1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
// Copyright 2017 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use std::mem;
use std::ptr;
use std::time::Duration;

use libc::c_void;
use libc::eventfd;
use libc::read;
use libc::write;
use libc::POLLIN;
use serde::Deserialize;
use serde::Serialize;

use super::errno_result;
use super::RawDescriptor;
use super::Result;
use crate::descriptor::AsRawDescriptor;
use crate::descriptor::FromRawDescriptor;
use crate::descriptor::IntoRawDescriptor;
use crate::descriptor::SafeDescriptor;
use crate::unix::duration_to_timespec;
use crate::EventWaitResult;

/// A safe wrapper around a Linux eventfd (man 2 eventfd).
///
/// An eventfd is useful because it is sendable across processes and can be used for signaling in
/// and out of the KVM API. They can also be polled like any other file descriptor.
#[derive(Debug, PartialEq, Eq, Serialize, Deserialize)]
#[serde(transparent)]
pub(crate) struct PlatformEvent {
    event_handle: SafeDescriptor,
}

/// Linux specific extensions to `Event`.
pub trait EventExt {
    /// Adds `v` to the eventfd's count, blocking until this won't overflow the count.
    fn write_count(&self, v: u64) -> Result<()>;
    /// Blocks until the the eventfd's count is non-zero, then resets the count to zero.
    fn read_count(&self) -> Result<u64>;
}

impl EventExt for crate::Event {
    fn write_count(&self, v: u64) -> Result<()> {
        self.0.write_count(v)
    }

    fn read_count(&self) -> Result<u64> {
        self.0.read_count()
    }
}

impl PlatformEvent {
    /// Creates a new blocking eventfd with an initial value of 0.
    pub fn new() -> Result<PlatformEvent> {
        // SAFETY:
        // This is safe because eventfd merely allocated an eventfd for our process and we handle
        // the error case.
        let ret = unsafe { eventfd(0, 0) };
        if ret < 0 {
            return errno_result();
        }
        Ok(PlatformEvent {
            // SAFETY:
            // This is safe because we checked ret for success and know the kernel gave us an fd
            // that we own.
            event_handle: unsafe { SafeDescriptor::from_raw_descriptor(ret) },
        })
    }

    /// See `EventExt::write_count`.
    pub fn write_count(&self, v: u64) -> Result<()> {
        // SAFETY:
        // This is safe because we made this fd and the pointer we pass can not overflow because we
        // give the syscall's size parameter properly.
        let ret = unsafe {
            write(
                self.as_raw_descriptor(),
                &v as *const u64 as *const c_void,
                mem::size_of::<u64>(),
            )
        };
        if ret <= 0 {
            return errno_result();
        }
        Ok(())
    }

    /// See `EventExt::read_count`.
    pub fn read_count(&self) -> Result<u64> {
        let mut buf: u64 = 0;
        // SAFETY:
        // This is safe because we made this fd and the pointer we pass can not overflow because
        // we give the syscall's size parameter properly.
        let ret = unsafe {
            read(
                self.as_raw_descriptor(),
                &mut buf as *mut u64 as *mut c_void,
                mem::size_of::<u64>(),
            )
        };
        if ret <= 0 {
            return errno_result();
        }
        Ok(buf)
    }

    /// See `Event::signal`.
    pub fn signal(&self) -> Result<()> {
        self.write_count(1)
    }

    /// See `Event::wait`.
    pub fn wait(&self) -> Result<()> {
        self.read_count().map(|_| ())
    }

    /// See `Event::wait_timeout`.
    pub fn wait_timeout(&self, timeout: Duration) -> Result<EventWaitResult> {
        let mut pfd = libc::pollfd {
            fd: self.as_raw_descriptor(),
            events: POLLIN,
            revents: 0,
        };
        let timeoutspec: libc::timespec = duration_to_timespec(timeout);
        // SAFETY:
        // Safe because this only modifies |pfd| and we check the return value
        let ret = unsafe {
            libc::ppoll(
                &mut pfd as *mut libc::pollfd,
                1,
                &timeoutspec,
                ptr::null_mut(),
            )
        };
        if ret < 0 {
            return errno_result();
        }

        // no return events (revents) means we got a timeout
        if pfd.revents == 0 {
            return Ok(EventWaitResult::TimedOut);
        }

        self.wait()?;
        Ok(EventWaitResult::Signaled)
    }

    /// See `Event::reset`.
    pub fn reset(&self) -> Result<()> {
        // If the eventfd is currently signaled (counter > 0), `wait_timeout()` will `read()` it to
        // reset the count. Otherwise (if the eventfd is not signaled), `wait_timeout()` will return
        // immediately since we pass a zero duration. We don't care about the EventWaitResult; we
        // just want a non-blocking read to reset the counter.
        let _: EventWaitResult = self.wait_timeout(Duration::ZERO)?;
        Ok(())
    }

    /// Clones this eventfd, internally creating a new file descriptor. The new eventfd will share
    /// the same underlying count within the kernel.
    pub fn try_clone(&self) -> Result<PlatformEvent> {
        self.event_handle
            .try_clone()
            .map(|event_handle| PlatformEvent { event_handle })
    }
}

impl AsRawDescriptor for PlatformEvent {
    fn as_raw_descriptor(&self) -> RawDescriptor {
        self.event_handle.as_raw_descriptor()
    }
}

impl FromRawDescriptor for PlatformEvent {
    unsafe fn from_raw_descriptor(descriptor: RawDescriptor) -> Self {
        PlatformEvent {
            event_handle: SafeDescriptor::from_raw_descriptor(descriptor),
        }
    }
}

impl IntoRawDescriptor for PlatformEvent {
    fn into_raw_descriptor(self) -> RawDescriptor {
        self.event_handle.into_raw_descriptor()
    }
}

impl From<PlatformEvent> for SafeDescriptor {
    fn from(evt: PlatformEvent) -> Self {
        evt.event_handle
    }
}

impl From<SafeDescriptor> for PlatformEvent {
    fn from(sd: SafeDescriptor) -> Self {
        PlatformEvent { event_handle: sd }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::Event;
    use crate::EventExt;

    #[test]
    fn new() {
        Event::new().unwrap();
    }

    #[test]
    fn read_write() {
        let evt = Event::new().unwrap();
        evt.write_count(55).unwrap();
        assert_eq!(evt.read_count(), Ok(55));
    }

    #[test]
    fn clone() {
        let evt = Event::new().unwrap();
        let evt_clone = evt.try_clone().unwrap();
        evt.write_count(923).unwrap();
        assert_eq!(evt_clone.read_count(), Ok(923));
    }

    #[test]
    fn timeout() {
        let evt = Event::new().expect("failed to create eventfd");
        assert_eq!(
            evt.wait_timeout(Duration::from_millis(1))
                .expect("failed to read from eventfd with timeout"),
            EventWaitResult::TimedOut
        );
    }
}