1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
// Copyright 2020 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use std::cell::UnsafeCell;
use std::hint;
use std::mem;
use std::sync::atomic::AtomicUsize;
use std::sync::atomic::Ordering;
use std::sync::Arc;
use super::super::sync::mu::RawRwLock;
use super::super::sync::mu::RwLockReadGuard;
use super::super::sync::mu::RwLockWriteGuard;
use super::super::sync::waiter::Kind as WaiterKind;
use super::super::sync::waiter::Waiter;
use super::super::sync::waiter::WaiterAdapter;
use super::super::sync::waiter::WaiterList;
use super::super::sync::waiter::WaitingFor;
const SPINLOCK: usize = 1 << 0;
const HAS_WAITERS: usize = 1 << 1;
/// A primitive to wait for an event to occur without consuming CPU time.
///
/// Condition variables are used in combination with a `RwLock` when a thread wants to wait for some
/// condition to become true. The condition must always be verified while holding the `RwLock` lock.
/// It is an error to use a `Condvar` with more than one `RwLock` while there are threads waiting on
/// the `Condvar`.
///
/// # Examples
///
/// ```edition2018
/// use std::sync::Arc;
/// use std::thread;
/// use std::sync::mpsc::channel;
///
/// use cros_async::{
/// block_on,
/// sync::{Condvar, RwLock},
/// };
///
/// const N: usize = 13;
///
/// // Spawn a few threads to increment a shared variable (non-atomically), and
/// // let all threads waiting on the Condvar know once the increments are done.
/// let data = Arc::new(RwLock::new(0));
/// let cv = Arc::new(Condvar::new());
///
/// for _ in 0..N {
/// let (data, cv) = (data.clone(), cv.clone());
/// thread::spawn(move || {
/// let mut data = block_on(data.lock());
/// *data += 1;
/// if *data == N {
/// cv.notify_all();
/// }
/// });
/// }
///
/// let mut val = block_on(data.lock());
/// while *val != N {
/// val = block_on(cv.wait(val));
/// }
/// ```
#[repr(align(128))]
pub struct Condvar {
state: AtomicUsize,
waiters: UnsafeCell<WaiterList>,
mu: UnsafeCell<usize>,
}
impl Condvar {
/// Creates a new condition variable ready to be waited on and notified.
pub fn new() -> Condvar {
Condvar {
state: AtomicUsize::new(0),
waiters: UnsafeCell::new(WaiterList::new(WaiterAdapter::new())),
mu: UnsafeCell::new(0),
}
}
/// Block the current thread until this `Condvar` is notified by another thread.
///
/// This method will atomically unlock the `RwLock` held by `guard` and then block the current
/// thread. Any call to `notify_one` or `notify_all` after the `RwLock` is unlocked may wake up
/// the thread.
///
/// To allow for more efficient scheduling, this call may return even when the programmer
/// doesn't expect the thread to be woken. Therefore, calls to `wait()` should be used inside a
/// loop that checks the predicate before continuing.
///
/// Callers that are not in an async context may wish to use the `block_on` method to block the
/// thread until the `Condvar` is notified.
///
/// # Panics
///
/// This method will panic if used with more than one `RwLock` at the same time.
///
/// # Examples
///
/// ```
/// # use std::sync::Arc;
/// # use std::thread;
///
/// # use cros_async::{
/// # block_on,
/// # sync::{Condvar, RwLock},
/// # };
///
/// # let mu = Arc::new(RwLock::new(false));
/// # let cv = Arc::new(Condvar::new());
/// # let (mu2, cv2) = (mu.clone(), cv.clone());
///
/// # let t = thread::spawn(move || {
/// # *block_on(mu2.lock()) = true;
/// # cv2.notify_all();
/// # });
///
/// let mut ready = block_on(mu.lock());
/// while !*ready {
/// ready = block_on(cv.wait(ready));
/// }
///
/// # t.join().expect("failed to join thread");
/// ```
// Clippy doesn't like the lifetime parameters here but doing what it suggests leads to code
// that doesn't compile.
#[allow(clippy::needless_lifetimes)]
pub async fn wait<'g, T>(&self, guard: RwLockWriteGuard<'g, T>) -> RwLockWriteGuard<'g, T> {
let waiter = Arc::new(Waiter::new(
WaiterKind::Exclusive,
cancel_waiter,
self as *const Condvar as usize,
WaitingFor::Condvar,
));
self.add_waiter(waiter.clone(), guard.as_raw_rwlock());
// Get a reference to the rwlock and then drop the lock.
let mu = guard.into_inner();
// Wait to be woken up.
waiter.wait().await;
// Now re-acquire the lock.
mu.lock_from_cv().await
}
/// Like `wait()` but takes and returns a `RwLockReadGuard` instead.
// Clippy doesn't like the lifetime parameters here but doing what it suggests leads to code
// that doesn't compile.
#[allow(clippy::needless_lifetimes)]
pub async fn wait_read<'g, T>(&self, guard: RwLockReadGuard<'g, T>) -> RwLockReadGuard<'g, T> {
let waiter = Arc::new(Waiter::new(
WaiterKind::Shared,
cancel_waiter,
self as *const Condvar as usize,
WaitingFor::Condvar,
));
self.add_waiter(waiter.clone(), guard.as_raw_rwlock());
// Get a reference to the rwlock and then drop the lock.
let mu = guard.into_inner();
// Wait to be woken up.
waiter.wait().await;
// Now re-acquire the lock.
mu.read_lock_from_cv().await
}
fn add_waiter(&self, waiter: Arc<Waiter>, raw_rwlock: &RawRwLock) {
// Acquire the spin lock.
let mut oldstate = self.state.load(Ordering::Relaxed);
while (oldstate & SPINLOCK) != 0
|| self
.state
.compare_exchange_weak(
oldstate,
oldstate | SPINLOCK | HAS_WAITERS,
Ordering::Acquire,
Ordering::Relaxed,
)
.is_err()
{
hint::spin_loop();
oldstate = self.state.load(Ordering::Relaxed);
}
// SAFETY:
// Safe because the spin lock guarantees exclusive access and the reference does not escape
// this function.
let mu = unsafe { &mut *self.mu.get() };
let muptr = raw_rwlock as *const RawRwLock as usize;
match *mu {
0 => *mu = muptr,
p if p == muptr => {}
_ => panic!("Attempting to use Condvar with more than one RwLock at the same time"),
}
// SAFETY:
// Safe because the spin lock guarantees exclusive access.
unsafe { (*self.waiters.get()).push_back(waiter) };
// Release the spin lock. Use a direct store here because no other thread can modify
// `self.state` while we hold the spin lock. Keep the `HAS_WAITERS` bit that we set earlier
// because we just added a waiter.
self.state.store(HAS_WAITERS, Ordering::Release);
}
/// Notify at most one thread currently waiting on the `Condvar`.
///
/// If there is a thread currently waiting on the `Condvar` it will be woken up from its call to
/// `wait`.
///
/// Unlike more traditional condition variable interfaces, this method requires a reference to
/// the `RwLock` associated with this `Condvar`. This is because it is inherently racy to call
/// `notify_one` or `notify_all` without first acquiring the `RwLock` lock. Additionally, taking
/// a reference to the `RwLock` here allows us to make some optimizations that can improve
/// performance by reducing unnecessary wakeups.
pub fn notify_one(&self) {
let mut oldstate = self.state.load(Ordering::Relaxed);
if (oldstate & HAS_WAITERS) == 0 {
// No waiters.
return;
}
while (oldstate & SPINLOCK) != 0
|| self
.state
.compare_exchange_weak(
oldstate,
oldstate | SPINLOCK,
Ordering::Acquire,
Ordering::Relaxed,
)
.is_err()
{
hint::spin_loop();
oldstate = self.state.load(Ordering::Relaxed);
}
// SAFETY:
// Safe because the spin lock guarantees exclusive access and the reference does not escape
// this function.
let waiters = unsafe { &mut *self.waiters.get() };
let wake_list = get_wake_list(waiters);
let newstate = if waiters.is_empty() {
// SAFETY:
// Also clear the rwlock associated with this Condvar since there are no longer any
// waiters. Safe because the spin lock guarantees exclusive access.
unsafe { *self.mu.get() = 0 };
// We are releasing the spin lock and there are no more waiters so we can clear all bits
// in `self.state`.
0
} else {
// There are still waiters so we need to keep the HAS_WAITERS bit in the state.
HAS_WAITERS
};
// Release the spin lock.
self.state.store(newstate, Ordering::Release);
// Now wake any waiters in the wake list.
for w in wake_list {
w.wake();
}
}
/// Notify all threads currently waiting on the `Condvar`.
///
/// All threads currently waiting on the `Condvar` will be woken up from their call to `wait`.
///
/// Unlike more traditional condition variable interfaces, this method requires a reference to
/// the `RwLock` associated with this `Condvar`. This is because it is inherently racy to call
/// `notify_one` or `notify_all` without first acquiring the `RwLock` lock. Additionally, taking
/// a reference to the `RwLock` here allows us to make some optimizations that can improve
/// performance by reducing unnecessary wakeups.
pub fn notify_all(&self) {
let mut oldstate = self.state.load(Ordering::Relaxed);
if (oldstate & HAS_WAITERS) == 0 {
// No waiters.
return;
}
while (oldstate & SPINLOCK) != 0
|| self
.state
.compare_exchange_weak(
oldstate,
oldstate | SPINLOCK,
Ordering::Acquire,
Ordering::Relaxed,
)
.is_err()
{
hint::spin_loop();
oldstate = self.state.load(Ordering::Relaxed);
}
// SAFETY:
// Safe because the spin lock guarantees exclusive access to `self.waiters`.
let wake_list = unsafe { (*self.waiters.get()).take() };
// SAFETY:
// Clear the rwlock associated with this Condvar since there are no longer any waiters. Safe
// because we the spin lock guarantees exclusive access.
unsafe { *self.mu.get() = 0 };
// Mark any waiters left as no longer waiting for the Condvar.
for w in &wake_list {
w.set_waiting_for(WaitingFor::None);
}
// Release the spin lock. We can clear all bits in the state since we took all the waiters.
self.state.store(0, Ordering::Release);
// Now wake any waiters in the wake list.
for w in wake_list {
w.wake();
}
}
fn cancel_waiter(&self, waiter: &Waiter, wake_next: bool) {
let mut oldstate = self.state.load(Ordering::Relaxed);
while oldstate & SPINLOCK != 0
|| self
.state
.compare_exchange_weak(
oldstate,
oldstate | SPINLOCK,
Ordering::Acquire,
Ordering::Relaxed,
)
.is_err()
{
hint::spin_loop();
oldstate = self.state.load(Ordering::Relaxed);
}
// SAFETY:
// Safe because the spin lock provides exclusive access and the reference does not escape
// this function.
let waiters = unsafe { &mut *self.waiters.get() };
let waiting_for = waiter.is_waiting_for();
// Don't drop the old waiter now as we're still holding the spin lock.
let old_waiter = if waiter.is_linked() && waiting_for == WaitingFor::Condvar {
// SAFETY:
// Safe because we know that the waiter is still linked and is waiting for the Condvar,
// which guarantees that it is still in `self.waiters`.
let mut cursor = unsafe { waiters.cursor_mut_from_ptr(waiter as *const Waiter) };
cursor.remove()
} else {
None
};
let wake_list = if wake_next || waiting_for == WaitingFor::None {
// Either the waiter was already woken or it's been removed from the condvar's waiter
// list and is going to be woken. Either way, we need to wake up another thread.
get_wake_list(waiters)
} else {
WaiterList::new(WaiterAdapter::new())
};
let set_on_release = if waiters.is_empty() {
// SAFETY:
// Clear the rwlock associated with this Condvar since there are no longer any waiters.
// Safe because we the spin lock guarantees exclusive access.
unsafe { *self.mu.get() = 0 };
0
} else {
HAS_WAITERS
};
self.state.store(set_on_release, Ordering::Release);
// Now wake any waiters still left in the wake list.
for w in wake_list {
w.wake();
}
mem::drop(old_waiter);
}
}
// TODO(b/315998194): Add safety comment
#[allow(clippy::undocumented_unsafe_blocks)]
unsafe impl Send for Condvar {}
// TODO(b/315998194): Add safety comment
#[allow(clippy::undocumented_unsafe_blocks)]
unsafe impl Sync for Condvar {}
impl Default for Condvar {
fn default() -> Self {
Self::new()
}
}
// Scan `waiters` and return all waiters that should be woken up.
//
// If the first waiter is trying to acquire a shared lock, then all waiters in the list that are
// waiting for a shared lock are also woken up. In addition one writer is woken up, if possible.
//
// If the first waiter is trying to acquire an exclusive lock, then only that waiter is returned and
// the rest of the list is not scanned.
fn get_wake_list(waiters: &mut WaiterList) -> WaiterList {
let mut to_wake = WaiterList::new(WaiterAdapter::new());
let mut cursor = waiters.front_mut();
let mut waking_readers = false;
let mut all_readers = true;
while let Some(w) = cursor.get() {
match w.kind() {
WaiterKind::Exclusive if !waking_readers => {
// This is the first waiter and it's a writer. No need to check the other waiters.
// Also mark the waiter as having been removed from the Condvar's waiter list.
let waiter = cursor.remove().unwrap();
waiter.set_waiting_for(WaitingFor::None);
to_wake.push_back(waiter);
break;
}
WaiterKind::Shared => {
// This is a reader and the first waiter in the list was not a writer so wake up all
// the readers in the wait list.
let waiter = cursor.remove().unwrap();
waiter.set_waiting_for(WaitingFor::None);
to_wake.push_back(waiter);
waking_readers = true;
}
WaiterKind::Exclusive => {
debug_assert!(waking_readers);
if all_readers {
// We are waking readers but we need to ensure that at least one writer is woken
// up. Since we haven't yet woken up a writer, wake up this one.
let waiter = cursor.remove().unwrap();
waiter.set_waiting_for(WaitingFor::None);
to_wake.push_back(waiter);
all_readers = false;
} else {
// We are waking readers and have already woken one writer. Skip this one.
cursor.move_next();
}
}
}
}
to_wake
}
fn cancel_waiter(cv: usize, waiter: &Waiter, wake_next: bool) {
let condvar = cv as *const Condvar;
// SAFETY:
// Safe because the thread that owns the waiter being canceled must also own a reference to the
// Condvar, which guarantees that this pointer is valid.
unsafe { (*condvar).cancel_waiter(waiter, wake_next) }
}
// TODO(b/194338842): Fix tests for windows
#[cfg(any(target_os = "android", target_os = "linux"))]
#[cfg(test)]
mod test {
use std::future::Future;
use std::mem;
use std::ptr;
use std::rc::Rc;
use std::sync::mpsc::channel;
use std::sync::mpsc::Sender;
use std::sync::Arc;
use std::task::Context;
use std::task::Poll;
use std::thread;
use std::thread::JoinHandle;
use std::time::Duration;
use futures::channel::oneshot;
use futures::select;
use futures::task::waker_ref;
use futures::task::ArcWake;
use futures::FutureExt;
use futures_executor::LocalPool;
use futures_executor::LocalSpawner;
use futures_executor::ThreadPool;
use futures_util::task::LocalSpawnExt;
use super::super::super::block_on;
use super::super::super::sync::RwLock;
use super::*;
// Dummy waker used when we want to manually drive futures.
struct TestWaker;
impl ArcWake for TestWaker {
fn wake_by_ref(_arc_self: &Arc<Self>) {}
}
#[test]
fn smoke() {
let cv = Condvar::new();
cv.notify_one();
cv.notify_all();
}
#[test]
fn notify_one() {
let mu = Arc::new(RwLock::new(()));
let cv = Arc::new(Condvar::new());
let mu2 = mu.clone();
let cv2 = cv.clone();
let guard = block_on(mu.lock());
thread::spawn(move || {
let _g = block_on(mu2.lock());
cv2.notify_one();
});
let guard = block_on(cv.wait(guard));
mem::drop(guard);
}
#[test]
fn multi_rwlock() {
const NUM_THREADS: usize = 5;
let mu = Arc::new(RwLock::new(false));
let cv = Arc::new(Condvar::new());
let mut threads = Vec::with_capacity(NUM_THREADS);
for _ in 0..NUM_THREADS {
let mu = mu.clone();
let cv = cv.clone();
threads.push(thread::spawn(move || {
let mut ready = block_on(mu.lock());
while !*ready {
ready = block_on(cv.wait(ready));
}
}));
}
let mut g = block_on(mu.lock());
*g = true;
mem::drop(g);
cv.notify_all();
threads
.into_iter()
.try_for_each(JoinHandle::join)
.expect("Failed to join threads");
// Now use the Condvar with a different rwlock.
let alt_mu = Arc::new(RwLock::new(None));
let alt_mu2 = alt_mu.clone();
let cv2 = cv.clone();
let handle = thread::spawn(move || {
let mut g = block_on(alt_mu2.lock());
while g.is_none() {
g = block_on(cv2.wait(g));
}
});
let mut alt_g = block_on(alt_mu.lock());
*alt_g = Some(());
mem::drop(alt_g);
cv.notify_all();
handle
.join()
.expect("Failed to join thread alternate rwlock");
}
#[test]
fn notify_one_single_thread_async() {
async fn notify(mu: Rc<RwLock<()>>, cv: Rc<Condvar>) {
let _g = mu.lock().await;
cv.notify_one();
}
async fn wait(mu: Rc<RwLock<()>>, cv: Rc<Condvar>, spawner: LocalSpawner) {
let mu2 = Rc::clone(&mu);
let cv2 = Rc::clone(&cv);
let g = mu.lock().await;
// Has to be spawned _after_ acquiring the lock to prevent a race
// where the notify happens before the waiter has acquired the lock.
spawner
.spawn_local(notify(mu2, cv2))
.expect("Failed to spawn `notify` task");
let _g = cv.wait(g).await;
}
let mut ex = LocalPool::new();
let spawner = ex.spawner();
let mu = Rc::new(RwLock::new(()));
let cv = Rc::new(Condvar::new());
spawner
.spawn_local(wait(mu, cv, spawner.clone()))
.expect("Failed to spawn `wait` task");
ex.run();
}
#[test]
fn notify_one_multi_thread_async() {
async fn notify(mu: Arc<RwLock<()>>, cv: Arc<Condvar>) {
let _g = mu.lock().await;
cv.notify_one();
}
async fn wait(mu: Arc<RwLock<()>>, cv: Arc<Condvar>, tx: Sender<()>, pool: ThreadPool) {
let mu2 = Arc::clone(&mu);
let cv2 = Arc::clone(&cv);
let g = mu.lock().await;
// Has to be spawned _after_ acquiring the lock to prevent a race
// where the notify happens before the waiter has acquired the lock.
pool.spawn_ok(notify(mu2, cv2));
let _g = cv.wait(g).await;
tx.send(()).expect("Failed to send completion notification");
}
let ex = ThreadPool::new().expect("Failed to create ThreadPool");
let mu = Arc::new(RwLock::new(()));
let cv = Arc::new(Condvar::new());
let (tx, rx) = channel();
ex.spawn_ok(wait(mu, cv, tx, ex.clone()));
rx.recv_timeout(Duration::from_secs(5))
.expect("Failed to receive completion notification");
}
#[test]
fn notify_one_with_cancel() {
const TASKS: usize = 17;
const OBSERVERS: usize = 7;
const ITERATIONS: usize = 103;
async fn observe(mu: &Arc<RwLock<usize>>, cv: &Arc<Condvar>) {
let mut count = mu.read_lock().await;
while *count == 0 {
count = cv.wait_read(count).await;
}
// SAFETY: Safe because count is valid and is byte aligned.
let _ = unsafe { ptr::read_volatile(&*count as *const usize) };
}
async fn decrement(mu: &Arc<RwLock<usize>>, cv: &Arc<Condvar>) {
let mut count = mu.lock().await;
while *count == 0 {
count = cv.wait(count).await;
}
*count -= 1;
}
async fn increment(mu: Arc<RwLock<usize>>, cv: Arc<Condvar>, done: Sender<()>) {
for _ in 0..TASKS * OBSERVERS * ITERATIONS {
*mu.lock().await += 1;
cv.notify_one();
}
done.send(()).expect("Failed to send completion message");
}
async fn observe_either(
mu: Arc<RwLock<usize>>,
cv: Arc<Condvar>,
alt_mu: Arc<RwLock<usize>>,
alt_cv: Arc<Condvar>,
done: Sender<()>,
) {
for _ in 0..ITERATIONS {
select! {
() = observe(&mu, &cv).fuse() => {},
() = observe(&alt_mu, &alt_cv).fuse() => {},
}
}
done.send(()).expect("Failed to send completion message");
}
async fn decrement_either(
mu: Arc<RwLock<usize>>,
cv: Arc<Condvar>,
alt_mu: Arc<RwLock<usize>>,
alt_cv: Arc<Condvar>,
done: Sender<()>,
) {
for _ in 0..ITERATIONS {
select! {
() = decrement(&mu, &cv).fuse() => {},
() = decrement(&alt_mu, &alt_cv).fuse() => {},
}
}
done.send(()).expect("Failed to send completion message");
}
let ex = ThreadPool::new().expect("Failed to create ThreadPool");
let mu = Arc::new(RwLock::new(0usize));
let alt_mu = Arc::new(RwLock::new(0usize));
let cv = Arc::new(Condvar::new());
let alt_cv = Arc::new(Condvar::new());
let (tx, rx) = channel();
for _ in 0..TASKS {
ex.spawn_ok(decrement_either(
Arc::clone(&mu),
Arc::clone(&cv),
Arc::clone(&alt_mu),
Arc::clone(&alt_cv),
tx.clone(),
));
}
for _ in 0..OBSERVERS {
ex.spawn_ok(observe_either(
Arc::clone(&mu),
Arc::clone(&cv),
Arc::clone(&alt_mu),
Arc::clone(&alt_cv),
tx.clone(),
));
}
ex.spawn_ok(increment(Arc::clone(&mu), Arc::clone(&cv), tx.clone()));
ex.spawn_ok(increment(Arc::clone(&alt_mu), Arc::clone(&alt_cv), tx));
for _ in 0..TASKS + OBSERVERS + 2 {
if let Err(e) = rx.recv_timeout(Duration::from_secs(20)) {
panic!("Error while waiting for threads to complete: {}", e);
}
}
assert_eq!(
*block_on(mu.read_lock()) + *block_on(alt_mu.read_lock()),
(TASKS * OBSERVERS * ITERATIONS * 2) - (TASKS * ITERATIONS)
);
assert_eq!(cv.state.load(Ordering::Relaxed), 0);
assert_eq!(alt_cv.state.load(Ordering::Relaxed), 0);
}
#[test]
fn notify_all_with_cancel() {
const TASKS: usize = 17;
const ITERATIONS: usize = 103;
async fn decrement(mu: &Arc<RwLock<usize>>, cv: &Arc<Condvar>) {
let mut count = mu.lock().await;
while *count == 0 {
count = cv.wait(count).await;
}
*count -= 1;
}
async fn increment(mu: Arc<RwLock<usize>>, cv: Arc<Condvar>, done: Sender<()>) {
for _ in 0..TASKS * ITERATIONS {
*mu.lock().await += 1;
cv.notify_all();
}
done.send(()).expect("Failed to send completion message");
}
async fn decrement_either(
mu: Arc<RwLock<usize>>,
cv: Arc<Condvar>,
alt_mu: Arc<RwLock<usize>>,
alt_cv: Arc<Condvar>,
done: Sender<()>,
) {
for _ in 0..ITERATIONS {
select! {
() = decrement(&mu, &cv).fuse() => {},
() = decrement(&alt_mu, &alt_cv).fuse() => {},
}
}
done.send(()).expect("Failed to send completion message");
}
let ex = ThreadPool::new().expect("Failed to create ThreadPool");
let mu = Arc::new(RwLock::new(0usize));
let alt_mu = Arc::new(RwLock::new(0usize));
let cv = Arc::new(Condvar::new());
let alt_cv = Arc::new(Condvar::new());
let (tx, rx) = channel();
for _ in 0..TASKS {
ex.spawn_ok(decrement_either(
Arc::clone(&mu),
Arc::clone(&cv),
Arc::clone(&alt_mu),
Arc::clone(&alt_cv),
tx.clone(),
));
}
ex.spawn_ok(increment(Arc::clone(&mu), Arc::clone(&cv), tx.clone()));
ex.spawn_ok(increment(Arc::clone(&alt_mu), Arc::clone(&alt_cv), tx));
for _ in 0..TASKS + 2 {
if let Err(e) = rx.recv_timeout(Duration::from_secs(10)) {
panic!("Error while waiting for threads to complete: {}", e);
}
}
assert_eq!(
*block_on(mu.read_lock()) + *block_on(alt_mu.read_lock()),
TASKS * ITERATIONS
);
assert_eq!(cv.state.load(Ordering::Relaxed), 0);
assert_eq!(alt_cv.state.load(Ordering::Relaxed), 0);
}
#[test]
fn notify_all() {
const THREADS: usize = 13;
let mu = Arc::new(RwLock::new(0));
let cv = Arc::new(Condvar::new());
let (tx, rx) = channel();
let mut threads = Vec::with_capacity(THREADS);
for _ in 0..THREADS {
let mu2 = mu.clone();
let cv2 = cv.clone();
let tx2 = tx.clone();
threads.push(thread::spawn(move || {
let mut count = block_on(mu2.lock());
*count += 1;
if *count == THREADS {
tx2.send(()).unwrap();
}
while *count != 0 {
count = block_on(cv2.wait(count));
}
}));
}
mem::drop(tx);
// Wait till all threads have started.
rx.recv_timeout(Duration::from_secs(5)).unwrap();
let mut count = block_on(mu.lock());
*count = 0;
mem::drop(count);
cv.notify_all();
for t in threads {
t.join().unwrap();
}
}
#[test]
fn notify_all_single_thread_async() {
const TASKS: usize = 13;
async fn reset(mu: Rc<RwLock<usize>>, cv: Rc<Condvar>) {
let mut count = mu.lock().await;
*count = 0;
cv.notify_all();
}
async fn watcher(mu: Rc<RwLock<usize>>, cv: Rc<Condvar>, spawner: LocalSpawner) {
let mut count = mu.lock().await;
*count += 1;
if *count == TASKS {
spawner
.spawn_local(reset(mu.clone(), cv.clone()))
.expect("Failed to spawn reset task");
}
while *count != 0 {
count = cv.wait(count).await;
}
}
let mut ex = LocalPool::new();
let spawner = ex.spawner();
let mu = Rc::new(RwLock::new(0));
let cv = Rc::new(Condvar::new());
for _ in 0..TASKS {
spawner
.spawn_local(watcher(mu.clone(), cv.clone(), spawner.clone()))
.expect("Failed to spawn watcher task");
}
ex.run();
}
#[test]
fn notify_all_multi_thread_async() {
const TASKS: usize = 13;
async fn reset(mu: Arc<RwLock<usize>>, cv: Arc<Condvar>) {
let mut count = mu.lock().await;
*count = 0;
cv.notify_all();
}
async fn watcher(
mu: Arc<RwLock<usize>>,
cv: Arc<Condvar>,
pool: ThreadPool,
tx: Sender<()>,
) {
let mut count = mu.lock().await;
*count += 1;
if *count == TASKS {
pool.spawn_ok(reset(mu.clone(), cv.clone()));
}
while *count != 0 {
count = cv.wait(count).await;
}
tx.send(()).expect("Failed to send completion notification");
}
let pool = ThreadPool::new().expect("Failed to create ThreadPool");
let mu = Arc::new(RwLock::new(0));
let cv = Arc::new(Condvar::new());
let (tx, rx) = channel();
for _ in 0..TASKS {
pool.spawn_ok(watcher(mu.clone(), cv.clone(), pool.clone(), tx.clone()));
}
for _ in 0..TASKS {
rx.recv_timeout(Duration::from_secs(5))
.expect("Failed to receive completion notification");
}
}
#[test]
fn wake_all_readers() {
async fn read(mu: Arc<RwLock<bool>>, cv: Arc<Condvar>) {
let mut ready = mu.read_lock().await;
while !*ready {
ready = cv.wait_read(ready).await;
}
}
let mu = Arc::new(RwLock::new(false));
let cv = Arc::new(Condvar::new());
let mut readers = [
Box::pin(read(mu.clone(), cv.clone())),
Box::pin(read(mu.clone(), cv.clone())),
Box::pin(read(mu.clone(), cv.clone())),
Box::pin(read(mu.clone(), cv.clone())),
];
let arc_waker = Arc::new(TestWaker);
let waker = waker_ref(&arc_waker);
let mut cx = Context::from_waker(&waker);
// First have all the readers wait on the Condvar.
for r in &mut readers {
if let Poll::Ready(()) = r.as_mut().poll(&mut cx) {
panic!("reader unexpectedly ready");
}
}
assert_eq!(cv.state.load(Ordering::Relaxed) & HAS_WAITERS, HAS_WAITERS);
// Now make the condition true and notify the condvar. Even though we will call notify_one,
// all the readers should be woken up.
*block_on(mu.lock()) = true;
cv.notify_one();
assert_eq!(cv.state.load(Ordering::Relaxed), 0);
// All readers should now be able to complete.
for r in &mut readers {
if r.as_mut().poll(&mut cx).is_pending() {
panic!("reader unable to complete");
}
}
}
#[test]
fn cancel_before_notify() {
async fn dec(mu: Arc<RwLock<usize>>, cv: Arc<Condvar>) {
let mut count = mu.lock().await;
while *count == 0 {
count = cv.wait(count).await;
}
*count -= 1;
}
let mu = Arc::new(RwLock::new(0));
let cv = Arc::new(Condvar::new());
let arc_waker = Arc::new(TestWaker);
let waker = waker_ref(&arc_waker);
let mut cx = Context::from_waker(&waker);
let mut fut1 = Box::pin(dec(mu.clone(), cv.clone()));
let mut fut2 = Box::pin(dec(mu.clone(), cv.clone()));
if let Poll::Ready(()) = fut1.as_mut().poll(&mut cx) {
panic!("future unexpectedly ready");
}
if let Poll::Ready(()) = fut2.as_mut().poll(&mut cx) {
panic!("future unexpectedly ready");
}
assert_eq!(cv.state.load(Ordering::Relaxed) & HAS_WAITERS, HAS_WAITERS);
*block_on(mu.lock()) = 2;
// Drop fut1 before notifying the cv.
mem::drop(fut1);
cv.notify_one();
// fut2 should now be ready to complete.
assert_eq!(cv.state.load(Ordering::Relaxed), 0);
if fut2.as_mut().poll(&mut cx).is_pending() {
panic!("future unable to complete");
}
assert_eq!(*block_on(mu.lock()), 1);
}
#[test]
fn cancel_after_notify_one() {
async fn dec(mu: Arc<RwLock<usize>>, cv: Arc<Condvar>) {
let mut count = mu.lock().await;
while *count == 0 {
count = cv.wait(count).await;
}
*count -= 1;
}
let mu = Arc::new(RwLock::new(0));
let cv = Arc::new(Condvar::new());
let arc_waker = Arc::new(TestWaker);
let waker = waker_ref(&arc_waker);
let mut cx = Context::from_waker(&waker);
let mut fut1 = Box::pin(dec(mu.clone(), cv.clone()));
let mut fut2 = Box::pin(dec(mu.clone(), cv.clone()));
if let Poll::Ready(()) = fut1.as_mut().poll(&mut cx) {
panic!("future unexpectedly ready");
}
if let Poll::Ready(()) = fut2.as_mut().poll(&mut cx) {
panic!("future unexpectedly ready");
}
assert_eq!(cv.state.load(Ordering::Relaxed) & HAS_WAITERS, HAS_WAITERS);
*block_on(mu.lock()) = 2;
cv.notify_one();
// fut1 should now be ready to complete. Drop it before polling. This should wake up fut2.
mem::drop(fut1);
assert_eq!(cv.state.load(Ordering::Relaxed), 0);
if fut2.as_mut().poll(&mut cx).is_pending() {
panic!("future unable to complete");
}
assert_eq!(*block_on(mu.lock()), 1);
}
#[test]
fn cancel_after_notify_all() {
async fn dec(mu: Arc<RwLock<usize>>, cv: Arc<Condvar>) {
let mut count = mu.lock().await;
while *count == 0 {
count = cv.wait(count).await;
}
*count -= 1;
}
let mu = Arc::new(RwLock::new(0));
let cv = Arc::new(Condvar::new());
let arc_waker = Arc::new(TestWaker);
let waker = waker_ref(&arc_waker);
let mut cx = Context::from_waker(&waker);
let mut fut1 = Box::pin(dec(mu.clone(), cv.clone()));
let mut fut2 = Box::pin(dec(mu.clone(), cv.clone()));
if let Poll::Ready(()) = fut1.as_mut().poll(&mut cx) {
panic!("future unexpectedly ready");
}
if let Poll::Ready(()) = fut2.as_mut().poll(&mut cx) {
panic!("future unexpectedly ready");
}
assert_eq!(cv.state.load(Ordering::Relaxed) & HAS_WAITERS, HAS_WAITERS);
let mut count = block_on(mu.lock());
*count = 2;
// Notify the cv while holding the lock. This should wake up both waiters.
cv.notify_all();
assert_eq!(cv.state.load(Ordering::Relaxed), 0);
mem::drop(count);
mem::drop(fut1);
if fut2.as_mut().poll(&mut cx).is_pending() {
panic!("future unable to complete");
}
assert_eq!(*block_on(mu.lock()), 1);
}
#[test]
fn timed_wait() {
async fn wait_deadline(
mu: Arc<RwLock<usize>>,
cv: Arc<Condvar>,
timeout: oneshot::Receiver<()>,
) {
let mut count = mu.lock().await;
if *count == 0 {
let mut rx = timeout.fuse();
while *count == 0 {
select! {
res = rx => {
if let Err(e) = res {
panic!("Error while receiving timeout notification: {}", e);
}
return;
},
c = cv.wait(count).fuse() => count = c,
}
}
}
*count += 1;
}
let mu = Arc::new(RwLock::new(0));
let cv = Arc::new(Condvar::new());
let arc_waker = Arc::new(TestWaker);
let waker = waker_ref(&arc_waker);
let mut cx = Context::from_waker(&waker);
let (tx, rx) = oneshot::channel();
let mut wait = Box::pin(wait_deadline(mu.clone(), cv.clone(), rx));
if let Poll::Ready(()) = wait.as_mut().poll(&mut cx) {
panic!("wait_deadline unexpectedly ready");
}
assert_eq!(cv.state.load(Ordering::Relaxed), HAS_WAITERS);
// Signal the channel, which should cancel the wait.
tx.send(()).expect("Failed to send wakeup");
// Wait for the timer to run out.
if wait.as_mut().poll(&mut cx).is_pending() {
panic!("wait_deadline unable to complete in time");
}
assert_eq!(cv.state.load(Ordering::Relaxed), 0);
assert_eq!(*block_on(mu.lock()), 0);
}
}