1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
// Copyright 2018 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use std::collections::btree_map::BTreeMap;

#[macro_use]
mod register;

pub use self::register::*;

/// Register space repesents a set of registers. It can handle read/write operations.
pub struct RegisterSpace {
    regs: BTreeMap<RegisterRange, Box<dyn RegisterInterface>>,
}

impl RegisterSpace {
    /// Creates a new empty RegisterSpace.
    pub fn new() -> RegisterSpace {
        RegisterSpace {
            regs: BTreeMap::new(),
        }
    }

    /// Add a register to register space.
    pub fn add_register<T: RegisterInterface + 'static>(&mut self, reg: T) {
        let range = reg.range();
        debug_assert!(self.get_register(range.from).is_none());
        if cfg!(debug_assertions) {
            if let Some(r) = self.first_before(range.to) {
                debug_assert!(r.range().to < range.to);
            }
        }

        let insert_result = self.regs.insert(range, Box::new(reg)).is_none();
        debug_assert!(insert_result);
    }

    /// Add an array of registers.
    pub fn add_register_array<T: RegisterValue>(&mut self, regs: &[Register<T>]) {
        for r in regs {
            self.add_register(r.clone());
        }
    }

    /// Read range.
    pub fn read(&self, addr: RegisterOffset, data: &mut [u8]) {
        let mut current_addr: RegisterOffset = addr;
        while current_addr < addr + data.len() as RegisterOffset {
            if let Some(r) = self.get_register(current_addr) {
                // Next addr to read is.
                current_addr = r.range().to + 1;
                r.read(addr, data);
            } else {
                // TODO(jkwang) Add logging for debug here.
                current_addr += 1;
            }
        }
    }

    /// Write range. If the targeted register has a callback, it will be invoked with the new
    /// value.
    pub fn write(&self, addr: RegisterOffset, data: &[u8]) {
        let mut current_addr: RegisterOffset = addr;
        while current_addr < addr + data.len() as RegisterOffset {
            if let Some(r) = self.get_register(current_addr) {
                // Next addr to read is, range is inclusive.
                current_addr = r.range().to + 1;
                r.write(addr, data);
            } else {
                current_addr += 1;
            }
        }
    }

    /// Get first register before this addr.
    fn first_before(&self, addr: RegisterOffset) -> Option<&dyn RegisterInterface> {
        for (range, r) in self.regs.iter().rev() {
            if range.from <= addr {
                return Some(r.as_ref());
            }
        }
        None
    }

    /// Get register at this addr.
    fn get_register(&self, addr: RegisterOffset) -> Option<&dyn RegisterInterface> {
        let r = self.first_before(addr)?;
        let range = r.range();
        if addr <= range.to {
            Some(r)
        } else {
            None
        }
    }
}

#[cfg(test)]
mod tests {
    use std::sync::Arc;

    use sync::Mutex;

    use super::*;

    #[test]
    fn regs_no_reg() {
        let regs = RegisterSpace::new();
        let mut data: [u8; 4] = [4, 3, 2, 1];
        // Read should be no op cause no register.
        regs.read(0, &mut data);
        assert_eq!([4, 3, 2, 1], data);
        // Write should be no op.
        regs.write(0, &[0, 0, 0, 0]);
        regs.read(0, &mut data);
        assert_eq!([4, 3, 2, 1], data);
    }

    #[test]
    #[should_panic]
    #[cfg(debug_assertions)]
    fn regs_reg_overlap() {
        let mut regs = RegisterSpace::new();
        regs.add_register(static_register!(
        ty: u32,
        offset: 4,
        value: 11,
        ));

        regs.add_register(static_register!(
        ty: u16,
        offset: 7,
        value: 11,
        ));
    }

    #[test]
    fn regs_static_reg() {
        let mut regs = RegisterSpace::new();
        regs.add_register(static_register!(
            ty: u8,
            offset: 0,
            value: 11,
        ));
        let mut data: [u8; 4] = [4, 3, 2, 1];
        regs.read(0, &mut data);
        assert_eq!([11, 3, 2, 1], data);
        // Write should be no op.
        regs.write(0, &[0, 0, 0, 0]);
        let mut data: [u8; 4] = [4, 3, 2, 1];
        regs.read(0, &mut data);
        assert_eq!([11, 3, 2, 1], data);
    }

    #[test]
    fn regs_static_reg_offset() {
        let mut regs = RegisterSpace::new();
        regs.add_register(static_register!(
            ty: u32,
            offset: 2,
            value: 0xaabbccdd,
        ));
        let mut data: [u8; 8] = [8, 7, 6, 5, 4, 3, 2, 1];
        regs.read(0, &mut data);
        assert_eq!([8, 7, 0xdd, 0xcc, 0xbb, 0xaa, 2, 1], data);
        // Write should be no op.
        regs.write(0, &[0, 0, 0, 0, 0, 0, 0, 0]);
        let mut data: [u8; 8] = [8, 7, 6, 5, 4, 3, 2, 1];
        regs.read(0, &mut data);
        assert_eq!([8, 7, 0xdd, 0xcc, 0xbb, 0xaa, 2, 1], data);
    }

    #[test]
    fn regs_reg_write() {
        let mut regs = RegisterSpace::new();
        regs.add_register(register!(
            name: "",
            ty: u32,
            offset: 2,
            reset_value: 0xaabbccdd,
        ));
        let mut data: [u8; 8] = [8, 7, 6, 5, 4, 3, 2, 1];
        regs.read(0, &mut data);
        assert_eq!([8, 7, 0xdd, 0xcc, 0xbb, 0xaa, 2, 1], data);
        regs.write(0, &[0, 0, 0, 0, 0, 0, 0, 0]);
        let mut data: [u8; 8] = [8, 7, 6, 5, 4, 3, 2, 1];
        regs.read(0, &mut data);
        assert_eq!([8, 7, 0, 0, 0, 0, 2, 1], data);
    }

    #[test]
    fn regs_reg_writeable() {
        let mut regs = RegisterSpace::new();
        regs.add_register(register!(
            name: "",
            ty: u32,
            offset: 2,
            reset_value: 0xaabbccdd,
            guest_writeable_mask: 0x00f0000f,
            guest_write_1_to_clear_mask: 0,
        ));
        let mut data: [u8; 8] = [8, 7, 6, 5, 4, 3, 2, 1];
        regs.read(0, &mut data);
        assert_eq!([8, 7, 0xdd, 0xcc, 0xbb, 0xaa, 2, 1], data);
        regs.write(0, &[0, 0, 0, 0, 0, 0, 0, 0]);
        let mut data: [u8; 8] = [8, 7, 6, 5, 4, 3, 2, 1];
        regs.read(0, &mut data);
        assert_eq!([8, 7, 0xd0, 0xcc, 0x0b, 0xaa, 2, 1], data);
    }

    #[test]
    fn regs_reg_writeable_callback() {
        let state = Arc::new(Mutex::new(0u32));
        let mut regs = RegisterSpace::new();
        let reg = register!(
            name: "",
            ty: u32,
            offset: 2,
            reset_value: 0xaabbccdd,
            guest_writeable_mask: 0x00f0000f,
            guest_write_1_to_clear_mask: 0,
        );
        regs.add_register(reg.clone());
        let state_clone = state.clone();
        reg.set_write_cb(move |val: u32| {
            *state_clone.lock() = val;
            val
        });

        let mut data: [u8; 8] = [8, 7, 6, 5, 4, 3, 2, 1];
        regs.read(0, &mut data);
        assert_eq!([8, 7, 0xdd, 0xcc, 0xbb, 0xaa, 2, 1], data);
        regs.write(0, &[0, 0, 0, 0, 0, 0, 0, 0]);
        assert_eq!(0xaa0bccd0, *state.lock());
    }

    #[test]
    fn regs_reg_write_to_clear() {
        let mut regs = RegisterSpace::new();
        regs.add_register(register!(
        name: "",
        ty: u32,
        offset: 2,
        reset_value: 0xaabbccdd,
        guest_writeable_mask: 0xfff0000f,
        guest_write_1_to_clear_mask: 0xf0000000,
        ));
        let mut data: [u8; 8] = [8, 7, 6, 5, 4, 3, 2, 1];
        regs.read(0, &mut data);
        assert_eq!([8, 7, 0xdd, 0xcc, 0xbb, 0xaa, 2, 1], data);
        regs.write(0, &[0, 0, 0, 0, 0, 0xad, 0, 0]);
        let mut data: [u8; 8] = [8, 7, 6, 5, 4, 3, 2, 1];
        regs.read(0, &mut data);
        assert_eq!([8, 7, 0xd0, 0xcc, 0x0b, 0x0d, 2, 1], data);
    }

    #[test]
    fn regs_reg_array() {
        let mut regs = RegisterSpace::new();
        regs.add_register_array(&register_array!(
            name: "",
            ty: u8,
            cnt: 8,
            base_offset: 10,
            stride: 2,
            reset_value: 0xff,
            guest_writeable_mask: !0,
            guest_write_1_to_clear_mask: 0,
        ));
        let mut data: [u8; 8] = [0; 8];
        regs.read(8, &mut data);
        assert_eq!([0, 0, 0xff, 0, 0xff, 0, 0xff, 0], data);
    }

    #[test]
    fn regs_reg_multi_array() {
        let mut regs = RegisterSpace::new();
        regs.add_register_array(&register_array!(
        name: "",
        ty: u8,
        cnt: 8,
        base_offset: 10,
        stride: 2,
        reset_value: 0xff,
        guest_writeable_mask: !0,
        guest_write_1_to_clear_mask: 0,
        ));
        regs.add_register_array(&register_array!(
        name: "",
        ty: u8,
        cnt: 8,
        base_offset: 11,
        stride: 2,
        reset_value: 0xee,
        guest_writeable_mask: !0,
        guest_write_1_to_clear_mask: 0,
        ));
        let mut data: [u8; 8] = [0; 8];
        regs.read(8, &mut data);
        assert_eq!([0, 0, 0xff, 0xee, 0xff, 0xee, 0xff, 0xee], data);
    }
}