1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
// Copyright 2017 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! Track memory regions that are mapped to the guest VM.

use std::convert::AsRef;
use std::convert::TryFrom;
use std::fs::File;
use std::io::Read;
use std::io::Write;
use std::marker::Send;
use std::marker::Sync;
use std::result;
use std::sync::Arc;

use anyhow::bail;
use anyhow::Context;
use base::pagesize;
use base::AsRawDescriptor;
use base::AsRawDescriptors;
use base::Error as SysError;
use base::MappedRegion;
use base::MemoryMapping;
use base::MemoryMappingBuilder;
use base::MmapError;
use base::RawDescriptor;
use base::SharedMemory;
use base::VolatileMemory;
use base::VolatileMemoryError;
use base::VolatileSlice;
use cros_async::mem;
use cros_async::BackingMemory;
use remain::sorted;
use thiserror::Error;
use zerocopy::AsBytes;
use zerocopy::FromBytes;

use crate::guest_address::GuestAddress;

mod sys;
pub use sys::MemoryPolicy;

#[sorted]
#[derive(Error, Debug)]
pub enum Error {
    #[error("invalid guest address {0}")]
    InvalidGuestAddress(GuestAddress),
    #[error("invalid offset {0}")]
    InvalidOffset(u64),
    #[error("size {0} must not be zero")]
    InvalidSize(usize),
    #[error("invalid guest memory access at addr={0}: {1}")]
    MemoryAccess(GuestAddress, #[source] MmapError),
    #[error("failed to set seals on shm region: {0}")]
    MemoryAddSealsFailed(#[source] SysError),
    #[error("failed to create shm region: {0}")]
    MemoryCreationFailed(#[source] SysError),
    #[error("failed to map guest memory: {0}")]
    MemoryMappingFailed(#[source] MmapError),
    #[error("guest memory region {0}+{1:#x} is not page aligned")]
    MemoryNotAligned(GuestAddress, u64),
    #[error("memory regions overlap")]
    MemoryRegionOverlap,
    #[error("memory region size {0} is too large")]
    MemoryRegionTooLarge(u128),
    #[error("incomplete read of {completed} instead of {expected} bytes")]
    ShortRead { expected: usize, completed: usize },
    #[error("incomplete write of {completed} instead of {expected} bytes")]
    ShortWrite { expected: usize, completed: usize },
    #[error("DescriptorChain split is out of bounds: {0}")]
    SplitOutOfBounds(usize),
    #[error("{0}")]
    VolatileMemoryAccess(#[source] VolatileMemoryError),
}

pub type Result<T> = result::Result<T, Error>;

/// A file-like object backing `MemoryRegion`.
#[derive(Clone, Debug)]
pub enum BackingObject {
    Shm(Arc<SharedMemory>),
    File(Arc<File>),
}

impl AsRawDescriptor for BackingObject {
    fn as_raw_descriptor(&self) -> RawDescriptor {
        match self {
            Self::Shm(shm) => shm.as_raw_descriptor(),
            Self::File(f) => f.as_raw_descriptor(),
        }
    }
}

impl AsRef<dyn AsRawDescriptor + Sync + Send> for BackingObject {
    fn as_ref(&self) -> &(dyn AsRawDescriptor + Sync + Send + 'static) {
        match self {
            BackingObject::Shm(shm) => shm.as_ref(),
            BackingObject::File(f) => f.as_ref(),
        }
    }
}

/// For MemoryRegion::regions
pub struct MemoryRegionInformation<'a> {
    pub index: usize,
    pub guest_addr: GuestAddress,
    pub size: usize,
    pub host_addr: usize,
    pub shm: &'a BackingObject,
    pub shm_offset: u64,
    pub options: MemoryRegionOptions,
}

#[sorted]
#[derive(Clone, Copy, Debug, Default, PartialOrd, PartialEq, Eq, Ord)]
pub enum MemoryRegionPurpose {
    /// BIOS/firmware ROM
    Bios,

    /// General purpose guest memory
    #[default]
    GuestMemoryRegion,

    /// PVMFW
    ProtectedFirmwareRegion,

    #[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
    StaticSwiotlbRegion,
}

#[derive(Clone, Copy, Debug, Default, PartialOrd, PartialEq, Eq, Ord)]
pub struct MemoryRegionOptions {
    /// Some hypervisors (presently: Gunyah) need explicit knowledge about
    /// which memory region is used for protected firwmare, static swiotlb,
    /// or general purpose guest memory.
    pub purpose: MemoryRegionPurpose,
    /// Alignment for the mapping of this region. This intends to be used for
    /// arm64 KVM support where a block alignment is required for transparent
    /// huge-pages support
    pub align: u64,
}

impl MemoryRegionOptions {
    pub fn new() -> MemoryRegionOptions {
        Default::default()
    }

    pub fn purpose(mut self, purpose: MemoryRegionPurpose) -> Self {
        self.purpose = purpose;
        self
    }

    pub fn align(mut self, alignment: u64) -> Self {
        self.align = alignment;
        self
    }
}

/// A regions of memory mapped memory.
/// Holds the memory mapping with its offset in guest memory.
/// Also holds the backing object for the mapping and the offset in that object of the mapping.
#[derive(Debug)]
pub struct MemoryRegion {
    mapping: MemoryMapping,
    guest_base: GuestAddress,

    shared_obj: BackingObject,
    obj_offset: u64,

    options: MemoryRegionOptions,
}

impl MemoryRegion {
    /// Creates a new MemoryRegion using the given SharedMemory object to later be attached to a VM
    /// at `guest_base` address in the guest.
    pub fn new_from_shm(
        size: u64,
        guest_base: GuestAddress,
        offset: u64,
        shm: Arc<SharedMemory>,
    ) -> Result<Self> {
        let mapping = MemoryMappingBuilder::new(size as usize)
            .from_shared_memory(shm.as_ref())
            .offset(offset)
            .build()
            .map_err(Error::MemoryMappingFailed)?;
        Ok(MemoryRegion {
            mapping,
            guest_base,
            shared_obj: BackingObject::Shm(shm),
            obj_offset: offset,
            options: Default::default(),
        })
    }

    /// Creates a new MemoryRegion using the given file to get available later at `guest_base`
    /// address in the guest.
    pub fn new_from_file(
        size: u64,
        guest_base: GuestAddress,
        offset: u64,
        file: Arc<File>,
    ) -> Result<Self> {
        let mapping = MemoryMappingBuilder::new(size as usize)
            .from_file(&file)
            .offset(offset)
            .build()
            .map_err(Error::MemoryMappingFailed)?;
        Ok(MemoryRegion {
            mapping,
            guest_base,
            shared_obj: BackingObject::File(file),
            obj_offset: offset,
            options: Default::default(),
        })
    }

    fn start(&self) -> GuestAddress {
        self.guest_base
    }

    fn end(&self) -> GuestAddress {
        // unchecked_add is safe as the region bounds were checked when it was created.
        self.guest_base.unchecked_add(self.mapping.size() as u64)
    }

    fn contains(&self, addr: GuestAddress) -> bool {
        addr >= self.guest_base && addr < self.end()
    }
}

/// Tracks memory regions and where they are mapped in the guest, along with shm
/// descriptors of the underlying memory regions.
#[derive(Clone, Debug)]
pub struct GuestMemory {
    regions: Arc<[MemoryRegion]>,
}

impl AsRawDescriptors for GuestMemory {
    /// USE WITH CAUTION, the descriptors returned here are not necessarily
    /// files!
    fn as_raw_descriptors(&self) -> Vec<RawDescriptor> {
        self.regions
            .iter()
            .map(|r| r.shared_obj.as_raw_descriptor())
            .collect()
    }
}

impl GuestMemory {
    /// Creates backing shm for GuestMemory regions
    fn create_shm(ranges: &[(GuestAddress, u64, MemoryRegionOptions)]) -> Result<SharedMemory> {
        let mut aligned_size = 0;
        let pg_size = pagesize();
        for range in ranges {
            if range.1 % pg_size as u64 != 0 {
                return Err(Error::MemoryNotAligned(range.0, range.1));
            }

            aligned_size += range.1;
        }

        // NOTE: Some tests rely on the GuestMemory's name when capturing metrics.
        let name = "crosvm_guest";
        // Shm must be mut even though it is only updated on Unix systems.
        #[allow(unused_mut)]
        let mut shm = SharedMemory::new(name, aligned_size).map_err(Error::MemoryCreationFailed)?;

        sys::finalize_shm(&mut shm)?;

        Ok(shm)
    }

    /// Creates a container for guest memory regions.
    /// Valid memory regions are specified as a Vec of (Address, Size, MemoryRegionOptions)
    pub fn new_with_options(
        ranges: &[(GuestAddress, u64, MemoryRegionOptions)],
    ) -> Result<GuestMemory> {
        // Create shm
        let shm = Arc::new(GuestMemory::create_shm(ranges)?);

        // Create memory regions
        let mut regions = Vec::<MemoryRegion>::new();
        let mut offset = 0;

        for range in ranges {
            if let Some(last) = regions.last() {
                if last
                    .guest_base
                    .checked_add(last.mapping.size() as u64)
                    .map_or(true, |a| a > range.0)
                {
                    return Err(Error::MemoryRegionOverlap);
                }
            }

            let size = usize::try_from(range.1)
                .map_err(|_| Error::MemoryRegionTooLarge(range.1 as u128))?;
            let mapping = MemoryMappingBuilder::new(size)
                .from_shared_memory(shm.as_ref())
                .offset(offset)
                .align(range.2.align)
                .build()
                .map_err(Error::MemoryMappingFailed)?;

            regions.push(MemoryRegion {
                mapping,
                guest_base: range.0,
                shared_obj: BackingObject::Shm(shm.clone()),
                obj_offset: offset,
                options: range.2,
            });

            offset += size as u64;
        }

        Ok(GuestMemory {
            regions: Arc::from(regions),
        })
    }

    /// Creates a container for guest memory regions.
    /// Valid memory regions are specified as a Vec of (Address, Size) tuples sorted by Address.
    pub fn new(ranges: &[(GuestAddress, u64)]) -> Result<GuestMemory> {
        GuestMemory::new_with_options(
            ranges
                .iter()
                .map(|(addr, size)| (*addr, *size, Default::default()))
                .collect::<Vec<(GuestAddress, u64, MemoryRegionOptions)>>()
                .as_slice(),
        )
    }

    /// Creates a `GuestMemory` from a collection of MemoryRegions.
    pub fn from_regions(mut regions: Vec<MemoryRegion>) -> Result<Self> {
        // Sort the regions and ensure non overlap.
        regions.sort_by(|a, b| a.guest_base.cmp(&b.guest_base));

        if regions.len() > 1 {
            let mut prev_end = regions[0]
                .guest_base
                .checked_add(regions[0].mapping.size() as u64)
                .ok_or(Error::MemoryRegionOverlap)?;
            for region in &regions[1..] {
                if prev_end > region.guest_base {
                    return Err(Error::MemoryRegionOverlap);
                }
                prev_end = region
                    .guest_base
                    .checked_add(region.mapping.size() as u64)
                    .ok_or(Error::MemoryRegionTooLarge(
                        region.guest_base.0 as u128 + region.mapping.size() as u128,
                    ))?;
            }
        }

        Ok(GuestMemory {
            regions: Arc::from(regions),
        })
    }

    /// Returns the end address of memory.
    ///
    /// # Examples
    ///
    /// ```
    /// # use base::MemoryMapping;
    /// # use vm_memory::{GuestAddress, GuestMemory};
    /// # fn test_end_addr() -> Result<(), ()> {
    ///     let start_addr = GuestAddress(0x1000);
    ///     let mut gm = GuestMemory::new(&vec![(start_addr, 0x400)]).map_err(|_| ())?;
    ///     assert_eq!(start_addr.checked_add(0x400), Some(gm.end_addr()));
    ///     Ok(())
    /// # }
    /// ```
    pub fn end_addr(&self) -> GuestAddress {
        self.regions
            .iter()
            .max_by_key(|region| region.start())
            .map_or(GuestAddress(0), MemoryRegion::end)
    }

    /// Returns the guest addresses and sizes of the memory regions.
    pub fn guest_memory_regions(&self) -> Vec<(GuestAddress, usize)> {
        self.regions
            .iter()
            .map(|region| (region.guest_base, region.mapping.size()))
            .collect()
    }

    /// Returns the total size of memory in bytes.
    pub fn memory_size(&self) -> u64 {
        self.regions
            .iter()
            .map(|region| region.mapping.size() as u64)
            .sum()
    }

    /// Returns true if the given address is within the memory range available to the guest.
    pub fn address_in_range(&self, addr: GuestAddress) -> bool {
        self.regions.iter().any(|region| region.contains(addr))
    }

    /// Returns true if the given range (start, end) is overlap with the memory range
    /// available to the guest.
    pub fn range_overlap(&self, start: GuestAddress, end: GuestAddress) -> bool {
        self.regions
            .iter()
            .any(|region| region.start() < end && start < region.end())
    }

    /// Returns an address `addr + offset` if it's in range.
    ///
    /// This function doesn't care whether a region `[addr, addr + offset)` is in range or not. To
    /// guarantee it's a valid range, use `is_valid_range()` instead.
    pub fn checked_offset(&self, addr: GuestAddress, offset: u64) -> Option<GuestAddress> {
        addr.checked_add(offset).and_then(|a| {
            if self.address_in_range(a) {
                Some(a)
            } else {
                None
            }
        })
    }

    /// Returns true if the given range `[start, start + length)` is a valid contiguous memory
    /// range available to the guest and it's backed by a single underlying memory region.
    pub fn is_valid_range(&self, start: GuestAddress, length: u64) -> bool {
        if length == 0 {
            return false;
        }

        let end = if let Some(end) = start.checked_add(length - 1) {
            end
        } else {
            return false;
        };

        self.regions
            .iter()
            .any(|region| region.start() <= start && end < region.end())
    }

    /// Returns the size of the memory region in bytes.
    pub fn num_regions(&self) -> u64 {
        self.regions.len() as u64
    }

    pub fn regions(&self) -> impl Iterator<Item = MemoryRegionInformation> {
        self.regions
            .iter()
            .enumerate()
            .map(|(index, region)| MemoryRegionInformation {
                index,
                guest_addr: region.start(),
                size: region.mapping.size(),
                host_addr: region.mapping.as_ptr() as usize,
                shm: &region.shared_obj,
                shm_offset: region.obj_offset,
                options: region.options,
            })
    }

    /// Writes a slice to guest memory at the specified guest address.
    /// Returns the number of bytes written.  The number of bytes written can
    /// be less than the length of the slice if there isn't enough room in the
    /// memory region.
    ///
    /// # Examples
    /// * Write a slice at guestaddress 0x200.
    ///
    /// ```
    /// # use base::MemoryMapping;
    /// # use vm_memory::{GuestAddress, GuestMemory};
    /// # fn test_write_u64() -> Result<(), ()> {
    /// #   let start_addr = GuestAddress(0x1000);
    /// #   let mut gm = GuestMemory::new(&vec![(start_addr, 0x400)]).map_err(|_| ())?;
    ///     let res = gm.write_at_addr(&[1,2,3,4,5], GuestAddress(0x200)).map_err(|_| ())?;
    ///     assert_eq!(5, res);
    ///     Ok(())
    /// # }
    /// ```
    pub fn write_at_addr(&self, buf: &[u8], guest_addr: GuestAddress) -> Result<usize> {
        let (mapping, offset, _) = self.find_region(guest_addr)?;
        mapping
            .write_slice(buf, offset)
            .map_err(|e| Error::MemoryAccess(guest_addr, e))
    }

    /// Writes the entire contents of a slice to guest memory at the specified
    /// guest address.
    ///
    /// Returns an error if there isn't enough room in the memory region to
    /// complete the entire write. Part of the data may have been written
    /// nevertheless.
    ///
    /// # Examples
    ///
    /// ```
    /// use vm_memory::{guest_memory, GuestAddress, GuestMemory};
    ///
    /// fn test_write_all() -> guest_memory::Result<()> {
    ///     let ranges = &[(GuestAddress(0x1000), 0x400)];
    ///     let gm = GuestMemory::new(ranges)?;
    ///     gm.write_all_at_addr(b"zyxwvut", GuestAddress(0x1200))
    /// }
    /// ```
    pub fn write_all_at_addr(&self, buf: &[u8], guest_addr: GuestAddress) -> Result<()> {
        let expected = buf.len();
        let completed = self.write_at_addr(buf, guest_addr)?;
        if expected == completed {
            Ok(())
        } else {
            Err(Error::ShortWrite {
                expected,
                completed,
            })
        }
    }

    /// Reads to a slice from guest memory at the specified guest address.
    /// Returns the number of bytes read.  The number of bytes read can
    /// be less than the length of the slice if there isn't enough room in the
    /// memory region.
    ///
    /// # Examples
    /// * Read a slice of length 16 at guestaddress 0x200.
    ///
    /// ```
    /// # use base::MemoryMapping;
    /// # use vm_memory::{GuestAddress, GuestMemory};
    /// # fn test_write_u64() -> Result<(), ()> {
    /// #   let start_addr = GuestAddress(0x1000);
    /// #   let mut gm = GuestMemory::new(&vec![(start_addr, 0x400)]).map_err(|_| ())?;
    ///     let buf = &mut [0u8; 16];
    ///     let res = gm.read_at_addr(buf, GuestAddress(0x200)).map_err(|_| ())?;
    ///     assert_eq!(16, res);
    ///     Ok(())
    /// # }
    /// ```
    pub fn read_at_addr(&self, buf: &mut [u8], guest_addr: GuestAddress) -> Result<usize> {
        let (mapping, offset, _) = self.find_region(guest_addr)?;
        mapping
            .read_slice(buf, offset)
            .map_err(|e| Error::MemoryAccess(guest_addr, e))
    }

    /// Reads from guest memory at the specified address to fill the entire
    /// buffer.
    ///
    /// Returns an error if there isn't enough room in the memory region to fill
    /// the entire buffer. Part of the buffer may have been filled nevertheless.
    ///
    /// # Examples
    ///
    /// ```
    /// use vm_memory::{guest_memory, GuestAddress, GuestMemory};
    ///
    /// fn test_read_exact() -> guest_memory::Result<()> {
    ///     let ranges = &[(GuestAddress(0x1000), 0x400)];
    ///     let gm = GuestMemory::new(ranges)?;
    ///     let mut buffer = [0u8; 0x200];
    ///     gm.read_exact_at_addr(&mut buffer, GuestAddress(0x1200))
    /// }
    /// ```
    pub fn read_exact_at_addr(&self, buf: &mut [u8], guest_addr: GuestAddress) -> Result<()> {
        let expected = buf.len();
        let completed = self.read_at_addr(buf, guest_addr)?;
        if expected == completed {
            Ok(())
        } else {
            Err(Error::ShortRead {
                expected,
                completed,
            })
        }
    }

    /// Reads an object from guest memory at the given guest address.
    ///
    /// # Examples
    /// * Read a u64 from two areas of guest memory backed by separate mappings.
    ///
    /// ```
    /// # use vm_memory::{GuestAddress, GuestMemory};
    /// # fn test_read_u64() -> Result<u64, ()> {
    /// #     let start_addr1 = GuestAddress(0x0);
    /// #     let start_addr2 = GuestAddress(0x400);
    /// #     let mut gm = GuestMemory::new(&vec![(start_addr1, 0x400), (start_addr2, 0x400)])
    /// #         .map_err(|_| ())?;
    ///       let num1: u64 = gm.read_obj_from_addr(GuestAddress(32)).map_err(|_| ())?;
    ///       let num2: u64 = gm.read_obj_from_addr(GuestAddress(0x400+32)).map_err(|_| ())?;
    /// #     Ok(num1 + num2)
    /// # }
    /// ```
    pub fn read_obj_from_addr<T: FromBytes>(&self, guest_addr: GuestAddress) -> Result<T> {
        let (mapping, offset, _) = self.find_region(guest_addr)?;
        mapping
            .read_obj(offset)
            .map_err(|e| Error::MemoryAccess(guest_addr, e))
    }

    /// Reads an object from guest memory at the given guest address.
    /// Reading from a volatile area isn't strictly safe as it could change
    /// mid-read.  However, as long as the type T is plain old data and can
    /// handle random initialization, everything will be OK.
    ///
    /// The read operation will be volatile, i.e. it will not be reordered by
    /// the compiler and is suitable for I/O, but must be aligned. When reading
    /// from regular memory, prefer [`GuestMemory::read_obj_from_addr`].
    ///
    /// # Examples
    /// * Read a u64 from two areas of guest memory backed by separate mappings.
    ///
    /// ```
    /// # use vm_memory::{GuestAddress, GuestMemory};
    /// # fn test_read_u64() -> Result<u64, ()> {
    /// #     let start_addr1 = GuestAddress(0x0);
    /// #     let start_addr2 = GuestAddress(0x400);
    /// #     let mut gm = GuestMemory::new(&vec![(start_addr1, 0x400), (start_addr2, 0x400)])
    /// #         .map_err(|_| ())?;
    ///       let num1: u64 = gm.read_obj_from_addr_volatile(GuestAddress(32)).map_err(|_| ())?;
    ///       let num2: u64 = gm.read_obj_from_addr_volatile(GuestAddress(0x400+32)).map_err(|_| ())?;
    /// #     Ok(num1 + num2)
    /// # }
    /// ```
    pub fn read_obj_from_addr_volatile<T: FromBytes>(&self, guest_addr: GuestAddress) -> Result<T> {
        let (mapping, offset, _) = self.find_region(guest_addr)?;
        mapping
            .read_obj_volatile(offset)
            .map_err(|e| Error::MemoryAccess(guest_addr, e))
    }

    /// Writes an object to the memory region at the specified guest address.
    /// Returns Ok(()) if the object fits, or Err if it extends past the end.
    ///
    /// # Examples
    /// * Write a u64 at guest address 0x1100.
    ///
    /// ```
    /// # use vm_memory::{GuestAddress, GuestMemory};
    /// # fn test_write_u64() -> Result<(), ()> {
    /// #   let start_addr = GuestAddress(0x1000);
    /// #   let mut gm = GuestMemory::new(&vec![(start_addr, 0x400)]).map_err(|_| ())?;
    ///     gm.write_obj_at_addr(55u64, GuestAddress(0x1100))
    ///         .map_err(|_| ())
    /// # }
    /// ```
    pub fn write_obj_at_addr<T: AsBytes>(&self, val: T, guest_addr: GuestAddress) -> Result<()> {
        let (mapping, offset, _) = self.find_region(guest_addr)?;
        mapping
            .write_obj(val, offset)
            .map_err(|e| Error::MemoryAccess(guest_addr, e))
    }

    /// Writes an object to the memory region at the specified guest address.
    /// Returns Ok(()) if the object fits, or Err if it extends past the end.
    ///
    /// The write operation will be volatile, i.e. it will not be reordered by
    /// the compiler and is suitable for I/O, but must be aligned. When writing
    /// to regular memory, prefer [`GuestMemory::write_obj_at_addr`].
    /// # Examples
    /// * Write a u64 at guest address 0x1100.
    ///
    /// ```
    /// # use vm_memory::{GuestAddress, GuestMemory};
    /// # fn test_write_u64() -> Result<(), ()> {
    /// #   let start_addr = GuestAddress(0x1000);
    /// #   let mut gm = GuestMemory::new(&vec![(start_addr, 0x400)]).map_err(|_| ())?;
    ///     gm.write_obj_at_addr_volatile(55u64, GuestAddress(0x1100))
    ///         .map_err(|_| ())
    /// # }
    /// ```
    pub fn write_obj_at_addr_volatile<T: AsBytes>(
        &self,
        val: T,
        guest_addr: GuestAddress,
    ) -> Result<()> {
        let (mapping, offset, _) = self.find_region(guest_addr)?;
        mapping
            .write_obj_volatile(val, offset)
            .map_err(|e| Error::MemoryAccess(guest_addr, e))
    }

    /// Returns a `VolatileSlice` of `len` bytes starting at `addr`. Returns an error if the slice
    /// is not a subset of this `GuestMemory`.
    ///
    /// # Examples
    /// * Write `99` to 30 bytes starting at guest address 0x1010.
    ///
    /// ```
    /// # use base::MemoryMapping;
    /// # use vm_memory::{GuestAddress, GuestMemory, GuestMemoryError};
    /// # fn test_volatile_slice() -> Result<(), GuestMemoryError> {
    /// #   let start_addr = GuestAddress(0x1000);
    /// #   let mut gm = GuestMemory::new(&vec![(start_addr, 0x400)])?;
    ///     let vslice = gm.get_slice_at_addr(GuestAddress(0x1010), 30)?;
    ///     vslice.write_bytes(99);
    /// #   Ok(())
    /// # }
    /// ```
    pub fn get_slice_at_addr(&self, addr: GuestAddress, len: usize) -> Result<VolatileSlice> {
        self.regions
            .iter()
            .find(|region| region.contains(addr))
            .ok_or(Error::InvalidGuestAddress(addr))
            .and_then(|region| {
                // The cast to a usize is safe here because we know that `region.contains(addr)` and
                // it's not possible for a memory region to be larger than what fits in a usize.
                region
                    .mapping
                    .get_slice(addr.offset_from(region.start()) as usize, len)
                    .map_err(Error::VolatileMemoryAccess)
            })
    }
    /// Convert a GuestAddress into a pointer in the address space of this
    /// process. This should only be necessary for giving addresses to the
    /// kernel, as with vhost ioctls. Normal reads/writes to guest memory should
    /// be done through `write_obj_at_addr`, `read_obj_from_addr`, etc.
    ///
    /// # Arguments
    /// * `guest_addr` - Guest address to convert.
    ///
    /// # Examples
    ///
    /// ```
    /// # use vm_memory::{GuestAddress, GuestMemory};
    /// # fn test_host_addr() -> Result<(), ()> {
    ///     let start_addr = GuestAddress(0x1000);
    ///     let mut gm = GuestMemory::new(&vec![(start_addr, 0x500)]).map_err(|_| ())?;
    ///     let addr = gm.get_host_address(GuestAddress(0x1200)).unwrap();
    ///     println!("Host address is {:p}", addr);
    ///     Ok(())
    /// # }
    /// ```
    pub fn get_host_address(&self, guest_addr: GuestAddress) -> Result<*const u8> {
        let (mapping, offset, _) = self.find_region(guest_addr)?;
        Ok(
            // SAFETY:
            // This is safe; `find_region` already checks that offset is in
            // bounds.
            unsafe { mapping.as_ptr().add(offset) } as *const u8,
        )
    }

    /// Convert a GuestAddress into a pointer in the address space of this
    /// process, and verify that the provided size define a valid range within
    /// a single memory region. Similar to get_host_address(), this should only
    /// be used for giving addresses to the kernel.
    ///
    /// # Arguments
    /// * `guest_addr` - Guest address to convert.
    /// * `size` - Size of the address range to be converted.
    ///
    /// # Examples
    ///
    /// ```
    /// # use vm_memory::{GuestAddress, GuestMemory};
    /// # fn test_host_addr() -> Result<(), ()> {
    ///     let start_addr = GuestAddress(0x1000);
    ///     let mut gm = GuestMemory::new(&vec![(start_addr, 0x500)]).map_err(|_| ())?;
    ///     let addr = gm.get_host_address_range(GuestAddress(0x1200), 0x200).unwrap();
    ///     println!("Host address is {:p}", addr);
    ///     Ok(())
    /// # }
    /// ```
    pub fn get_host_address_range(
        &self,
        guest_addr: GuestAddress,
        size: usize,
    ) -> Result<*const u8> {
        if size == 0 {
            return Err(Error::InvalidSize(size));
        }

        // Assume no overlap among regions
        let (mapping, offset, _) = self.find_region(guest_addr)?;

        if mapping
            .size()
            .checked_sub(offset)
            .map_or(true, |v| v < size)
        {
            return Err(Error::InvalidGuestAddress(guest_addr));
        }

        Ok(
            //SAFETY:
            // This is safe; `find_region` already checks that offset is in
            // bounds.
            unsafe { mapping.as_ptr().add(offset) } as *const u8,
        )
    }

    /// Returns a reference to the region that backs the given address.
    pub fn shm_region(
        &self,
        guest_addr: GuestAddress,
    ) -> Result<&(dyn AsRawDescriptor + Send + Sync)> {
        self.regions
            .iter()
            .find(|region| region.contains(guest_addr))
            .ok_or(Error::InvalidGuestAddress(guest_addr))
            .map(|region| region.shared_obj.as_ref())
    }

    /// Returns the region that contains the memory at `offset` from the base of guest memory.
    pub fn offset_region(&self, offset: u64) -> Result<&(dyn AsRawDescriptor + Send + Sync)> {
        self.shm_region(
            self.checked_offset(self.regions[0].guest_base, offset)
                .ok_or(Error::InvalidOffset(offset))?,
        )
    }

    /// Loops over all guest memory regions of `self`, and returns the
    /// target region that contains `guest_addr`. On success, this
    /// function returns a tuple with the following fields:
    ///
    /// (i) the memory mapping associated with the target region.
    /// (ii) the relative offset from the start of the target region to `guest_addr`.
    /// (iii) the absolute offset from the start of the memory mapping to the target region.
    ///
    /// If no target region is found, an error is returned.
    pub fn find_region(&self, guest_addr: GuestAddress) -> Result<(&MemoryMapping, usize, u64)> {
        self.regions
            .iter()
            .find(|region| region.contains(guest_addr))
            .ok_or(Error::InvalidGuestAddress(guest_addr))
            .map(|region| {
                (
                    &region.mapping,
                    guest_addr.offset_from(region.start()) as usize,
                    region.obj_offset,
                )
            })
    }

    /// Convert a GuestAddress into an offset within the associated shm region.
    ///
    /// Due to potential gaps within GuestMemory, it is helpful to know the
    /// offset within the shm where a given address is found. This offset
    /// can then be passed to another process mapping the shm to read data
    /// starting at that address.
    ///
    /// # Arguments
    /// * `guest_addr` - Guest address to convert.
    ///
    /// # Examples
    ///
    /// ```
    /// # use vm_memory::{GuestAddress, GuestMemory};
    /// let addr_a = GuestAddress(0x10000);
    /// let addr_b = GuestAddress(0x80000);
    /// let mut gm = GuestMemory::new(&vec![
    ///     (addr_a, 0x20000),
    ///     (addr_b, 0x30000)]).expect("failed to create GuestMemory");
    /// let offset = gm.offset_from_base(GuestAddress(0x95000))
    ///                .expect("failed to get offset");
    /// assert_eq!(offset, 0x35000);
    /// ```
    pub fn offset_from_base(&self, guest_addr: GuestAddress) -> Result<u64> {
        self.regions
            .iter()
            .find(|region| region.contains(guest_addr))
            .ok_or(Error::InvalidGuestAddress(guest_addr))
            .map(|region| region.obj_offset + guest_addr.offset_from(region.start()))
    }

    /// Copy all guest memory into `w`.
    ///
    /// # Safety
    /// Must have exclusive access to the guest memory for the duration of the
    /// call (e.g. all vCPUs and devices must be stopped).
    ///
    /// Returns a JSON object that contains metadata about the underlying memory regions to allow
    /// validation checks at restore time.
    #[deny(unsafe_op_in_unsafe_fn)]
    pub unsafe fn snapshot<T: Write>(
        &self,
        w: &mut T,
        compress: bool,
    ) -> anyhow::Result<serde_json::Value> {
        fn go(
            this: &GuestMemory,
            w: &mut impl Write,
        ) -> anyhow::Result<Vec<MemoryRegionSnapshotMetadata>> {
            let mut regions = Vec::new();
            for region in this.regions.iter() {
                let data_ranges = region
                    .find_data_ranges()
                    .context("find_data_ranges failed")?;
                for range in &data_ranges {
                    let region_vslice = region
                        .mapping
                        .get_slice(range.start, range.end - range.start)?;
                    // SAFETY:
                    // 1. The data is guaranteed to be present & of expected length by the
                    //    `VolatileSlice`.
                    // 2. Aliasing the `VolatileSlice`'s memory is safe because a. The only mutable
                    //    reference to it is held by the guest, and the guest's VCPUs are stopped
                    //    (guaranteed by caller), so that mutable reference can be ignored (aliasing
                    //    is only an issue if temporal overlap occurs, and it does not here). b.
                    //    Some host code does manipulate guest memory through raw pointers. This
                    //    aliases the underlying memory of the slice, so we must ensure that host
                    //    code is not running (the caller guarantees this).
                    w.write_all(unsafe {
                        std::slice::from_raw_parts(region_vslice.as_ptr(), region_vslice.size())
                    })?;
                }
                regions.push(MemoryRegionSnapshotMetadata {
                    guest_base: region.guest_base.0,
                    size: region.mapping.size(),
                    data_ranges,
                });
            }
            Ok(regions)
        }

        let regions = if compress {
            let mut w = lz4_flex::frame::FrameEncoder::new(w);
            let regions = go(self, &mut w)?;
            w.finish()?;
            regions
        } else {
            go(self, w)?
        };

        Ok(serde_json::to_value(MemorySnapshotMetadata {
            regions,
            compressed: compress,
        })?)
    }

    /// Restore the guest memory using the bytes from `r`.
    ///
    /// # Safety
    /// Must have exclusive access to the guest memory for the duration of the
    /// call (e.g. all vCPUs and devices must be stopped).
    ///
    /// Returns an error if `metadata` doesn't match the configuration of the `GuestMemory` or if
    /// `r` doesn't produce exactly as many bytes as needed.
    #[deny(unsafe_op_in_unsafe_fn)]
    pub unsafe fn restore<T: Read>(
        &self,
        metadata: serde_json::Value,
        r: &mut T,
    ) -> anyhow::Result<()> {
        let metadata: MemorySnapshotMetadata = serde_json::from_value(metadata)?;

        let mut r: Box<dyn Read> = if metadata.compressed {
            Box::new(lz4_flex::frame::FrameDecoder::new(r))
        } else {
            Box::new(r)
        };

        if self.regions.len() != metadata.regions.len() {
            bail!(
                "snapshot expected {} memory regions but VM has {}",
                metadata.regions.len(),
                self.regions.len()
            );
        }
        for (region, metadata) in self.regions.iter().zip(metadata.regions.iter()) {
            let MemoryRegionSnapshotMetadata {
                guest_base,
                size,
                data_ranges,
            } = metadata;
            if region.guest_base.0 != *guest_base || region.mapping.size() != *size {
                bail!("snapshot memory regions don't match VM memory regions");
            }

            let mut prev_end = 0;
            for range in data_ranges {
                let hole_size = range
                    .start
                    .checked_sub(prev_end)
                    .context("invalid data range")?;
                if hole_size > 0 {
                    region.zero_range(prev_end, hole_size)?;
                }
                let region_vslice = region
                    .mapping
                    .get_slice(range.start, range.end - range.start)?;

                // SAFETY:
                // See `Self::snapshot` for the detailed safety statement, and
                // note that both mutable and non-mutable aliasing is safe.
                r.read_exact(unsafe {
                    std::slice::from_raw_parts_mut(region_vslice.as_mut_ptr(), region_vslice.size())
                })?;

                prev_end = range.end;
            }
            let hole_size = region
                .mapping
                .size()
                .checked_sub(prev_end)
                .context("invalid data range")?;
            if hole_size > 0 {
                region.zero_range(prev_end, hole_size)?;
            }
        }

        // Should always be at EOF at this point.
        let mut buf = [0];
        if r.read(&mut buf)? != 0 {
            bail!("too many bytes");
        }

        Ok(())
    }
}

#[derive(Debug, PartialEq, Eq, serde::Serialize, serde::Deserialize)]
struct MemorySnapshotMetadata {
    regions: Vec<MemoryRegionSnapshotMetadata>,
    compressed: bool,
}

#[derive(Debug, PartialEq, Eq, serde::Serialize, serde::Deserialize)]
struct MemoryRegionSnapshotMetadata {
    guest_base: u64,
    size: usize,
    // Ranges of the mmap that are stored in the snapshot file. All other ranges of the region are
    // zeros.
    data_ranges: Vec<std::ops::Range<usize>>,
}

// SAFETY:
// It is safe to implement BackingMemory because GuestMemory can be mutated any time already.
unsafe impl BackingMemory for GuestMemory {
    fn get_volatile_slice(
        &self,
        mem_range: cros_async::MemRegion,
    ) -> mem::Result<VolatileSlice<'_>> {
        self.get_slice_at_addr(GuestAddress(mem_range.offset), mem_range.len)
            .map_err(|_| mem::Error::InvalidOffset(mem_range.offset, mem_range.len))
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_alignment() {
        let start_addr1 = GuestAddress(0x0);
        let start_addr2 = GuestAddress(0x10000);

        assert!(GuestMemory::new(&[(start_addr1, 0x100), (start_addr2, 0x400)]).is_err());
        assert!(GuestMemory::new(&[(start_addr1, 0x10000), (start_addr2, 0x10000)]).is_ok());
    }

    #[test]
    fn two_regions() {
        let start_addr1 = GuestAddress(0x0);
        let start_addr2 = GuestAddress(0x10000);
        // The memory regions are `[0x0, 0x10000)`, `[0x10000, 0x20000)`.
        let gm = GuestMemory::new(&[(start_addr1, 0x10000), (start_addr2, 0x10000)]).unwrap();

        // Although each address in `[0x0, 0x20000)` is valid, `is_valid_range()` returns false for
        // a range that is across multiple underlying regions.
        assert!(gm.is_valid_range(GuestAddress(0x5000), 0x5000));
        assert!(gm.is_valid_range(GuestAddress(0x10000), 0x5000));
        assert!(!gm.is_valid_range(GuestAddress(0x5000), 0x10000));
    }

    #[test]
    fn overlap_memory() {
        let start_addr1 = GuestAddress(0x0);
        let start_addr2 = GuestAddress(0x10000);
        assert!(GuestMemory::new(&[(start_addr1, 0x20000), (start_addr2, 0x20000)]).is_err());
    }

    #[test]
    fn region_hole() {
        let start_addr1 = GuestAddress(0x0);
        let start_addr2 = GuestAddress(0x40000);
        // The memory regions are `[0x0, 0x20000)`, `[0x40000, 0x60000)`.
        let gm = GuestMemory::new(&[(start_addr1, 0x20000), (start_addr2, 0x20000)]).unwrap();

        assert!(gm.address_in_range(GuestAddress(0x10000)));
        assert!(!gm.address_in_range(GuestAddress(0x30000)));
        assert!(gm.address_in_range(GuestAddress(0x50000)));
        assert!(!gm.address_in_range(GuestAddress(0x60000)));
        assert!(!gm.address_in_range(GuestAddress(0x60000)));
        assert!(gm.range_overlap(GuestAddress(0x10000), GuestAddress(0x30000)),);
        assert!(!gm.range_overlap(GuestAddress(0x30000), GuestAddress(0x40000)),);
        assert!(gm.range_overlap(GuestAddress(0x30000), GuestAddress(0x70000)),);
        assert_eq!(gm.checked_offset(GuestAddress(0x10000), 0x10000), None);
        assert_eq!(
            gm.checked_offset(GuestAddress(0x50000), 0x8000),
            Some(GuestAddress(0x58000))
        );
        assert_eq!(gm.checked_offset(GuestAddress(0x50000), 0x10000), None);
        assert!(gm.is_valid_range(GuestAddress(0x0), 0x10000));
        assert!(gm.is_valid_range(GuestAddress(0x0), 0x20000));
        assert!(!gm.is_valid_range(GuestAddress(0x0), 0x20000 + 1));

        // While `checked_offset(GuestAddress(0x10000), 0x40000)` succeeds because 0x50000 is a
        // valid address, `is_valid_range(GuestAddress(0x10000), 0x40000)` returns `false`
        // because there is a hole inside of [0x10000, 0x50000).
        assert_eq!(
            gm.checked_offset(GuestAddress(0x10000), 0x40000),
            Some(GuestAddress(0x50000))
        );
        assert!(!gm.is_valid_range(GuestAddress(0x10000), 0x40000));
    }

    #[test]
    fn test_read_u64() {
        let start_addr1 = GuestAddress(0x0);
        let start_addr2 = GuestAddress(0x10000);
        let gm = GuestMemory::new(&[(start_addr1, 0x10000), (start_addr2, 0x10000)]).unwrap();

        let val1: u64 = 0xaa55aa55aa55aa55;
        let val2: u64 = 0x55aa55aa55aa55aa;
        gm.write_obj_at_addr(val1, GuestAddress(0x500)).unwrap();
        gm.write_obj_at_addr(val2, GuestAddress(0x10000 + 32))
            .unwrap();
        let num1: u64 = gm.read_obj_from_addr(GuestAddress(0x500)).unwrap();
        let num2: u64 = gm.read_obj_from_addr(GuestAddress(0x10000 + 32)).unwrap();
        assert_eq!(val1, num1);
        assert_eq!(val2, num2);
    }

    #[test]
    fn test_memory_size() {
        let start_region1 = GuestAddress(0x0);
        let size_region1 = 0x10000;
        let start_region2 = GuestAddress(0x10000);
        let size_region2 = 0x20000;
        let gm = GuestMemory::new(&[(start_region1, size_region1), (start_region2, size_region2)])
            .unwrap();

        let mem_size = gm.memory_size();
        assert_eq!(mem_size, size_region1 + size_region2);
    }

    // Get the base address of the mapping for a GuestAddress.
    fn get_mapping(mem: &GuestMemory, addr: GuestAddress) -> Result<*const u8> {
        Ok(mem.find_region(addr)?.0.as_ptr() as *const u8)
    }

    #[test]
    fn guest_to_host() {
        let start_addr1 = GuestAddress(0x0);
        let start_addr2 = GuestAddress(0x10000);
        let mem = GuestMemory::new(&[(start_addr1, 0x10000), (start_addr2, 0x40000)]).unwrap();

        // Verify the host addresses match what we expect from the mappings.
        let addr1_base = get_mapping(&mem, start_addr1).unwrap();
        let addr2_base = get_mapping(&mem, start_addr2).unwrap();
        let host_addr1 = mem.get_host_address(start_addr1).unwrap();
        let host_addr2 = mem.get_host_address(start_addr2).unwrap();
        assert_eq!(host_addr1, addr1_base);
        assert_eq!(host_addr2, addr2_base);

        // Check that a bad address returns an error.
        let bad_addr = GuestAddress(0x123456);
        assert!(mem.get_host_address(bad_addr).is_err());
    }

    #[test]
    fn guest_to_host_range() {
        let start_addr1 = GuestAddress(0x0);
        let start_addr2 = GuestAddress(0x10000);
        let mem = GuestMemory::new(&[(start_addr1, 0x10000), (start_addr2, 0x40000)]).unwrap();

        // Verify the host addresses match what we expect from the mappings.
        let addr1_base = get_mapping(&mem, start_addr1).unwrap();
        let addr2_base = get_mapping(&mem, start_addr2).unwrap();
        let host_addr1 = mem.get_host_address_range(start_addr1, 0x10000).unwrap();
        let host_addr2 = mem.get_host_address_range(start_addr2, 0x10000).unwrap();
        assert_eq!(host_addr1, addr1_base);
        assert_eq!(host_addr2, addr2_base);

        let host_addr3 = mem.get_host_address_range(start_addr2, 0x20000).unwrap();
        assert_eq!(host_addr3, addr2_base);

        // Check that a valid guest address with an invalid size returns an error.
        assert!(mem.get_host_address_range(start_addr1, 0x20000).is_err());

        // Check that a bad address returns an error.
        let bad_addr = GuestAddress(0x123456);
        assert!(mem.get_host_address_range(bad_addr, 0x10000).is_err());
    }

    #[test]
    fn shm_offset() {
        let start_region1 = GuestAddress(0x0);
        let size_region1 = 0x10000;
        let start_region2 = GuestAddress(0x10000);
        let size_region2 = 0x20000;
        let gm = GuestMemory::new(&[(start_region1, size_region1), (start_region2, size_region2)])
            .unwrap();

        gm.write_obj_at_addr(0x1337u16, GuestAddress(0x0)).unwrap();
        gm.write_obj_at_addr(0x0420u16, GuestAddress(0x10000))
            .unwrap();

        for region in gm.regions() {
            let shm = match region.shm {
                BackingObject::Shm(s) => s,
                _ => {
                    panic!("backing object isn't SharedMemory");
                }
            };
            let mmap = MemoryMappingBuilder::new(region.size)
                .from_shared_memory(shm)
                .offset(region.shm_offset)
                .build()
                .unwrap();

            if region.index == 0 {
                assert!(mmap.read_obj::<u16>(0x0).unwrap() == 0x1337u16);
            }

            if region.index == 1 {
                assert!(mmap.read_obj::<u16>(0x0).unwrap() == 0x0420u16);
            }
        }
    }

    #[test]
    // Disabled for non-x86 because test infra uses qemu-user, which doesn't support MADV_REMOVE.
    #[cfg(target_arch = "x86_64")]
    fn snapshot_restore() {
        let regions = &[
            // Hole at start.
            (GuestAddress(0x0), 0x10000),
            // Hole at end.
            (GuestAddress(0x10000), 0x10000),
            // Hole in middle.
            (GuestAddress(0x20000), 0x10000),
            // All holes.
            (GuestAddress(0x30000), 0x10000),
            // No holes.
            (GuestAddress(0x40000), 0x1000),
        ];
        let writes = &[
            (GuestAddress(0x0FFF0), 1u64),
            (GuestAddress(0x10000), 2u64),
            (GuestAddress(0x29000), 3u64),
            (GuestAddress(0x40000), 4u64),
        ];

        let gm = GuestMemory::new(regions).unwrap();
        for &(addr, value) in writes {
            gm.write_obj_at_addr(value, addr).unwrap();
        }

        let mut data = tempfile::tempfile().unwrap();
        // SAFETY:
        // no vm is running
        let metadata_json = unsafe { gm.snapshot(&mut data, false).unwrap() };
        let metadata: MemorySnapshotMetadata =
            serde_json::from_value(metadata_json.clone()).unwrap();

        #[cfg(unix)]
        assert_eq!(
            metadata,
            MemorySnapshotMetadata {
                regions: vec![
                    MemoryRegionSnapshotMetadata {
                        guest_base: 0,
                        size: 0x10000,
                        data_ranges: vec![0x0F000..0x10000],
                    },
                    MemoryRegionSnapshotMetadata {
                        guest_base: 0x10000,
                        size: 0x10000,
                        data_ranges: vec![0x00000..0x01000],
                    },
                    MemoryRegionSnapshotMetadata {
                        guest_base: 0x20000,
                        size: 0x10000,
                        data_ranges: vec![0x09000..0x0A000],
                    },
                    MemoryRegionSnapshotMetadata {
                        guest_base: 0x30000,
                        size: 0x10000,
                        data_ranges: vec![],
                    },
                    MemoryRegionSnapshotMetadata {
                        guest_base: 0x40000,
                        size: 0x1000,
                        data_ranges: vec![0x00000..0x01000],
                    }
                ],
                compressed: false,
            }
        );
        // We can't detect the holes on Windows yet.
        #[cfg(windows)]
        assert_eq!(
            metadata,
            MemorySnapshotMetadata {
                regions: vec![
                    MemoryRegionSnapshotMetadata {
                        guest_base: 0,
                        size: 0x10000,
                        data_ranges: vec![0x00000..0x10000],
                    },
                    MemoryRegionSnapshotMetadata {
                        guest_base: 0x10000,
                        size: 0x10000,
                        data_ranges: vec![0x00000..0x10000],
                    },
                    MemoryRegionSnapshotMetadata {
                        guest_base: 0x20000,
                        size: 0x10000,
                        data_ranges: vec![0x00000..0x10000],
                    },
                    MemoryRegionSnapshotMetadata {
                        guest_base: 0x30000,
                        size: 0x10000,
                        data_ranges: vec![0x00000..0x10000],
                    },
                    MemoryRegionSnapshotMetadata {
                        guest_base: 0x40000,
                        size: 0x1000,
                        data_ranges: vec![0x00000..0x01000],
                    }
                ],
                compressed: false,
            }
        );

        std::mem::drop(gm);

        let gm2 = GuestMemory::new(regions).unwrap();

        // Write to a hole so we can assert the restore zeroes it.
        let hole_addr = GuestAddress(0x30000);
        gm2.write_obj_at_addr(8u64, hole_addr).unwrap();

        use std::io::Seek;
        data.seek(std::io::SeekFrom::Start(0)).unwrap();
        // SAFETY:
        // no vm is running
        unsafe { gm2.restore(metadata_json, &mut data).unwrap() };

        assert_eq!(gm2.read_obj_from_addr::<u64>(hole_addr).unwrap(), 0);
        for &(addr, value) in writes {
            assert_eq!(gm2.read_obj_from_addr::<u64>(addr).unwrap(), value);
        }
    }
}