1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
// Copyright 2018 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use std::alloc::Layout;
use std::cell::Cell;
use std::cell::RefCell;
use std::cmp;
use std::cmp::min;
use std::cmp::Ord;
use std::cmp::PartialEq;
use std::cmp::PartialOrd;
use std::collections::btree_set::BTreeSet;
use std::io::Read;
use std::io::Write;
use std::mem;
use std::sync::Arc;
use std::sync::RwLock;

use base::error;
use base::LayoutAllocation;
use kvm::CpuId;
use kvm::Vcpu;
use kvm_sys::kvm_debugregs;
use kvm_sys::kvm_enable_cap;
use kvm_sys::kvm_fpu;
use kvm_sys::kvm_lapic_state;
use kvm_sys::kvm_mp_state;
use kvm_sys::kvm_msr_entry;
use kvm_sys::kvm_msrs;
use kvm_sys::kvm_regs;
use kvm_sys::kvm_sregs;
use kvm_sys::kvm_vcpu_events;
use kvm_sys::kvm_xcrs;
use kvm_sys::KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
use libc::EINVAL;
use libc::ENOENT;
use libc::ENOTTY;
use libc::EPERM;
use libc::EPIPE;
use libc::EPROTO;
use protobuf::CodedOutputStream;
use protobuf::EnumOrUnknown;
use protobuf::Message;
use protos::plugin::*;
use static_assertions::const_assert;
use sync::Mutex;
use zerocopy::AsBytes;
use zerocopy::FromBytes;

use super::*;

/// Identifier for an address space in the VM.
#[derive(Copy, Clone, PartialEq, Eq)]
pub enum IoSpace {
    Ioport,
    Mmio,
}

#[derive(Debug, Copy, Clone)]
struct Range(u64, u64, bool);

impl Eq for Range {}

impl PartialEq for Range {
    fn eq(&self, other: &Range) -> bool {
        self.0 == other.0
    }
}

impl Ord for Range {
    fn cmp(&self, other: &Range) -> cmp::Ordering {
        self.0.cmp(&other.0)
    }
}

impl PartialOrd for Range {
    fn partial_cmp(&self, other: &Range) -> Option<cmp::Ordering> {
        Some(self.cmp(other))
    }
}

fn get_vcpu_state_enum_or_unknown(
    vcpu: &Vcpu,
    state_set: EnumOrUnknown<vcpu_request::StateSet>,
) -> SysResult<Vec<u8>> {
    get_vcpu_state(
        vcpu,
        state_set.enum_value().map_err(|_| SysError::new(EINVAL))?,
    )
}

fn get_vcpu_state(vcpu: &Vcpu, state_set: vcpu_request::StateSet) -> SysResult<Vec<u8>> {
    Ok(match state_set {
        vcpu_request::StateSet::REGS => vcpu.get_regs()?.as_bytes().to_vec(),
        vcpu_request::StateSet::SREGS => vcpu.get_sregs()?.as_bytes().to_vec(),
        vcpu_request::StateSet::FPU => vcpu.get_fpu()?.as_bytes().to_vec(),
        vcpu_request::StateSet::DEBUGREGS => vcpu.get_debugregs()?.as_bytes().to_vec(),
        vcpu_request::StateSet::XCREGS => vcpu.get_xcrs()?.as_bytes().to_vec(),
        vcpu_request::StateSet::LAPIC => vcpu.get_lapic()?.as_bytes().to_vec(),
        vcpu_request::StateSet::MP => vcpu.get_mp_state()?.as_bytes().to_vec(),
        vcpu_request::StateSet::EVENTS => vcpu.get_vcpu_events()?.as_bytes().to_vec(),
    })
}

fn set_vcpu_state_enum_or_unknown(
    vcpu: &Vcpu,
    state_set: EnumOrUnknown<vcpu_request::StateSet>,
    state: &[u8],
) -> SysResult<()> {
    set_vcpu_state(
        vcpu,
        state_set.enum_value().map_err(|_| SysError::new(EINVAL))?,
        state,
    )
}

fn set_vcpu_state(vcpu: &Vcpu, state_set: vcpu_request::StateSet, state: &[u8]) -> SysResult<()> {
    match state_set {
        vcpu_request::StateSet::REGS => {
            let regs = kvm_regs::read_from(state).ok_or(SysError::new(EINVAL))?;
            vcpu.set_regs(&regs)
        }
        vcpu_request::StateSet::SREGS => {
            let sregs = kvm_sregs::read_from(state).ok_or(SysError::new(EINVAL))?;
            vcpu.set_sregs(&sregs)
        }
        vcpu_request::StateSet::FPU => {
            let fpu = kvm_fpu::read_from(state).ok_or(SysError::new(EINVAL))?;
            vcpu.set_fpu(&fpu)
        }
        vcpu_request::StateSet::DEBUGREGS => {
            let debugregs = kvm_debugregs::read_from(state).ok_or(SysError::new(EINVAL))?;
            vcpu.set_debugregs(&debugregs)
        }
        vcpu_request::StateSet::XCREGS => {
            let xcrs = kvm_xcrs::read_from(state).ok_or(SysError::new(EINVAL))?;
            vcpu.set_xcrs(&xcrs)
        }
        vcpu_request::StateSet::LAPIC => {
            let lapic_state = kvm_lapic_state::read_from(state).ok_or(SysError::new(EINVAL))?;
            vcpu.set_lapic(&lapic_state)
        }
        vcpu_request::StateSet::MP => {
            let mp_state = kvm_mp_state::read_from(state).ok_or(SysError::new(EINVAL))?;
            vcpu.set_mp_state(&mp_state)
        }
        vcpu_request::StateSet::EVENTS => {
            let vcpu_events = kvm_vcpu_events::read_from(state).ok_or(SysError::new(EINVAL))?;
            vcpu.set_vcpu_events(&vcpu_events)
        }
    }
}

pub struct CallHintDetails {
    pub match_rax: bool,
    pub match_rbx: bool,
    pub match_rcx: bool,
    pub match_rdx: bool,
    pub rax: u64,
    pub rbx: u64,
    pub rcx: u64,
    pub rdx: u64,
    pub send_sregs: bool,
    pub send_debugregs: bool,
}

pub struct CallHint {
    io_space: IoSpace,
    addr: u64,
    on_write: bool,
    regs: Vec<CallHintDetails>,
}

/// State shared by every VCPU, grouped together to make edits to the state coherent across VCPUs.
#[derive(Default)]
pub struct SharedVcpuState {
    ioport_regions: BTreeSet<Range>,
    mmio_regions: BTreeSet<Range>,
    hint: Option<CallHint>,
}

impl SharedVcpuState {
    /// Reserves the given range for handling by the plugin process.
    ///
    /// This will reject any reservation that overlaps with an existing reservation.
    pub fn reserve_range(
        &mut self,
        space: IoSpace,
        start: u64,
        length: u64,
        async_write: bool,
    ) -> SysResult<()> {
        if length == 0 {
            return Err(SysError::new(EINVAL));
        }

        // Reject all cases where this reservation is part of another reservation.
        if self.is_reserved(space, start) {
            return Err(SysError::new(EPERM));
        }

        let last_address = match start.checked_add(length) {
            Some(end) => end - 1,
            None => return Err(SysError::new(EINVAL)),
        };

        let space = match space {
            IoSpace::Ioport => &mut self.ioport_regions,
            IoSpace::Mmio => &mut self.mmio_regions,
        };

        match space
            .range(..Range(last_address, 0, false))
            .next_back()
            .cloned()
        {
            Some(Range(existing_start, _, _)) if existing_start >= start => {
                Err(SysError::new(EPERM))
            }
            _ => {
                space.insert(Range(start, length, async_write));
                Ok(())
            }
        }
    }

    //// Releases a reservation previously made at `start` in the given `space`.
    pub fn unreserve_range(&mut self, space: IoSpace, start: u64) -> SysResult<()> {
        let range = Range(start, 0, false);
        let space = match space {
            IoSpace::Ioport => &mut self.ioport_regions,
            IoSpace::Mmio => &mut self.mmio_regions,
        };
        if space.remove(&range) {
            Ok(())
        } else {
            Err(SysError::new(ENOENT))
        }
    }

    pub fn set_hint(
        &mut self,
        space: IoSpace,
        addr: u64,
        on_write: bool,
        regs: Vec<CallHintDetails>,
    ) {
        if addr == 0 {
            self.hint = None;
        } else {
            let hint = CallHint {
                io_space: space,
                addr,
                on_write,
                regs,
            };
            self.hint = Some(hint);
        }
    }

    fn is_reserved(&self, space: IoSpace, addr: u64) -> bool {
        if let Some(Range(start, len, _)) = self.first_before(space, addr) {
            let offset = addr - start;
            if offset < len {
                return true;
            }
        }
        false
    }

    fn first_before(&self, io_space: IoSpace, addr: u64) -> Option<Range> {
        let space = match io_space {
            IoSpace::Ioport => &self.ioport_regions,
            IoSpace::Mmio => &self.mmio_regions,
        };

        match addr.checked_add(1) {
            Some(next_addr) => space
                .range(..Range(next_addr, 0, false))
                .next_back()
                .cloned(),
            None => None,
        }
    }

    fn matches_hint(&self, io_space: IoSpace, addr: u64, is_write: bool) -> bool {
        if let Some(hint) = &self.hint {
            return io_space == hint.io_space && addr == hint.addr && is_write == hint.on_write;
        }
        false
    }

    fn check_hint_details(&self, regs: &kvm_regs) -> (bool, bool) {
        if let Some(hint) = &self.hint {
            for entry in hint.regs.iter() {
                if (!entry.match_rax || entry.rax == regs.rax)
                    && (!entry.match_rbx || entry.rbx == regs.rbx)
                    && (!entry.match_rcx || entry.rcx == regs.rcx)
                    && (!entry.match_rdx || entry.rdx == regs.rdx)
                {
                    return (entry.send_sregs, entry.send_debugregs);
                }
            }
        }
        (false, false)
    }
}

/// State specific to a VCPU, grouped so that each `PluginVcpu` object will share a canonical
/// version.
#[derive(Default)]
pub struct PerVcpuState {
    pause_request: Option<u64>,
}

impl PerVcpuState {
    /// Indicates that a VCPU should wait until the plugin process resumes the VCPU.
    ///
    /// This method will not cause a VCPU to pause immediately. Instead, the VCPU thread will
    /// continue running until a interrupted, at which point it will check for a pending pause. If
    /// there is another call to `request_pause` for this VCPU before that happens, the last pause
    /// request's `data` will be overwritten with the most recent `data.
    ///
    /// To get an immediate pause after calling `request_pause`, send a signal (with a registered
    /// handler) to the thread handling the VCPU corresponding to this state. This should interrupt
    /// the running VCPU, which should check for a pause with `PluginVcpu::pre_run`.
    pub fn request_pause(&mut self, data: u64) {
        self.pause_request = Some(data);
    }
}

enum VcpuRunData<'a> {
    Read(&'a mut [u8]),
    Write(&'a [u8]),
}

impl<'a> VcpuRunData<'a> {
    fn is_write(&self) -> bool {
        matches!(self, VcpuRunData::Write(_))
    }

    fn as_slice(&self) -> &[u8] {
        match self {
            VcpuRunData::Read(s) => s,
            VcpuRunData::Write(s) => s,
        }
    }

    fn copy_from_slice(&mut self, data: &[u8]) {
        if let VcpuRunData::Read(s) = self {
            let copy_size = min(s.len(), data.len());
            s.copy_from_slice(&data[..copy_size]);
        }
    }
}

/// State object for a VCPU's connection with the plugin process.
///
/// This is used by a VCPU thread to allow the plugin process to handle vmexits. Each method may
/// block indefinitely while the plugin process is handling requests. In order to cleanly shutdown
/// during these blocking calls, the `connection` socket should be shutdown. This will end the
/// blocking calls,
pub struct PluginVcpu {
    shared_vcpu_state: Arc<RwLock<SharedVcpuState>>,
    per_vcpu_state: Arc<Mutex<PerVcpuState>>,
    read_pipe: File,
    write_pipe: File,
    wait_reason: Cell<Option<vcpu_response::Wait>>,
    request_buffer: RefCell<Vec<u8>>,
    response_buffer: RefCell<Vec<u8>>,
}

impl PluginVcpu {
    /// Creates the plugin state and connection container for a VCPU thread.
    pub fn new(
        shared_vcpu_state: Arc<RwLock<SharedVcpuState>>,
        per_vcpu_state: Arc<Mutex<PerVcpuState>>,
        read_pipe: File,
        write_pipe: File,
    ) -> PluginVcpu {
        PluginVcpu {
            shared_vcpu_state,
            per_vcpu_state,
            read_pipe,
            write_pipe,
            wait_reason: Default::default(),
            request_buffer: Default::default(),
            response_buffer: Default::default(),
        }
    }

    /// Tells the plugin process to initialize this VCPU.
    ///
    /// This should be called for each VCPU before the first run of any of the VCPUs in the VM.
    pub fn init(&self, vcpu: &Vcpu) -> SysResult<()> {
        let mut wait_reason = vcpu_response::Wait::new();
        wait_reason.mut_init();
        self.wait_reason.set(Some(wait_reason));
        self.handle_until_resume(vcpu)?;
        Ok(())
    }

    /// The VCPU thread should call this before rerunning a VM in order to handle pending requests
    /// to this VCPU.
    pub fn pre_run(&self, vcpu: &Vcpu) -> SysResult<()> {
        let request = {
            let mut lock = self.per_vcpu_state.lock();
            lock.pause_request.take()
        };

        if let Some(user_data) = request {
            let mut wait_reason = vcpu_response::Wait::new();
            wait_reason.mut_user().user = user_data;
            self.wait_reason.set(Some(wait_reason));
            self.handle_until_resume(vcpu)?;
        }
        Ok(())
    }

    fn process(&self, io_space: IoSpace, addr: u64, mut data: VcpuRunData, vcpu: &Vcpu) -> bool {
        let vcpu_state_lock = match self.shared_vcpu_state.read() {
            Ok(l) => l,
            Err(e) => {
                error!("error read locking shared cpu state: {}", e);
                return false;
            }
        };

        let first_before_addr = vcpu_state_lock.first_before(io_space, addr);

        match first_before_addr {
            Some(Range(start, len, async_write)) => {
                let offset = addr - start;
                if offset >= len {
                    return false;
                }
                if async_write && !data.is_write() {
                    return false;
                }

                let mut wait_reason = vcpu_response::Wait::new();
                let io = wait_reason.mut_io();
                io.space = match io_space {
                    IoSpace::Ioport => AddressSpace::IOPORT,
                    IoSpace::Mmio => AddressSpace::MMIO,
                }
                .into();
                io.address = addr;
                io.is_write = data.is_write();
                io.data = data.as_slice().to_vec();
                io.no_resume = async_write;
                if !async_write && vcpu_state_lock.matches_hint(io_space, addr, io.is_write) {
                    if let Ok(regs) = vcpu.get_regs() {
                        let (has_sregs, has_debugregs) = vcpu_state_lock.check_hint_details(&regs);
                        io.regs = regs.as_bytes().to_vec();
                        if has_sregs {
                            if let Ok(state) = get_vcpu_state(vcpu, vcpu_request::StateSet::SREGS) {
                                io.sregs = state;
                            }
                        }
                        if has_debugregs {
                            if let Ok(state) =
                                get_vcpu_state(vcpu, vcpu_request::StateSet::DEBUGREGS)
                            {
                                io.debugregs = state;
                            }
                        }
                    }
                }
                // don't hold lock while blocked in `handle_until_resume`.
                drop(vcpu_state_lock);

                if async_write {
                    let mut response = VcpuResponse::new();
                    response.set_wait(wait_reason);

                    let mut response_buffer = self.response_buffer.borrow_mut();
                    response_buffer.clear();
                    let mut stream = CodedOutputStream::vec(&mut response_buffer);
                    match response.write_length_delimited_to(&mut stream) {
                        Ok(_) => {
                            match stream.flush() {
                                Ok(_) => {}
                                Err(e) => error!("failed to flush to vec: {}", e),
                            }
                            drop(stream);
                            let mut write_pipe = &self.write_pipe;
                            match write_pipe.write(&response_buffer[..]) {
                                Ok(_) => {}
                                Err(e) => error!("failed to write to pipe: {}", e),
                            }
                        }
                        Err(e) => error!("failed to write to buffer: {}", e),
                    }
                } else {
                    self.wait_reason.set(Some(wait_reason));
                    match self.handle_until_resume(vcpu) {
                        Ok(resume_data) => data.copy_from_slice(&resume_data),
                        Err(e) if e.errno() == EPIPE => {}
                        Err(e) => error!("failed to process vcpu requests: {}", e),
                    }
                }
                true
            }
            None => false,
        }
    }

    /// Has the plugin process handle a IO port read.
    pub fn io_read(&self, addr: u64, data: &mut [u8], vcpu: &Vcpu) -> bool {
        self.process(IoSpace::Ioport, addr, VcpuRunData::Read(data), vcpu)
    }

    /// Has the plugin process handle a IO port write.
    pub fn io_write(&self, addr: u64, data: &[u8], vcpu: &Vcpu) -> bool {
        self.process(IoSpace::Ioport, addr, VcpuRunData::Write(data), vcpu)
    }

    /// Has the plugin process handle a MMIO read.
    pub fn mmio_read(&self, addr: u64, data: &mut [u8], vcpu: &Vcpu) -> bool {
        self.process(IoSpace::Mmio, addr, VcpuRunData::Read(data), vcpu)
    }

    /// Has the plugin process handle a MMIO write.
    pub fn mmio_write(&self, addr: u64, data: &[u8], vcpu: &Vcpu) -> bool {
        self.process(IoSpace::Mmio, addr, VcpuRunData::Write(data), vcpu)
    }

    /// Has the plugin process handle a hyper-v call.
    pub fn hyperv_call(&self, input: u64, params: [u64; 2], data: &mut [u8], vcpu: &Vcpu) -> bool {
        let mut wait_reason = vcpu_response::Wait::new();
        let hv = wait_reason.mut_hyperv_call();
        hv.input = input;
        hv.params0 = params[0];
        hv.params1 = params[1];

        self.wait_reason.set(Some(wait_reason));
        match self.handle_until_resume(vcpu) {
            Ok(resume_data) => {
                data.copy_from_slice(&resume_data);
                true
            }
            Err(e) if e.errno() == EPIPE => false,
            Err(e) => {
                error!("failed to process hyperv call request: {}", e);
                false
            }
        }
    }

    /// Has the plugin process handle a synic config change.
    pub fn hyperv_synic(
        &self,
        msr: u32,
        control: u64,
        evt_page: u64,
        msg_page: u64,
        vcpu: &Vcpu,
    ) -> bool {
        let mut wait_reason = vcpu_response::Wait::new();
        let hv = wait_reason.mut_hyperv_synic();
        hv.msr = msr;
        hv.control = control;
        hv.evt_page = evt_page;
        hv.msg_page = msg_page;
        self.wait_reason.set(Some(wait_reason));
        match self.handle_until_resume(vcpu) {
            Ok(_resume_data) => true,
            Err(e) if e.errno() == EPIPE => false,
            Err(e) => {
                error!("failed to process hyperv synic request: {}", e);
                false
            }
        }
    }

    fn handle_request(&self, vcpu: &Vcpu) -> SysResult<Option<Vec<u8>>> {
        let mut wait_reason = self.wait_reason.take();
        let mut do_recv = true;
        let mut resume_data = None;
        let mut response = VcpuResponse::new();
        let mut send_response = true;

        // Typically a response is sent for every request received.  The odd (yet common)
        // case is when a resume request is received.  This function will skip sending
        // a resume reply, and instead we'll go run the VM and then later reply with a wait
        // response message.  This code block handles checking if a wait reason is pending (where
        // the wait reason isn't the first-time init [first time init needs to first
        // receive a wait request from the plugin]) to send it as a reply before doing a recv()
        // for the next request.  Note that if a wait reply is pending then this function
        // will send the reply and do nothing else--the expectation is that handle_until_resume()
        // is the only caller of this function, so the function will immediately get called again
        // and this second call will no longer see a pending wait reason and do a recv() for the
        // next message.
        if let Some(reason) = wait_reason {
            if reason.has_init() {
                wait_reason = Some(reason);
            } else {
                response.set_wait(reason);
                do_recv = false;
                wait_reason = None;
            }
        }

        if do_recv {
            let mut request_buffer = self.request_buffer.borrow_mut();
            request_buffer.resize(MAX_VCPU_DATAGRAM_SIZE, 0);

            let mut read_pipe = &self.read_pipe;
            let msg_size = read_pipe.read(&mut request_buffer).map_err(io_to_sys_err)?;

            let mut request: VcpuRequest =
                Message::parse_from_bytes(&request_buffer[..msg_size]).map_err(proto_to_sys_err)?;

            let res = if request.has_wait() {
                match wait_reason {
                    Some(wait_reason) => {
                        response.set_wait(wait_reason);
                        Ok(())
                    }
                    None => Err(SysError::new(EPROTO)),
                }
            } else if wait_reason.is_some() {
                // Any request other than getting the wait_reason while there is one pending is
                // invalid.
                self.wait_reason.set(wait_reason);
                Err(SysError::new(EPROTO))
            } else if request.has_resume() {
                send_response = false;
                let resume = request.take_resume();
                if !resume.regs.is_empty() {
                    set_vcpu_state(vcpu, vcpu_request::StateSet::REGS, &resume.regs)?;
                }
                if !resume.sregs.is_empty() {
                    set_vcpu_state(vcpu, vcpu_request::StateSet::SREGS, &resume.sregs)?;
                }
                if !resume.debugregs.is_empty() {
                    set_vcpu_state(vcpu, vcpu_request::StateSet::DEBUGREGS, &resume.debugregs)?;
                }
                resume_data = Some(resume.data);
                Ok(())
            } else if request.has_get_state() {
                let response_state = response.mut_get_state();
                match get_vcpu_state_enum_or_unknown(vcpu, request.get_state().set) {
                    Ok(state) => {
                        response_state.state = state;
                        Ok(())
                    }
                    Err(e) => Err(e),
                }
            } else if request.has_set_state() {
                response.mut_set_state();
                let set_state = request.set_state();
                set_vcpu_state_enum_or_unknown(vcpu, set_state.set, &set_state.state)
            } else if request.has_get_hyperv_cpuid() {
                let cpuid_response = &mut response.mut_get_hyperv_cpuid().entries;
                match vcpu.get_hyperv_cpuid() {
                    Ok(mut cpuid) => {
                        for entry in cpuid.mut_entries_slice() {
                            cpuid_response.push(cpuid_kvm_to_proto(entry));
                        }
                        Ok(())
                    }
                    Err(e) => Err(e),
                }
            } else if request.has_get_msrs() {
                let entry_data = &mut response.mut_get_msrs().entry_data;
                let entry_indices = &request.get_msrs().entry_indices;
                let mut msr_entries = Vec::with_capacity(entry_indices.len());
                for &index in entry_indices {
                    msr_entries.push(kvm_msr_entry {
                        index,
                        ..Default::default()
                    });
                }
                match vcpu.get_msrs(&mut msr_entries) {
                    Ok(()) => {
                        for msr_entry in msr_entries {
                            entry_data.push(msr_entry.data);
                        }
                        Ok(())
                    }
                    Err(e) => Err(e),
                }
            } else if request.has_set_msrs() {
                const SIZE_OF_MSRS: usize = mem::size_of::<kvm_msrs>();
                const SIZE_OF_ENTRY: usize = mem::size_of::<kvm_msr_entry>();
                const ALIGN_OF_MSRS: usize = mem::align_of::<kvm_msrs>();
                const_assert!(ALIGN_OF_MSRS >= mem::align_of::<kvm_msr_entry>());

                response.mut_set_msrs();
                let request_entries = &request.set_msrs().entries;

                let size = SIZE_OF_MSRS + request_entries.len() * SIZE_OF_ENTRY;
                let layout =
                    Layout::from_size_align(size, ALIGN_OF_MSRS).expect("impossible layout");
                let mut allocation = LayoutAllocation::zeroed(layout);

                // SAFETY:
                // Safe to obtain an exclusive reference because there are no other
                // references to the allocation yet and all-zero is a valid bit
                // pattern.
                let kvm_msrs = unsafe { allocation.as_mut::<kvm_msrs>() };

                // SAFETY:
                // Mapping the unsized array to a slice is unsafe becase the length isn't known.
                // Providing the length used to create the struct guarantees the entire slice is
                // valid.
                unsafe {
                    let kvm_msr_entries: &mut [kvm_msr_entry] =
                        kvm_msrs.entries.as_mut_slice(request_entries.len());
                    for (msr_entry, entry) in kvm_msr_entries.iter_mut().zip(request_entries) {
                        msr_entry.index = entry.index;
                        msr_entry.data = entry.data;
                    }
                }
                kvm_msrs.nmsrs = request_entries.len() as u32;
                vcpu.set_msrs(kvm_msrs)
            } else if request.has_set_cpuid() {
                response.mut_set_cpuid();
                let request_entries = &request.set_cpuid().entries;
                let mut cpuid = CpuId::new(request_entries.len());
                let cpuid_entries = cpuid.mut_entries_slice();
                for (request_entry, cpuid_entry) in request_entries.iter().zip(cpuid_entries) {
                    cpuid_entry.function = request_entry.function;
                    if request_entry.has_index {
                        cpuid_entry.index = request_entry.index;
                        cpuid_entry.flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
                    }
                    cpuid_entry.eax = request_entry.eax;
                    cpuid_entry.ebx = request_entry.ebx;
                    cpuid_entry.ecx = request_entry.ecx;
                    cpuid_entry.edx = request_entry.edx;
                }
                vcpu.set_cpuid2(&cpuid)
            } else if request.has_enable_capability() {
                response.mut_enable_capability();
                let capability = request.enable_capability().capability;
                if capability != kvm_sys::KVM_CAP_HYPERV_SYNIC
                    && capability != kvm_sys::KVM_CAP_HYPERV_SYNIC2
                {
                    Err(SysError::new(EINVAL))
                } else {
                    let cap = kvm_enable_cap {
                        cap: capability,
                        ..Default::default()
                    };
                    // SAFETY:
                    // Safe because the allowed capabilities don't take pointer arguments.
                    unsafe { vcpu.kvm_enable_cap(&cap) }
                }
            } else if request.has_shutdown() {
                return Err(SysError::new(EPIPE));
            } else {
                Err(SysError::new(ENOTTY))
            };

            if let Err(e) = res {
                response.errno = e.errno();
            }
        }

        // Send the response, except if it's a resume response (in which case
        // we'll go run the VM and afterwards send a wait response message).
        if send_response {
            let mut response_buffer = self.response_buffer.borrow_mut();
            response_buffer.clear();
            {
                let mut stream = CodedOutputStream::vec(&mut response_buffer);
                response
                    .write_length_delimited_to(&mut stream)
                    .map_err(proto_to_sys_err)?;
                stream.flush().map_err(proto_to_sys_err)?;
            }
            let mut write_pipe = &self.write_pipe;
            write_pipe
                .write(&response_buffer[..])
                .map_err(io_to_sys_err)?;
        }

        Ok(resume_data)
    }

    fn handle_until_resume(&self, vcpu: &Vcpu) -> SysResult<Vec<u8>> {
        loop {
            if let Some(resume_data) = self.handle_request(vcpu)? {
                return Ok(resume_data);
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn shared_vcpu_reserve() {
        let mut shared_vcpu_state = SharedVcpuState::default();
        shared_vcpu_state
            .reserve_range(IoSpace::Ioport, 0x10, 0, false)
            .unwrap_err();
        shared_vcpu_state
            .reserve_range(IoSpace::Ioport, 0x10, 0x10, false)
            .unwrap();
        shared_vcpu_state
            .reserve_range(IoSpace::Ioport, 0x0f, 0x10, false)
            .unwrap_err();
        shared_vcpu_state
            .reserve_range(IoSpace::Ioport, 0x10, 0x10, false)
            .unwrap_err();
        shared_vcpu_state
            .reserve_range(IoSpace::Ioport, 0x10, 0x15, false)
            .unwrap_err();
        shared_vcpu_state
            .reserve_range(IoSpace::Ioport, 0x12, 0x15, false)
            .unwrap_err();
        shared_vcpu_state
            .reserve_range(IoSpace::Ioport, 0x12, 0x01, false)
            .unwrap_err();
        shared_vcpu_state
            .reserve_range(IoSpace::Ioport, 0x0, 0x20, false)
            .unwrap_err();
        shared_vcpu_state
            .reserve_range(IoSpace::Ioport, 0x20, 0x05, false)
            .unwrap();
        shared_vcpu_state
            .reserve_range(IoSpace::Ioport, 0x25, 0x05, false)
            .unwrap();
        shared_vcpu_state
            .reserve_range(IoSpace::Ioport, 0x0, 0x10, false)
            .unwrap();
    }
}