("failed to send AllocateOneMsi request: {0}")]
AllocateOneMsiSend(TubeError),
#[error("failed to create event object: {0}")]
CreateEvent(Error),
#[error("ReleaseOneIrq failed: {0}")]
ReleaseOneIrq(Error),
#[error("failed to receive ReleaseOneIrq response: {0}")]
ReleaseOneIrqRecv(TubeError),
#[error("failed to send ReleaseOneIrq request: {0}")]
ReleaseOneIrqSend(TubeError),
}
#[cfg(test)]
mod tests {
use std::thread;
use hypervisor::DeliveryMode;
use hypervisor::DeliveryStatus;
use hypervisor::DestinationMode;
use super::*;
const DEFAULT_VECTOR: u8 = 0x3a;
const DEFAULT_DESTINATION_ID: u8 = 0x5f;
fn new() -> Ioapic {
let (_, irq_tube) = Tube::pair().unwrap();
Ioapic::new(irq_tube, NUM_IOAPIC_PINS).unwrap()
}
fn ioapic_bus_address(offset: u8) -> BusAccessInfo {
let offset = offset as u64;
BusAccessInfo {
offset,
address: IOAPIC_BASE_ADDRESS + offset,
id: 0,
}
}
fn set_up(trigger: TriggerMode) -> (Ioapic, usize) {
let irq = NUM_IOAPIC_PINS - 1;
let ioapic = set_up_with_irq(irq, trigger);
(ioapic, irq)
}
fn set_up_with_irq(irq: usize, trigger: TriggerMode) -> Ioapic {
let mut ioapic = self::new();
set_up_redirection_table_entry(&mut ioapic, irq, trigger);
ioapic.out_events[irq] = Some(OutEvent {
irq_event: IrqEvent {
gsi: NUM_IOAPIC_PINS as u32,
event: Event::new().unwrap(),
resample_event: None,
source: IrqEventSource {
device_id: ioapic.device_id(),
queue_id: irq,
device_name: ioapic.debug_label(),
},
},
snapshot: Some(OutEventSnapshot {
gsi: NUM_IOAPIC_PINS as u32,
msi_address: 0xa,
msi_data: 0xd,
source: IrqEventSource {
device_id: ioapic.device_id(),
queue_id: irq,
device_name: ioapic.debug_label(),
},
}),
});
ioapic
}
fn read_reg(ioapic: &mut Ioapic, selector: u8) -> u32 {
let mut data = [0; 4];
ioapic.write(ioapic_bus_address(IOREGSEL_OFF), &[selector]);
ioapic.read(ioapic_bus_address(IOWIN_OFF), &mut data);
u32::from_ne_bytes(data)
}
fn write_reg(ioapic: &mut Ioapic, selector: u8, value: u32) {
ioapic.write(ioapic_bus_address(IOREGSEL_OFF), &[selector]);
ioapic.write(ioapic_bus_address(IOWIN_OFF), &value.to_ne_bytes());
}
fn read_entry(ioapic: &mut Ioapic, irq: usize) -> IoapicRedirectionTableEntry {
let mut entry = IoapicRedirectionTableEntry::new();
entry.set(
0,
32,
read_reg(ioapic, encode_selector_from_irq(irq, false)).into(),
);
entry.set(
32,
32,
read_reg(ioapic, encode_selector_from_irq(irq, true)).into(),
);
entry
}
fn write_entry(ioapic: &mut Ioapic, irq: usize, entry: IoapicRedirectionTableEntry) {
write_reg(
ioapic,
encode_selector_from_irq(irq, false),
entry.get(0, 32) as u32,
);
write_reg(
ioapic,
encode_selector_from_irq(irq, true),
entry.get(32, 32) as u32,
);
}
fn set_up_redirection_table_entry(ioapic: &mut Ioapic, irq: usize, trigger_mode: TriggerMode) {
let mut entry = IoapicRedirectionTableEntry::new();
entry.set_vector(DEFAULT_DESTINATION_ID);
entry.set_delivery_mode(DeliveryMode::Startup);
entry.set_delivery_status(DeliveryStatus::Pending);
entry.set_dest_id(DEFAULT_VECTOR);
entry.set_trigger_mode(trigger_mode);
write_entry(ioapic, irq, entry);
}
fn set_mask(ioapic: &mut Ioapic, irq: usize, mask: bool) {
let mut entry = read_entry(ioapic, irq);
entry.set_interrupt_mask(mask);
write_entry(ioapic, irq, entry);
}
#[test]
fn write_read_ioregsel() {
let mut ioapic = self::new();
let data_write = [0x0f, 0xf0, 0x01, 0xff];
let mut data_read = [0; 4];
for i in 0..data_write.len() {
ioapic.write(ioapic_bus_address(IOREGSEL_OFF), &data_write[i..i + 1]);
ioapic.read(ioapic_bus_address(IOREGSEL_OFF), &mut data_read[i..i + 1]);
assert_eq!(data_write[i], data_read[i]);
}
}
// Verify that version register is actually read-only.
#[test]
fn write_read_ioaic_reg_version() {
let mut ioapic = self::new();
let before = read_reg(&mut ioapic, IOAPIC_REG_VERSION);
let data_write = !before;
write_reg(&mut ioapic, IOAPIC_REG_VERSION, data_write);
assert_eq!(read_reg(&mut ioapic, IOAPIC_REG_VERSION), before);
}
// Verify that only bits 27:24 of the IOAPICID are readable/writable.
#[test]
fn write_read_ioapic_reg_id() {
let mut ioapic = self::new();
write_reg(&mut ioapic, IOAPIC_REG_ID, 0x1f3e5d7c);
assert_eq!(read_reg(&mut ioapic, IOAPIC_REG_ID), 0x0f000000);
}
// Write to read-only register IOAPICARB.
#[test]
fn write_read_ioapic_arbitration_id() {
let mut ioapic = self::new();
let data_write_id = 0x1f3e5d7c;
let expected_result = 0x0f000000;
// Write to IOAPICID. This should also change IOAPICARB.
write_reg(&mut ioapic, IOAPIC_REG_ID, data_write_id);
// Read IOAPICARB
assert_eq!(
read_reg(&mut ioapic, IOAPIC_REG_ARBITRATION_ID),
expected_result
);
// Try to write to IOAPICARB and verify unchanged result.
write_reg(&mut ioapic, IOAPIC_REG_ARBITRATION_ID, !data_write_id);
assert_eq!(
read_reg(&mut ioapic, IOAPIC_REG_ARBITRATION_ID),
expected_result
);
}
#[test]
#[should_panic(expected = "index out of bounds: the len is 24 but the index is 24")]
fn service_invalid_irq() {
let mut ioapic = self::new();
ioapic.service_irq(NUM_IOAPIC_PINS, false);
}
// Test a level triggered IRQ interrupt.
#[test]
fn service_level_irq() {
let (mut ioapic, irq) = set_up(TriggerMode::Level);
// TODO(mutexlox): Check that interrupt is fired once.
ioapic.service_irq(irq, true);
ioapic.service_irq(irq, false);
}
#[test]
fn service_multiple_level_irqs() {
let (mut ioapic, irq) = set_up(TriggerMode::Level);
// TODO(mutexlox): Check that interrupt is fired twice.
ioapic.service_irq(irq, true);
ioapic.service_irq(irq, false);
ioapic.end_of_interrupt(DEFAULT_DESTINATION_ID);
ioapic.service_irq(irq, true);
}
// Test multiple level interrupts without an EOI and verify that only one interrupt is
// delivered.
#[test]
fn coalesce_multiple_level_irqs() {
let (mut ioapic, irq) = set_up(TriggerMode::Level);
// TODO(mutexlox): Test that only one interrupt is delivered.
ioapic.service_irq(irq, true);
ioapic.service_irq(irq, false);
ioapic.service_irq(irq, true);
}
// Test multiple RTC interrupts without an EOI and verify that only one interrupt is delivered.
#[test]
fn coalesce_multiple_rtc_irqs() {
let irq = RTC_IRQ;
let mut ioapic = set_up_with_irq(irq, TriggerMode::Edge);
// TODO(mutexlox): Verify that only one IRQ is delivered.
ioapic.service_irq(irq, true);
ioapic.service_irq(irq, false);
ioapic.service_irq(irq, true);
}
// Test that a level interrupt that has been coalesced is re-raised if a guest issues an
// EndOfInterrupt after the interrupt was coalesced while the line is still asserted.
#[test]
fn reinject_level_interrupt() {
let (mut ioapic, irq) = set_up(TriggerMode::Level);
// TODO(mutexlox): Verify that only one IRQ is delivered.
ioapic.service_irq(irq, true);
ioapic.service_irq(irq, false);
ioapic.service_irq(irq, true);
// TODO(mutexlox): Verify that this last interrupt occurs as a result of the EOI, rather
// than in response to the last service_irq.
ioapic.end_of_interrupt(DEFAULT_DESTINATION_ID);
}
#[test]
fn service_edge_triggered_irq() {
let (mut ioapic, irq) = set_up(TriggerMode::Edge);
// TODO(mutexlox): Verify that one interrupt is delivered.
ioapic.service_irq(irq, true);
ioapic.service_irq(irq, true); // Repeated asserts before a deassert should be ignored.
ioapic.service_irq(irq, false);
}
// Verify that the state of an edge-triggered interrupt is properly tracked even when the
// interrupt is disabled.
#[test]
fn edge_trigger_unmask_test() {
let (mut ioapic, irq) = set_up(TriggerMode::Edge);
// TODO(mutexlox): Expect an IRQ.
ioapic.service_irq(irq, true);
set_mask(&mut ioapic, irq, true);
ioapic.service_irq(irq, false);
// No interrupt triggered while masked.
ioapic.service_irq(irq, true);
ioapic.service_irq(irq, false);
set_mask(&mut ioapic, irq, false);
// TODO(mutexlox): Expect another interrupt.
// Interrupt triggered while unmasked, even though when it was masked the level was high.
ioapic.service_irq(irq, true);
ioapic.service_irq(irq, false);
}
// Verify that a level-triggered interrupt that is triggered while masked will fire once the
// interrupt is unmasked.
#[test]
fn level_trigger_unmask_test() {
let (mut ioapic, irq) = set_up(TriggerMode::Level);
set_mask(&mut ioapic, irq, true);
ioapic.service_irq(irq, true);
// TODO(mutexlox): expect an interrupt after this.
set_mask(&mut ioapic, irq, false);
}
// Verify that multiple asserts before a deassert are ignored even if there's an EOI between
// them.
#[test]
fn end_of_interrupt_edge_triggered_irq() {
let (mut ioapic, irq) = set_up(TriggerMode::Edge);
// TODO(mutexlox): Expect 1 interrupt.
ioapic.service_irq(irq, true);
ioapic.end_of_interrupt(DEFAULT_DESTINATION_ID);
// Repeated asserts before a de-assert should be ignored.
ioapic.service_irq(irq, true);
ioapic.service_irq(irq, false);
}
// Send multiple edge-triggered interrupts in a row.
#[test]
fn service_multiple_edge_irqs() {
let (mut ioapic, irq) = set_up(TriggerMode::Edge);
ioapic.service_irq(irq, true);
// TODO(mutexlox): Verify that an interrupt occurs here.
ioapic.service_irq(irq, false);
ioapic.service_irq(irq, true);
// TODO(mutexlox): Verify that an interrupt occurs here.
ioapic.service_irq(irq, false);
}
// Test an interrupt line with negative polarity.
#[test]
fn service_negative_polarity_irq() {
let (mut ioapic, irq) = set_up(TriggerMode::Level);
let mut entry = read_entry(&mut ioapic, irq);
entry.set_polarity(1);
write_entry(&mut ioapic, irq, entry);
// TODO(mutexlox): Expect an interrupt to fire.
ioapic.service_irq(irq, false);
}
// Ensure that remote IRR can't be edited via mmio.
#[test]
fn remote_irr_read_only() {
let (mut ioapic, irq) = set_up(TriggerMode::Level);
ioapic.redirect_table[irq].set_remote_irr(true);
let mut entry = read_entry(&mut ioapic, irq);
entry.set_remote_irr(false);
write_entry(&mut ioapic, irq, entry);
assert_eq!(read_entry(&mut ioapic, irq).get_remote_irr(), true);
}
#[test]
fn delivery_status_read_only() {
let (mut ioapic, irq) = set_up(TriggerMode::Level);
ioapic.redirect_table[irq].set_delivery_status(DeliveryStatus::Pending);
let mut entry = read_entry(&mut ioapic, irq);
entry.set_delivery_status(DeliveryStatus::Idle);
write_entry(&mut ioapic, irq, entry);
assert_eq!(
read_entry(&mut ioapic, irq).get_delivery_status(),
DeliveryStatus::Pending
);
}
#[test]
fn level_to_edge_transition_clears_remote_irr() {
let (mut ioapic, irq) = set_up(TriggerMode::Level);
ioapic.redirect_table[irq].set_remote_irr(true);
let mut entry = read_entry(&mut ioapic, irq);
entry.set_trigger_mode(TriggerMode::Edge);
write_entry(&mut ioapic, irq, entry);
assert_eq!(read_entry(&mut ioapic, irq).get_remote_irr(), false);
}
#[test]
fn masking_preserves_remote_irr() {
let (mut ioapic, irq) = set_up(TriggerMode::Level);
ioapic.redirect_table[irq].set_remote_irr(true);
set_mask(&mut ioapic, irq, true);
set_mask(&mut ioapic, irq, false);
assert_eq!(read_entry(&mut ioapic, irq).get_remote_irr(), true);
}
// Test reconfiguration racing with EOIs.
#[test]
fn reconfiguration_race() {
let (mut ioapic, irq) = set_up(TriggerMode::Level);
// Fire one level-triggered interrupt.
// TODO(mutexlox): Check that it fires.
ioapic.service_irq(irq, true);
// Read the redirection table entry before the EOI...
let mut entry = read_entry(&mut ioapic, irq);
entry.set_trigger_mode(TriggerMode::Edge);
ioapic.service_irq(irq, false);
ioapic.end_of_interrupt(DEFAULT_DESTINATION_ID);
// ... and write back that (modified) value.
write_entry(&mut ioapic, irq, entry);
// Fire one *edge* triggered interrupt
// TODO(mutexlox): Assert that the interrupt fires once.
ioapic.service_irq(irq, true);
ioapic.service_irq(irq, false);
}
// Ensure that swapping to edge triggered and back clears the remote irr bit.
#[test]
fn implicit_eoi() {
let (mut ioapic, irq) = set_up(TriggerMode::Level);
// Fire one level-triggered interrupt.
ioapic.service_irq(irq, true);
// TODO(mutexlox): Verify that one interrupt was fired.
ioapic.service_irq(irq, false);
// Do an implicit EOI by cycling between edge and level triggered.
let mut entry = read_entry(&mut ioapic, irq);
entry.set_trigger_mode(TriggerMode::Edge);
write_entry(&mut ioapic, irq, entry);
entry.set_trigger_mode(TriggerMode::Level);
write_entry(&mut ioapic, irq, entry);
// Fire one level-triggered interrupt.
ioapic.service_irq(irq, true);
// TODO(mutexlox): Verify that one interrupt fires.
ioapic.service_irq(irq, false);
}
#[test]
fn set_redirection_entry_by_bits() {
let mut entry = IoapicRedirectionTableEntry::new();
// destination_mode
// polarity |
// trigger_mode | |
// | | |
// 0011 1010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1001 0110 0101 1111
// |_______| |______________________________________________|| | | |_| |_______|
// dest_id reserved | | | | vector
// interrupt_mask | | |
// remote_irr | |
// delivery_status |
// delivery_mode
entry.set(0, 64, 0x3a0000000000965f);
assert_eq!(entry.get_vector(), 0x5f);
assert_eq!(entry.get_delivery_mode(), DeliveryMode::Startup);
assert_eq!(entry.get_dest_mode(), DestinationMode::Physical);
assert_eq!(entry.get_delivery_status(), DeliveryStatus::Pending);
assert_eq!(entry.get_polarity(), 0);
assert_eq!(entry.get_remote_irr(), false);
assert_eq!(entry.get_trigger_mode(), TriggerMode::Level);
assert_eq!(entry.get_interrupt_mask(), false);
assert_eq!(entry.get_reserved(), 0);
assert_eq!(entry.get_dest_id(), 0x3a);
let (mut ioapic, irq) = set_up(TriggerMode::Edge);
write_entry(&mut ioapic, irq, entry);
assert_eq!(
read_entry(&mut ioapic, irq).get_trigger_mode(),
TriggerMode::Level
);
// TODO(mutexlox): Verify that this actually fires an interrupt.
ioapic.service_irq(irq, true);
}
#[track_caller]
fn recv_allocate_msi(t: &Tube) -> u32 {
match t.recv::<VmIrqRequest>().unwrap() {
VmIrqRequest::AllocateOneMsiAtGsi { gsi, .. } => gsi,
msg => panic!("unexpected irqchip message: {:?}", msg),
}
}
struct MsiRouteDetails {
gsi: u32,
msi_address: u64,
msi_data: u32,
}
#[track_caller]
fn recv_add_msi_route(t: &Tube) -> MsiRouteDetails {
match t.recv::<VmIrqRequest>().unwrap() {
VmIrqRequest::AddMsiRoute {
gsi,
msi_address,
msi_data,
} => MsiRouteDetails {
gsi,
msi_address,
msi_data,
},
msg => panic!("unexpected irqchip message: {:?}", msg),
}
}
#[track_caller]
fn recv_release_one_irq(t: &Tube) -> u32 {
match t.recv::<VmIrqRequest>().unwrap() {
VmIrqRequest::ReleaseOneIrq { gsi, irqfd: _ } => gsi,
msg => panic!("unexpected irqchip message: {:?}", msg),
}
}
#[track_caller]
fn send_ok(t: &Tube) {
t.send(&VmIrqResponse::Ok).unwrap();
}
/// Simulates restoring the ioapic as if the VM had never booted a guest.
/// This is called the "cold" restore case since all the devices are
/// expected to be essentially blank / unconfigured.
#[test]
fn verify_ioapic_restore_cold_smoke() {
let (irqchip_tube, ioapic_irq_tube) = Tube::pair().unwrap();
let gsi_num = NUM_IOAPIC_PINS as u32;
// Creates an ioapic w/ an MSI for GSI = NUM_IOAPIC_PINS, MSI
// address 0xa, and data 0xd. The irq index (pin number) is 10, but
// this is not meaningful.
let mut saved_ioapic = set_up_with_irq(10, TriggerMode::Level);
// Take a snapshot of the ioapic.
let snapshot = saved_ioapic.snapshot().unwrap();
// Create a fake irqchip to respond to our requests.
let irqchip_fake = thread::spawn(move || {
assert_eq!(recv_allocate_msi(&irqchip_tube), gsi_num);
send_ok(&irqchip_tube);
let route = recv_add_msi_route(&irqchip_tube);
assert_eq!(route.gsi, gsi_num);
assert_eq!(route.msi_address, 0xa);
assert_eq!(route.msi_data, 0xd);
send_ok(&irqchip_tube);
irqchip_tube
});
let mut restored_ioapic = Ioapic::new(ioapic_irq_tube, NUM_IOAPIC_PINS).unwrap();
restored_ioapic.restore(snapshot).unwrap();
irqchip_fake.join().unwrap();
}
/// In the warm case, we are restoring to an Ioapic that already exists and
/// may have MSIs already allocated. Here, we're verifying the restore
/// process releases any existing MSIs before registering the restored MSIs.
#[test]
fn verify_ioapic_restore_warm_smoke() {
let (irqchip_tube, ioapic_irq_tube) = Tube::pair().unwrap();
let gsi_num = NUM_IOAPIC_PINS as u32;
// Creates an ioapic w/ an MSI for GSI = NUM_IOAPIC_PINS, MSI
// address 0xa, and data 0xd. The irq index (pin number) is 10, but
// this is not meaningful.
let mut ioapic = set_up_with_irq(10, TriggerMode::Level);
// We don't connect this Tube until after the IRQ is initially set up
// as it triggers messages we don't want to assert on (they're about
// ioapic functionality, not snapshotting).
ioapic.irq_tube = ioapic_irq_tube;
// Take a snapshot of the ioapic.
let snapshot = ioapic.snapshot().unwrap();
// Create a fake irqchip to respond to our requests.
let irqchip_fake = thread::spawn(move || {
// We should clear the existing MSI as the first restore step.
assert_eq!(recv_release_one_irq(&irqchip_tube), gsi_num);
send_ok(&irqchip_tube);
// Then re-allocate it as part of restoring.
assert_eq!(recv_allocate_msi(&irqchip_tube), gsi_num);
send_ok(&irqchip_tube);
let route = recv_add_msi_route(&irqchip_tube);
assert_eq!(route.gsi, gsi_num);
assert_eq!(route.msi_address, 0xa);
assert_eq!(route.msi_data, 0xd);
send_ok(&irqchip_tube);
irqchip_tube
});
ioapic.restore(snapshot).unwrap();
irqchip_fake.join().unwrap();
}
}