1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
// Copyright 2017 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! Track memory regions that are mapped to the guest VM.
use std::convert::AsRef;
use std::convert::TryFrom;
use std::fs::File;
use std::io::Read;
use std::io::Write;
use std::marker::Send;
use std::marker::Sync;
use std::result;
use std::sync::Arc;
use anyhow::bail;
use anyhow::Context;
use base::pagesize;
use base::AsRawDescriptor;
use base::AsRawDescriptors;
use base::Error as SysError;
use base::MappedRegion;
use base::MemoryMapping;
use base::MemoryMappingBuilder;
use base::MmapError;
use base::RawDescriptor;
use base::SharedMemory;
use base::VolatileMemory;
use base::VolatileMemoryError;
use base::VolatileSlice;
use cros_async::mem;
use cros_async::BackingMemory;
use remain::sorted;
use thiserror::Error;
use zerocopy::AsBytes;
use zerocopy::FromBytes;
use crate::guest_address::GuestAddress;
mod sys;
pub use sys::MemoryPolicy;
#[sorted]
#[derive(Error, Debug)]
pub enum Error {
#[error("invalid guest address {0}")]
InvalidGuestAddress(GuestAddress),
#[error("invalid offset {0}")]
InvalidOffset(u64),
#[error("size {0} must not be zero")]
InvalidSize(usize),
#[error("invalid guest memory access at addr={0}: {1}")]
MemoryAccess(GuestAddress, #[source] MmapError),
#[error("failed to set seals on shm region: {0}")]
MemoryAddSealsFailed(#[source] SysError),
#[error("failed to create shm region: {0}")]
MemoryCreationFailed(#[source] SysError),
#[error("failed to map guest memory: {0}")]
MemoryMappingFailed(#[source] MmapError),
#[error("guest memory region {0}+{1:#x} is not page aligned")]
MemoryNotAligned(GuestAddress, u64),
#[error("memory regions overlap")]
MemoryRegionOverlap,
#[error("memory region size {0} is too large")]
MemoryRegionTooLarge(u128),
#[error("incomplete read of {completed} instead of {expected} bytes")]
ShortRead { expected: usize, completed: usize },
#[error("incomplete write of {completed} instead of {expected} bytes")]
ShortWrite { expected: usize, completed: usize },
#[error("DescriptorChain split is out of bounds: {0}")]
SplitOutOfBounds(usize),
#[error("{0}")]
VolatileMemoryAccess(#[source] VolatileMemoryError),
}
pub type Result<T> = result::Result<T, Error>;
/// A file-like object backing `MemoryRegion`.
#[derive(Clone, Debug)]
pub enum BackingObject {
Shm(Arc<SharedMemory>),
File(Arc<File>),
}
impl AsRawDescriptor for BackingObject {
fn as_raw_descriptor(&self) -> RawDescriptor {
match self {
Self::Shm(shm) => shm.as_raw_descriptor(),
Self::File(f) => f.as_raw_descriptor(),
}
}
}
impl AsRef<dyn AsRawDescriptor + Sync + Send> for BackingObject {
fn as_ref(&self) -> &(dyn AsRawDescriptor + Sync + Send + 'static) {
match self {
BackingObject::Shm(shm) => shm.as_ref(),
BackingObject::File(f) => f.as_ref(),
}
}
}
/// For MemoryRegion::regions
pub struct MemoryRegionInformation<'a> {
pub index: usize,
pub guest_addr: GuestAddress,
pub size: usize,
pub host_addr: usize,
pub shm: &'a BackingObject,
pub shm_offset: u64,
pub options: MemoryRegionOptions,
}
#[sorted]
#[derive(Clone, Copy, Debug, Default, PartialOrd, PartialEq, Eq, Ord)]
pub enum MemoryRegionPurpose {
/// BIOS/firmware ROM
Bios,
/// General purpose guest memory
#[default]
GuestMemoryRegion,
/// PVMFW
ProtectedFirmwareRegion,
#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
StaticSwiotlbRegion,
}
#[derive(Clone, Copy, Debug, Default, PartialOrd, PartialEq, Eq, Ord)]
pub struct MemoryRegionOptions {
/// Some hypervisors (presently: Gunyah) need explicit knowledge about
/// which memory region is used for protected firwmare, static swiotlb,
/// or general purpose guest memory.
pub purpose: MemoryRegionPurpose,
/// Alignment for the mapping of this region. This intends to be used for
/// arm64 KVM support where a block alignment is required for transparent
/// huge-pages support
pub align: u64,
}
impl MemoryRegionOptions {
pub fn new() -> MemoryRegionOptions {
Default::default()
}
pub fn purpose(mut self, purpose: MemoryRegionPurpose) -> Self {
self.purpose = purpose;
self
}
pub fn align(mut self, alignment: u64) -> Self {
self.align = alignment;
self
}
}
/// A regions of memory mapped memory.
/// Holds the memory mapping with its offset in guest memory.
/// Also holds the backing object for the mapping and the offset in that object of the mapping.
#[derive(Debug)]
pub struct MemoryRegion {
mapping: MemoryMapping,
guest_base: GuestAddress,
shared_obj: BackingObject,
obj_offset: u64,
options: MemoryRegionOptions,
}
impl MemoryRegion {
/// Creates a new MemoryRegion using the given SharedMemory object to later be attached to a VM
/// at `guest_base` address in the guest.
pub fn new_from_shm(
size: u64,
guest_base: GuestAddress,
offset: u64,
shm: Arc<SharedMemory>,
) -> Result<Self> {
let mapping = MemoryMappingBuilder::new(size as usize)
.from_shared_memory(shm.as_ref())
.offset(offset)
.build()
.map_err(Error::MemoryMappingFailed)?;
Ok(MemoryRegion {
mapping,
guest_base,
shared_obj: BackingObject::Shm(shm),
obj_offset: offset,
options: Default::default(),
})
}
/// Creates a new MemoryRegion using the given file to get available later at `guest_base`
/// address in the guest.
pub fn new_from_file(
size: u64,
guest_base: GuestAddress,
offset: u64,
file: Arc<File>,
) -> Result<Self> {
let mapping = MemoryMappingBuilder::new(size as usize)
.from_file(&file)
.offset(offset)
.build()
.map_err(Error::MemoryMappingFailed)?;
Ok(MemoryRegion {
mapping,
guest_base,
shared_obj: BackingObject::File(file),
obj_offset: offset,
options: Default::default(),
})
}
fn start(&self) -> GuestAddress {
self.guest_base
}
fn end(&self) -> GuestAddress {
// unchecked_add is safe as the region bounds were checked when it was created.
self.guest_base.unchecked_add(self.mapping.size() as u64)
}
fn contains(&self, addr: GuestAddress) -> bool {
addr >= self.guest_base && addr < self.end()
}
}
/// Tracks memory regions and where they are mapped in the guest, along with shm
/// descriptors of the underlying memory regions.
#[derive(Clone, Debug)]
pub struct GuestMemory {
regions: Arc<[MemoryRegion]>,
}
impl AsRawDescriptors for GuestMemory {
/// USE WITH CAUTION, the descriptors returned here are not necessarily
/// files!
fn as_raw_descriptors(&self) -> Vec<RawDescriptor> {
self.regions
.iter()
.map(|r| r.shared_obj.as_raw_descriptor())
.collect()
}
}
impl GuestMemory {
/// Creates backing shm for GuestMemory regions
fn create_shm(ranges: &[(GuestAddress, u64, MemoryRegionOptions)]) -> Result<SharedMemory> {
let mut aligned_size = 0;
let pg_size = pagesize();
for range in ranges {
if range.1 % pg_size as u64 != 0 {
return Err(Error::MemoryNotAligned(range.0, range.1));
}
aligned_size += range.1;
}
// NOTE: Some tests rely on the GuestMemory's name when capturing metrics.
let name = "crosvm_guest";
// Shm must be mut even though it is only updated on Unix systems.
#[allow(unused_mut)]
let mut shm = SharedMemory::new(name, aligned_size).map_err(Error::MemoryCreationFailed)?;
sys::finalize_shm(&mut shm)?;
Ok(shm)
}
/// Creates a container for guest memory regions.
/// Valid memory regions are specified as a Vec of (Address, Size, MemoryRegionOptions)
pub fn new_with_options(
ranges: &[(GuestAddress, u64, MemoryRegionOptions)],
) -> Result<GuestMemory> {
// Create shm
let shm = Arc::new(GuestMemory::create_shm(ranges)?);
// Create memory regions
let mut regions = Vec::<MemoryRegion>::new();
let mut offset = 0;
for range in ranges {
if let Some(last) = regions.last() {
if last
.guest_base
.checked_add(last.mapping.size() as u64)
.map_or(true, |a| a > range.0)
{
return Err(Error::MemoryRegionOverlap);
}
}
let size = usize::try_from(range.1)
.map_err(|_| Error::MemoryRegionTooLarge(range.1 as u128))?;
let mapping = MemoryMappingBuilder::new(size)
.from_shared_memory(shm.as_ref())
.offset(offset)
.align(range.2.align)
.build()
.map_err(Error::MemoryMappingFailed)?;
regions.push(MemoryRegion {
mapping,
guest_base: range.0,
shared_obj: BackingObject::Shm(shm.clone()),
obj_offset: offset,
options: range.2,
});
offset += size as u64;
}
Ok(GuestMemory {
regions: Arc::from(regions),
})
}
/// Creates a container for guest memory regions.
/// Valid memory regions are specified as a Vec of (Address, Size) tuples sorted by Address.
pub fn new(ranges: &[(GuestAddress, u64)]) -> Result<GuestMemory> {
GuestMemory::new_with_options(
ranges
.iter()
.map(|(addr, size)| (*addr, *size, Default::default()))
.collect::<Vec<(GuestAddress, u64, MemoryRegionOptions)>>()
.as_slice(),
)
}
/// Creates a `GuestMemory` from a collection of MemoryRegions.
pub fn from_regions(mut regions: Vec<MemoryRegion>) -> Result<Self> {
// Sort the regions and ensure non overlap.
regions.sort_by(|a, b| a.guest_base.cmp(&b.guest_base));
if regions.len() > 1 {
let mut prev_end = regions[0]
.guest_base
.checked_add(regions[0].mapping.size() as u64)
.ok_or(Error::MemoryRegionOverlap)?;
for region in ®ions[1..] {
if prev_end > region.guest_base {
return Err(Error::MemoryRegionOverlap);
}
prev_end = region
.guest_base
.checked_add(region.mapping.size() as u64)
.ok_or(Error::MemoryRegionTooLarge(
region.guest_base.0 as u128 + region.mapping.size() as u128,
))?;
}
}
Ok(GuestMemory {
regions: Arc::from(regions),
})
}
/// Returns the end address of memory.
///
/// # Examples
///
/// ```
/// # use base::MemoryMapping;
/// # use vm_memory::{GuestAddress, GuestMemory};
/// # fn test_end_addr() -> Result<(), ()> {
/// let start_addr = GuestAddress(0x1000);
/// let mut gm = GuestMemory::new(&vec![(start_addr, 0x400)]).map_err(|_| ())?;
/// assert_eq!(start_addr.checked_add(0x400), Some(gm.end_addr()));
/// Ok(())
/// # }
/// ```
pub fn end_addr(&self) -> GuestAddress {
self.regions
.iter()
.max_by_key(|region| region.start())
.map_or(GuestAddress(0), MemoryRegion::end)
}
/// Returns the guest addresses and sizes of the memory regions.
pub fn guest_memory_regions(&self) -> Vec<(GuestAddress, usize)> {
self.regions
.iter()
.map(|region| (region.guest_base, region.mapping.size()))
.collect()
}
/// Returns the total size of memory in bytes.
pub fn memory_size(&self) -> u64 {
self.regions
.iter()
.map(|region| region.mapping.size() as u64)
.sum()
}
/// Returns true if the given address is within the memory range available to the guest.
pub fn address_in_range(&self, addr: GuestAddress) -> bool {
self.regions.iter().any(|region| region.contains(addr))
}
/// Returns true if the given range (start, end) is overlap with the memory range
/// available to the guest.
pub fn range_overlap(&self, start: GuestAddress, end: GuestAddress) -> bool {
self.regions
.iter()
.any(|region| region.start() < end && start < region.end())
}
/// Returns an address `addr + offset` if it's in range.
///
/// This function doesn't care whether a region `[addr, addr + offset)` is in range or not. To
/// guarantee it's a valid range, use `is_valid_range()` instead.
pub fn checked_offset(&self, addr: GuestAddress, offset: u64) -> Option<GuestAddress> {
addr.checked_add(offset).and_then(|a| {
if self.address_in_range(a) {
Some(a)
} else {
None
}
})
}
/// Returns true if the given range `[start, start + length)` is a valid contiguous memory
/// range available to the guest and it's backed by a single underlying memory region.
pub fn is_valid_range(&self, start: GuestAddress, length: u64) -> bool {
if length == 0 {
return false;
}
let end = if let Some(end) = start.checked_add(length - 1) {
end
} else {
return false;
};
self.regions
.iter()
.any(|region| region.start() <= start && end < region.end())
}
/// Returns the size of the memory region in bytes.
pub fn num_regions(&self) -> u64 {
self.regions.len() as u64
}
pub fn regions(&self) -> impl Iterator<Item = MemoryRegionInformation> {
self.regions
.iter()
.enumerate()
.map(|(index, region)| MemoryRegionInformation {
index,
guest_addr: region.start(),
size: region.mapping.size(),
host_addr: region.mapping.as_ptr() as usize,
shm: ®ion.shared_obj,
shm_offset: region.obj_offset,
options: region.options,
})
}
/// Writes a slice to guest memory at the specified guest address.
/// Returns the number of bytes written. The number of bytes written can
/// be less than the length of the slice if there isn't enough room in the
/// memory region.
///
/// # Examples
/// * Write a slice at guestaddress 0x200.
///
/// ```
/// # use base::MemoryMapping;
/// # use vm_memory::{GuestAddress, GuestMemory};
/// # fn test_write_u64() -> Result<(), ()> {
/// # let start_addr = GuestAddress(0x1000);
/// # let mut gm = GuestMemory::new(&vec![(start_addr, 0x400)]).map_err(|_| ())?;
/// let res = gm.write_at_addr(&[1,2,3,4,5], GuestAddress(0x200)).map_err(|_| ())?;
/// assert_eq!(5, res);
/// Ok(())
/// # }
/// ```
pub fn write_at_addr(&self, buf: &[u8], guest_addr: GuestAddress) -> Result<usize> {
let (mapping, offset, _) = self.find_region(guest_addr)?;
mapping
.write_slice(buf, offset)
.map_err(|e| Error::MemoryAccess(guest_addr, e))
}
/// Writes the entire contents of a slice to guest memory at the specified
/// guest address.
///
/// Returns an error if there isn't enough room in the memory region to
/// complete the entire write. Part of the data may have been written
/// nevertheless.
///
/// # Examples
///
/// ```
/// use vm_memory::{guest_memory, GuestAddress, GuestMemory};
///
/// fn test_write_all() -> guest_memory::Result<()> {
/// let ranges = &[(GuestAddress(0x1000), 0x400)];
/// let gm = GuestMemory::new(ranges)?;
/// gm.write_all_at_addr(b"zyxwvut", GuestAddress(0x1200))
/// }
/// ```
pub fn write_all_at_addr(&self, buf: &[u8], guest_addr: GuestAddress) -> Result<()> {
let expected = buf.len();
let completed = self.write_at_addr(buf, guest_addr)?;
if expected == completed {
Ok(())
} else {
Err(Error::ShortWrite {
expected,
completed,
})
}
}
/// Reads to a slice from guest memory at the specified guest address.
/// Returns the number of bytes read. The number of bytes read can
/// be less than the length of the slice if there isn't enough room in the
/// memory region.
///
/// # Examples
/// * Read a slice of length 16 at guestaddress 0x200.
///
/// ```
/// # use base::MemoryMapping;
/// # use vm_memory::{GuestAddress, GuestMemory};
/// # fn test_write_u64() -> Result<(), ()> {
/// # let start_addr = GuestAddress(0x1000);
/// # let mut gm = GuestMemory::new(&vec![(start_addr, 0x400)]).map_err(|_| ())?;
/// let buf = &mut [0u8; 16];
/// let res = gm.read_at_addr(buf, GuestAddress(0x200)).map_err(|_| ())?;
/// assert_eq!(16, res);
/// Ok(())
/// # }
/// ```
pub fn read_at_addr(&self, buf: &mut [u8], guest_addr: GuestAddress) -> Result<usize> {
let (mapping, offset, _) = self.find_region(guest_addr)?;
mapping
.read_slice(buf, offset)
.map_err(|e| Error::MemoryAccess(guest_addr, e))
}
/// Reads from guest memory at the specified address to fill the entire
/// buffer.
///
/// Returns an error if there isn't enough room in the memory region to fill
/// the entire buffer. Part of the buffer may have been filled nevertheless.
///
/// # Examples
///
/// ```
/// use vm_memory::{guest_memory, GuestAddress, GuestMemory};
///
/// fn test_read_exact() -> guest_memory::Result<()> {
/// let ranges = &[(GuestAddress(0x1000), 0x400)];
/// let gm = GuestMemory::new(ranges)?;
/// let mut buffer = [0u8; 0x200];
/// gm.read_exact_at_addr(&mut buffer, GuestAddress(0x1200))
/// }
/// ```
pub fn read_exact_at_addr(&self, buf: &mut [u8], guest_addr: GuestAddress) -> Result<()> {
let expected = buf.len();
let completed = self.read_at_addr(buf, guest_addr)?;
if expected == completed {
Ok(())
} else {
Err(Error::ShortRead {
expected,
completed,
})
}
}
/// Reads an object from guest memory at the given guest address.
///
/// # Examples
/// * Read a u64 from two areas of guest memory backed by separate mappings.
///
/// ```
/// # use vm_memory::{GuestAddress, GuestMemory};
/// # fn test_read_u64() -> Result<u64, ()> {
/// # let start_addr1 = GuestAddress(0x0);
/// # let start_addr2 = GuestAddress(0x400);
/// # let mut gm = GuestMemory::new(&vec![(start_addr1, 0x400), (start_addr2, 0x400)])
/// # .map_err(|_| ())?;
/// let num1: u64 = gm.read_obj_from_addr(GuestAddress(32)).map_err(|_| ())?;
/// let num2: u64 = gm.read_obj_from_addr(GuestAddress(0x400+32)).map_err(|_| ())?;
/// # Ok(num1 + num2)
/// # }
/// ```
pub fn read_obj_from_addr<T: FromBytes>(&self, guest_addr: GuestAddress) -> Result<T> {
let (mapping, offset, _) = self.find_region(guest_addr)?;
mapping
.read_obj(offset)
.map_err(|e| Error::MemoryAccess(guest_addr, e))
}
/// Reads an object from guest memory at the given guest address.
/// Reading from a volatile area isn't strictly safe as it could change
/// mid-read. However, as long as the type T is plain old data and can
/// handle random initialization, everything will be OK.
///
/// The read operation will be volatile, i.e. it will not be reordered by
/// the compiler and is suitable for I/O, but must be aligned. When reading
/// from regular memory, prefer [`GuestMemory::read_obj_from_addr`].
///
/// # Examples
/// * Read a u64 from two areas of guest memory backed by separate mappings.
///
/// ```
/// # use vm_memory::{GuestAddress, GuestMemory};
/// # fn test_read_u64() -> Result<u64, ()> {
/// # let start_addr1 = GuestAddress(0x0);
/// # let start_addr2 = GuestAddress(0x400);
/// # let mut gm = GuestMemory::new(&vec![(start_addr1, 0x400), (start_addr2, 0x400)])
/// # .map_err(|_| ())?;
/// let num1: u64 = gm.read_obj_from_addr_volatile(GuestAddress(32)).map_err(|_| ())?;
/// let num2: u64 = gm.read_obj_from_addr_volatile(GuestAddress(0x400+32)).map_err(|_| ())?;
/// # Ok(num1 + num2)
/// # }
/// ```
pub fn read_obj_from_addr_volatile<T: FromBytes>(&self, guest_addr: GuestAddress) -> Result<T> {
let (mapping, offset, _) = self.find_region(guest_addr)?;
mapping
.read_obj_volatile(offset)
.map_err(|e| Error::MemoryAccess(guest_addr, e))
}
/// Writes an object to the memory region at the specified guest address.
/// Returns Ok(()) if the object fits, or Err if it extends past the end.
///
/// # Examples
/// * Write a u64 at guest address 0x1100.
///
/// ```
/// # use vm_memory::{GuestAddress, GuestMemory};
/// # fn test_write_u64() -> Result<(), ()> {
/// # let start_addr = GuestAddress(0x1000);
/// # let mut gm = GuestMemory::new(&vec![(start_addr, 0x400)]).map_err(|_| ())?;
/// gm.write_obj_at_addr(55u64, GuestAddress(0x1100))
/// .map_err(|_| ())
/// # }
/// ```
pub fn write_obj_at_addr<T: AsBytes>(&self, val: T, guest_addr: GuestAddress) -> Result<()> {
let (mapping, offset, _) = self.find_region(guest_addr)?;
mapping
.write_obj(val, offset)
.map_err(|e| Error::MemoryAccess(guest_addr, e))
}
/// Writes an object to the memory region at the specified guest address.
/// Returns Ok(()) if the object fits, or Err if it extends past the end.
///
/// The write operation will be volatile, i.e. it will not be reordered by
/// the compiler and is suitable for I/O, but must be aligned. When writing
/// to regular memory, prefer [`GuestMemory::write_obj_at_addr`].
/// # Examples
/// * Write a u64 at guest address 0x1100.
///
/// ```
/// # use vm_memory::{GuestAddress, GuestMemory};
/// # fn test_write_u64() -> Result<(), ()> {
/// # let start_addr = GuestAddress(0x1000);
/// # let mut gm = GuestMemory::new(&vec![(start_addr, 0x400)]).map_err(|_| ())?;
/// gm.write_obj_at_addr_volatile(55u64, GuestAddress(0x1100))
/// .map_err(|_| ())
/// # }
/// ```
pub fn write_obj_at_addr_volatile<T: AsBytes>(
&self,
val: T,
guest_addr: GuestAddress,
) -> Result<()> {
let (mapping, offset, _) = self.find_region(guest_addr)?;
mapping
.write_obj_volatile(val, offset)
.map_err(|e| Error::MemoryAccess(guest_addr, e))
}
/// Returns a `VolatileSlice` of `len` bytes starting at `addr`. Returns an error if the slice
/// is not a subset of this `GuestMemory`.
///
/// # Examples
/// * Write `99` to 30 bytes starting at guest address 0x1010.
///
/// ```
/// # use base::MemoryMapping;
/// # use vm_memory::{GuestAddress, GuestMemory, GuestMemoryError};
/// # fn test_volatile_slice() -> Result<(), GuestMemoryError> {
/// # let start_addr = GuestAddress(0x1000);
/// # let mut gm = GuestMemory::new(&vec![(start_addr, 0x400)])?;
/// let vslice = gm.get_slice_at_addr(GuestAddress(0x1010), 30)?;
/// vslice.write_bytes(99);
/// # Ok(())
/// # }
/// ```
pub fn get_slice_at_addr(&self, addr: GuestAddress, len: usize) -> Result<VolatileSlice> {
self.regions
.iter()
.find(|region| region.contains(addr))
.ok_or(Error::InvalidGuestAddress(addr))
.and_then(|region| {
// The cast to a usize is safe here because we know that `region.contains(addr)` and
// it's not possible for a memory region to be larger than what fits in a usize.
region
.mapping
.get_slice(addr.offset_from(region.start()) as usize, len)
.map_err(Error::VolatileMemoryAccess)
})
}
/// Convert a GuestAddress into a pointer in the address space of this
/// process. This should only be necessary for giving addresses to the
/// kernel, as with vhost ioctls. Normal reads/writes to guest memory should
/// be done through `write_obj_at_addr`, `read_obj_from_addr`, etc.
///
/// # Arguments
/// * `guest_addr` - Guest address to convert.
///
/// # Examples
///
/// ```
/// # use vm_memory::{GuestAddress, GuestMemory};
/// # fn test_host_addr() -> Result<(), ()> {
/// let start_addr = GuestAddress(0x1000);
/// let mut gm = GuestMemory::new(&vec![(start_addr, 0x500)]).map_err(|_| ())?;
/// let addr = gm.get_host_address(GuestAddress(0x1200)).unwrap();
/// println!("Host address is {:p}", addr);
/// Ok(())
/// # }
/// ```
pub fn get_host_address(&self, guest_addr: GuestAddress) -> Result<*const u8> {
let (mapping, offset, _) = self.find_region(guest_addr)?;
Ok(
// SAFETY:
// This is safe; `find_region` already checks that offset is in
// bounds.
unsafe { mapping.as_ptr().add(offset) } as *const u8,
)
}
/// Convert a GuestAddress into a pointer in the address space of this
/// process, and verify that the provided size define a valid range within
/// a single memory region. Similar to get_host_address(), this should only
/// be used for giving addresses to the kernel.
///
/// # Arguments
/// * `guest_addr` - Guest address to convert.
/// * `size` - Size of the address range to be converted.
///
/// # Examples
///
/// ```
/// # use vm_memory::{GuestAddress, GuestMemory};
/// # fn test_host_addr() -> Result<(), ()> {
/// let start_addr = GuestAddress(0x1000);
/// let mut gm = GuestMemory::new(&vec![(start_addr, 0x500)]).map_err(|_| ())?;
/// let addr = gm.get_host_address_range(GuestAddress(0x1200), 0x200).unwrap();
/// println!("Host address is {:p}", addr);
/// Ok(())
/// # }
/// ```
pub fn get_host_address_range(
&self,
guest_addr: GuestAddress,
size: usize,
) -> Result<*const u8> {
if size == 0 {
return Err(Error::InvalidSize(size));
}
// Assume no overlap among regions
let (mapping, offset, _) = self.find_region(guest_addr)?;
if mapping
.size()
.checked_sub(offset)
.map_or(true, |v| v < size)
{
return Err(Error::InvalidGuestAddress(guest_addr));
}
Ok(
//SAFETY:
// This is safe; `find_region` already checks that offset is in
// bounds.
unsafe { mapping.as_ptr().add(offset) } as *const u8,
)
}
/// Returns a reference to the region that backs the given address.
pub fn shm_region(
&self,
guest_addr: GuestAddress,
) -> Result<&(dyn AsRawDescriptor + Send + Sync)> {
self.regions
.iter()
.find(|region| region.contains(guest_addr))
.ok_or(Error::InvalidGuestAddress(guest_addr))
.map(|region| region.shared_obj.as_ref())
}
/// Returns the region that contains the memory at `offset` from the base of guest memory.
pub fn offset_region(&self, offset: u64) -> Result<&(dyn AsRawDescriptor + Send + Sync)> {
self.shm_region(
self.checked_offset(self.regions[0].guest_base, offset)
.ok_or(Error::InvalidOffset(offset))?,
)
}
/// Loops over all guest memory regions of `self`, and returns the
/// target region that contains `guest_addr`. On success, this
/// function returns a tuple with the following fields:
///
/// (i) the memory mapping associated with the target region.
/// (ii) the relative offset from the start of the target region to `guest_addr`.
/// (iii) the absolute offset from the start of the memory mapping to the target region.
///
/// If no target region is found, an error is returned.
pub fn find_region(&self, guest_addr: GuestAddress) -> Result<(&MemoryMapping, usize, u64)> {
self.regions
.iter()
.find(|region| region.contains(guest_addr))
.ok_or(Error::InvalidGuestAddress(guest_addr))
.map(|region| {
(
®ion.mapping,
guest_addr.offset_from(region.start()) as usize,
region.obj_offset,
)
})
}
/// Convert a GuestAddress into an offset within the associated shm region.
///
/// Due to potential gaps within GuestMemory, it is helpful to know the
/// offset within the shm where a given address is found. This offset
/// can then be passed to another process mapping the shm to read data
/// starting at that address.
///
/// # Arguments
/// * `guest_addr` - Guest address to convert.
///
/// # Examples
///
/// ```
/// # use vm_memory::{GuestAddress, GuestMemory};
/// let addr_a = GuestAddress(0x10000);
/// let addr_b = GuestAddress(0x80000);
/// let mut gm = GuestMemory::new(&vec![
/// (addr_a, 0x20000),
/// (addr_b, 0x30000)]).expect("failed to create GuestMemory");
/// let offset = gm.offset_from_base(GuestAddress(0x95000))
/// .expect("failed to get offset");
/// assert_eq!(offset, 0x35000);
/// ```
pub fn offset_from_base(&self, guest_addr: GuestAddress) -> Result<u64> {
self.regions
.iter()
.find(|region| region.contains(guest_addr))
.ok_or(Error::InvalidGuestAddress(guest_addr))
.map(|region| region.obj_offset + guest_addr.offset_from(region.start()))
}
/// Copy all guest memory into `w`.
///
/// # Safety
/// Must have exclusive access to the guest memory for the duration of the
/// call (e.g. all vCPUs and devices must be stopped).
///
/// Returns a JSON object that contains metadata about the underlying memory regions to allow
/// validation checks at restore time.
#[deny(unsafe_op_in_unsafe_fn)]
pub unsafe fn snapshot<T: Write>(
&self,
w: &mut T,
compress: bool,
) -> anyhow::Result<serde_json::Value> {
fn go(
this: &GuestMemory,
w: &mut impl Write,
) -> anyhow::Result<Vec<MemoryRegionSnapshotMetadata>> {
let mut regions = Vec::new();
for region in this.regions.iter() {
let data_ranges = region
.find_data_ranges()
.context("find_data_ranges failed")?;
for range in &data_ranges {
let region_vslice = region
.mapping
.get_slice(range.start, range.end - range.start)?;
// SAFETY:
// 1. The data is guaranteed to be present & of expected length by the
// `VolatileSlice`.
// 2. Aliasing the `VolatileSlice`'s memory is safe because a. The only mutable
// reference to it is held by the guest, and the guest's VCPUs are stopped
// (guaranteed by caller), so that mutable reference can be ignored (aliasing
// is only an issue if temporal overlap occurs, and it does not here). b.
// Some host code does manipulate guest memory through raw pointers. This
// aliases the underlying memory of the slice, so we must ensure that host
// code is not running (the caller guarantees this).
w.write_all(unsafe {
std::slice::from_raw_parts(region_vslice.as_ptr(), region_vslice.size())
})?;
}
regions.push(MemoryRegionSnapshotMetadata {
guest_base: region.guest_base.0,
size: region.mapping.size(),
data_ranges,
});
}
Ok(regions)
}
let regions = if compress {
let mut w = lz4_flex::frame::FrameEncoder::new(w);
let regions = go(self, &mut w)?;
w.finish()?;
regions
} else {
go(self, w)?
};
Ok(serde_json::to_value(MemorySnapshotMetadata {
regions,
compressed: compress,
})?)
}
/// Restore the guest memory using the bytes from `r`.
///
/// # Safety
/// Must have exclusive access to the guest memory for the duration of the
/// call (e.g. all vCPUs and devices must be stopped).
///
/// Returns an error if `metadata` doesn't match the configuration of the `GuestMemory` or if
/// `r` doesn't produce exactly as many bytes as needed.
#[deny(unsafe_op_in_unsafe_fn)]
pub unsafe fn restore<T: Read>(
&self,
metadata: serde_json::Value,
r: &mut T,
) -> anyhow::Result<()> {
let metadata: MemorySnapshotMetadata = serde_json::from_value(metadata)?;
let mut r: Box<dyn Read> = if metadata.compressed {
Box::new(lz4_flex::frame::FrameDecoder::new(r))
} else {
Box::new(r)
};
if self.regions.len() != metadata.regions.len() {
bail!(
"snapshot expected {} memory regions but VM has {}",
metadata.regions.len(),
self.regions.len()
);
}
for (region, metadata) in self.regions.iter().zip(metadata.regions.iter()) {
let MemoryRegionSnapshotMetadata {
guest_base,
size,
data_ranges,
} = metadata;
if region.guest_base.0 != *guest_base || region.mapping.size() != *size {
bail!("snapshot memory regions don't match VM memory regions");
}
let mut prev_end = 0;
for range in data_ranges {
let hole_size = range
.start
.checked_sub(prev_end)
.context("invalid data range")?;
if hole_size > 0 {
region.zero_range(prev_end, hole_size)?;
}
let region_vslice = region
.mapping
.get_slice(range.start, range.end - range.start)?;
// SAFETY:
// See `Self::snapshot` for the detailed safety statement, and
// note that both mutable and non-mutable aliasing is safe.
r.read_exact(unsafe {
std::slice::from_raw_parts_mut(region_vslice.as_mut_ptr(), region_vslice.size())
})?;
prev_end = range.end;
}
let hole_size = region
.mapping
.size()
.checked_sub(prev_end)
.context("invalid data range")?;
if hole_size > 0 {
region.zero_range(prev_end, hole_size)?;
}
}
// Should always be at EOF at this point.
let mut buf = [0];
if r.read(&mut buf)? != 0 {
bail!("too many bytes");
}
Ok(())
}
}
#[derive(Debug, PartialEq, Eq, serde::Serialize, serde::Deserialize)]
struct MemorySnapshotMetadata {
regions: Vec<MemoryRegionSnapshotMetadata>,
compressed: bool,
}
#[derive(Debug, PartialEq, Eq, serde::Serialize, serde::Deserialize)]
struct MemoryRegionSnapshotMetadata {
guest_base: u64,
size: usize,
// Ranges of the mmap that are stored in the snapshot file. All other ranges of the region are
// zeros.
data_ranges: Vec<std::ops::Range<usize>>,
}
// SAFETY:
// It is safe to implement BackingMemory because GuestMemory can be mutated any time already.
unsafe impl BackingMemory for GuestMemory {
fn get_volatile_slice(
&self,
mem_range: cros_async::MemRegion,
) -> mem::Result<VolatileSlice<'_>> {
self.get_slice_at_addr(GuestAddress(mem_range.offset), mem_range.len)
.map_err(|_| mem::Error::InvalidOffset(mem_range.offset, mem_range.len))
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_alignment() {
let start_addr1 = GuestAddress(0x0);
let start_addr2 = GuestAddress(0x10000);
assert!(GuestMemory::new(&[(start_addr1, 0x100), (start_addr2, 0x400)]).is_err());
assert!(GuestMemory::new(&[(start_addr1, 0x10000), (start_addr2, 0x10000)]).is_ok());
}
#[test]
fn two_regions() {
let start_addr1 = GuestAddress(0x0);
let start_addr2 = GuestAddress(0x10000);
// The memory regions are `[0x0, 0x10000)`, `[0x10000, 0x20000)`.
let gm = GuestMemory::new(&[(start_addr1, 0x10000), (start_addr2, 0x10000)]).unwrap();
// Although each address in `[0x0, 0x20000)` is valid, `is_valid_range()` returns false for
// a range that is across multiple underlying regions.
assert!(gm.is_valid_range(GuestAddress(0x5000), 0x5000));
assert!(gm.is_valid_range(GuestAddress(0x10000), 0x5000));
assert!(!gm.is_valid_range(GuestAddress(0x5000), 0x10000));
}
#[test]
fn overlap_memory() {
let start_addr1 = GuestAddress(0x0);
let start_addr2 = GuestAddress(0x10000);
assert!(GuestMemory::new(&[(start_addr1, 0x20000), (start_addr2, 0x20000)]).is_err());
}
#[test]
fn region_hole() {
let start_addr1 = GuestAddress(0x0);
let start_addr2 = GuestAddress(0x40000);
// The memory regions are `[0x0, 0x20000)`, `[0x40000, 0x60000)`.
let gm = GuestMemory::new(&[(start_addr1, 0x20000), (start_addr2, 0x20000)]).unwrap();
assert!(gm.address_in_range(GuestAddress(0x10000)));
assert!(!gm.address_in_range(GuestAddress(0x30000)));
assert!(gm.address_in_range(GuestAddress(0x50000)));
assert!(!gm.address_in_range(GuestAddress(0x60000)));
assert!(!gm.address_in_range(GuestAddress(0x60000)));
assert!(gm.range_overlap(GuestAddress(0x10000), GuestAddress(0x30000)),);
assert!(!gm.range_overlap(GuestAddress(0x30000), GuestAddress(0x40000)),);
assert!(gm.range_overlap(GuestAddress(0x30000), GuestAddress(0x70000)),);
assert_eq!(gm.checked_offset(GuestAddress(0x10000), 0x10000), None);
assert_eq!(
gm.checked_offset(GuestAddress(0x50000), 0x8000),
Some(GuestAddress(0x58000))
);
assert_eq!(gm.checked_offset(GuestAddress(0x50000), 0x10000), None);
assert!(gm.is_valid_range(GuestAddress(0x0), 0x10000));
assert!(gm.is_valid_range(GuestAddress(0x0), 0x20000));
assert!(!gm.is_valid_range(GuestAddress(0x0), 0x20000 + 1));
// While `checked_offset(GuestAddress(0x10000), 0x40000)` succeeds because 0x50000 is a
// valid address, `is_valid_range(GuestAddress(0x10000), 0x40000)` returns `false`
// because there is a hole inside of [0x10000, 0x50000).
assert_eq!(
gm.checked_offset(GuestAddress(0x10000), 0x40000),
Some(GuestAddress(0x50000))
);
assert!(!gm.is_valid_range(GuestAddress(0x10000), 0x40000));
}
#[test]
fn test_read_u64() {
let start_addr1 = GuestAddress(0x0);
let start_addr2 = GuestAddress(0x10000);
let gm = GuestMemory::new(&[(start_addr1, 0x10000), (start_addr2, 0x10000)]).unwrap();
let val1: u64 = 0xaa55aa55aa55aa55;
let val2: u64 = 0x55aa55aa55aa55aa;
gm.write_obj_at_addr(val1, GuestAddress(0x500)).unwrap();
gm.write_obj_at_addr(val2, GuestAddress(0x10000 + 32))
.unwrap();
let num1: u64 = gm.read_obj_from_addr(GuestAddress(0x500)).unwrap();
let num2: u64 = gm.read_obj_from_addr(GuestAddress(0x10000 + 32)).unwrap();
assert_eq!(val1, num1);
assert_eq!(val2, num2);
}
#[test]
fn test_memory_size() {
let start_region1 = GuestAddress(0x0);
let size_region1 = 0x10000;
let start_region2 = GuestAddress(0x10000);
let size_region2 = 0x20000;
let gm = GuestMemory::new(&[(start_region1, size_region1), (start_region2, size_region2)])
.unwrap();
let mem_size = gm.memory_size();
assert_eq!(mem_size, size_region1 + size_region2);
}
// Get the base address of the mapping for a GuestAddress.
fn get_mapping(mem: &GuestMemory, addr: GuestAddress) -> Result<*const u8> {
Ok(mem.find_region(addr)?.0.as_ptr() as *const u8)
}
#[test]
fn guest_to_host() {
let start_addr1 = GuestAddress(0x0);
let start_addr2 = GuestAddress(0x10000);
let mem = GuestMemory::new(&[(start_addr1, 0x10000), (start_addr2, 0x40000)]).unwrap();
// Verify the host addresses match what we expect from the mappings.
let addr1_base = get_mapping(&mem, start_addr1).unwrap();
let addr2_base = get_mapping(&mem, start_addr2).unwrap();
let host_addr1 = mem.get_host_address(start_addr1).unwrap();
let host_addr2 = mem.get_host_address(start_addr2).unwrap();
assert_eq!(host_addr1, addr1_base);
assert_eq!(host_addr2, addr2_base);
// Check that a bad address returns an error.
let bad_addr = GuestAddress(0x123456);
assert!(mem.get_host_address(bad_addr).is_err());
}
#[test]
fn guest_to_host_range() {
let start_addr1 = GuestAddress(0x0);
let start_addr2 = GuestAddress(0x10000);
let mem = GuestMemory::new(&[(start_addr1, 0x10000), (start_addr2, 0x40000)]).unwrap();
// Verify the host addresses match what we expect from the mappings.
let addr1_base = get_mapping(&mem, start_addr1).unwrap();
let addr2_base = get_mapping(&mem, start_addr2).unwrap();
let host_addr1 = mem.get_host_address_range(start_addr1, 0x10000).unwrap();
let host_addr2 = mem.get_host_address_range(start_addr2, 0x10000).unwrap();
assert_eq!(host_addr1, addr1_base);
assert_eq!(host_addr2, addr2_base);
let host_addr3 = mem.get_host_address_range(start_addr2, 0x20000).unwrap();
assert_eq!(host_addr3, addr2_base);
// Check that a valid guest address with an invalid size returns an error.
assert!(mem.get_host_address_range(start_addr1, 0x20000).is_err());
// Check that a bad address returns an error.
let bad_addr = GuestAddress(0x123456);
assert!(mem.get_host_address_range(bad_addr, 0x10000).is_err());
}
#[test]
fn shm_offset() {
let start_region1 = GuestAddress(0x0);
let size_region1 = 0x10000;
let start_region2 = GuestAddress(0x10000);
let size_region2 = 0x20000;
let gm = GuestMemory::new(&[(start_region1, size_region1), (start_region2, size_region2)])
.unwrap();
gm.write_obj_at_addr(0x1337u16, GuestAddress(0x0)).unwrap();
gm.write_obj_at_addr(0x0420u16, GuestAddress(0x10000))
.unwrap();
for region in gm.regions() {
let shm = match region.shm {
BackingObject::Shm(s) => s,
_ => {
panic!("backing object isn't SharedMemory");
}
};
let mmap = MemoryMappingBuilder::new(region.size)
.from_shared_memory(shm)
.offset(region.shm_offset)
.build()
.unwrap();
if region.index == 0 {
assert!(mmap.read_obj::<u16>(0x0).unwrap() == 0x1337u16);
}
if region.index == 1 {
assert!(mmap.read_obj::<u16>(0x0).unwrap() == 0x0420u16);
}
}
}
#[test]
// Disabled for non-x86 because test infra uses qemu-user, which doesn't support MADV_REMOVE.
#[cfg(target_arch = "x86_64")]
fn snapshot_restore() {
let regions = &[
// Hole at start.
(GuestAddress(0x0), 0x10000),
// Hole at end.
(GuestAddress(0x10000), 0x10000),
// Hole in middle.
(GuestAddress(0x20000), 0x10000),
// All holes.
(GuestAddress(0x30000), 0x10000),
// No holes.
(GuestAddress(0x40000), 0x1000),
];
let writes = &[
(GuestAddress(0x0FFF0), 1u64),
(GuestAddress(0x10000), 2u64),
(GuestAddress(0x29000), 3u64),
(GuestAddress(0x40000), 4u64),
];
let gm = GuestMemory::new(regions).unwrap();
for &(addr, value) in writes {
gm.write_obj_at_addr(value, addr).unwrap();
}
let mut data = tempfile::tempfile().unwrap();
// SAFETY:
// no vm is running
let metadata_json = unsafe { gm.snapshot(&mut data, false).unwrap() };
let metadata: MemorySnapshotMetadata =
serde_json::from_value(metadata_json.clone()).unwrap();
#[cfg(unix)]
assert_eq!(
metadata,
MemorySnapshotMetadata {
regions: vec![
MemoryRegionSnapshotMetadata {
guest_base: 0,
size: 0x10000,
data_ranges: vec![0x0F000..0x10000],
},
MemoryRegionSnapshotMetadata {
guest_base: 0x10000,
size: 0x10000,
data_ranges: vec![0x00000..0x01000],
},
MemoryRegionSnapshotMetadata {
guest_base: 0x20000,
size: 0x10000,
data_ranges: vec![0x09000..0x0A000],
},
MemoryRegionSnapshotMetadata {
guest_base: 0x30000,
size: 0x10000,
data_ranges: vec![],
},
MemoryRegionSnapshotMetadata {
guest_base: 0x40000,
size: 0x1000,
data_ranges: vec![0x00000..0x01000],
}
],
compressed: false,
}
);
// We can't detect the holes on Windows yet.
#[cfg(windows)]
assert_eq!(
metadata,
MemorySnapshotMetadata {
regions: vec![
MemoryRegionSnapshotMetadata {
guest_base: 0,
size: 0x10000,
data_ranges: vec![0x00000..0x10000],
},
MemoryRegionSnapshotMetadata {
guest_base: 0x10000,
size: 0x10000,
data_ranges: vec![0x00000..0x10000],
},
MemoryRegionSnapshotMetadata {
guest_base: 0x20000,
size: 0x10000,
data_ranges: vec![0x00000..0x10000],
},
MemoryRegionSnapshotMetadata {
guest_base: 0x30000,
size: 0x10000,
data_ranges: vec![0x00000..0x10000],
},
MemoryRegionSnapshotMetadata {
guest_base: 0x40000,
size: 0x1000,
data_ranges: vec![0x00000..0x01000],
}
],
compressed: false,
}
);
std::mem::drop(gm);
let gm2 = GuestMemory::new(regions).unwrap();
// Write to a hole so we can assert the restore zeroes it.
let hole_addr = GuestAddress(0x30000);
gm2.write_obj_at_addr(8u64, hole_addr).unwrap();
use std::io::Seek;
data.seek(std::io::SeekFrom::Start(0)).unwrap();
// SAFETY:
// no vm is running
unsafe { gm2.restore(metadata_json, &mut data).unwrap() };
assert_eq!(gm2.read_obj_from_addr::<u64>(hole_addr).unwrap(), 0);
for &(addr, value) in writes {
assert_eq!(gm2.read_obj_from_addr::<u64>(addr).unwrap(), value);
}
}
}