1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
// Copyright 2020 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use std::arch::x86_64::CpuidResult;
use std::collections::BTreeMap;

use base::errno_result;
use base::error;
use base::ioctl;
use base::ioctl_with_mut_ptr;
use base::ioctl_with_mut_ref;
use base::ioctl_with_ptr;
use base::ioctl_with_ref;
use base::ioctl_with_val;
use base::AsRawDescriptor;
use base::Error;
use base::IoctlNr;
use base::MappedRegion;
use base::Result;
use data_model::vec_with_array_field;
use data_model::FlexibleArrayWrapper;
use kvm_sys::*;
use libc::E2BIG;
use libc::EAGAIN;
use libc::EINVAL;
use libc::EIO;
use libc::ENOMEM;
use libc::ENXIO;
use serde::Deserialize;
use serde::Serialize;
use vm_memory::GuestAddress;

use super::Config;
use super::Kvm;
use super::KvmCap;
use super::KvmVcpu;
use super::KvmVm;
use crate::host_phys_addr_bits;
use crate::ClockState;
use crate::CpuId;
use crate::CpuIdEntry;
use crate::DebugRegs;
use crate::DescriptorTable;
use crate::DeviceKind;
use crate::Fpu;
use crate::FpuReg;
use crate::HypervisorX86_64;
use crate::IoapicRedirectionTableEntry;
use crate::IoapicState;
use crate::IrqSourceChip;
use crate::LapicState;
use crate::PicSelect;
use crate::PicState;
use crate::PitChannelState;
use crate::PitState;
use crate::ProtectionType;
use crate::Regs;
use crate::Segment;
use crate::Sregs;
use crate::VcpuExit;
use crate::VcpuX86_64;
use crate::VmCap;
use crate::VmX86_64;
use crate::Xsave;
use crate::NUM_IOAPIC_PINS;

type KvmCpuId = FlexibleArrayWrapper<kvm_cpuid2, kvm_cpuid_entry2>;
const KVM_XSAVE_MAX_SIZE: usize = 4096;
const MSR_IA32_APICBASE: u32 = 0x0000001b;

#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct VcpuEvents {
    pub exception: VcpuExceptionState,
    pub interrupt: VcpuInterruptState,
    pub nmi: VcpuNmiState,
    pub sipi_vector: Option<u32>,
    pub smi: VcpuSmiState,
    pub triple_fault: VcpuTripleFaultState,
    pub exception_payload: Option<u64>,
}

#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct VcpuExceptionState {
    pub injected: bool,
    pub nr: u8,
    pub has_error_code: bool,
    pub pending: Option<bool>,
    pub error_code: u32,
}

#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct VcpuInterruptState {
    pub injected: bool,
    pub nr: u8,
    pub soft: bool,
    pub shadow: Option<u8>,
}

#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct VcpuNmiState {
    pub injected: bool,
    pub pending: Option<bool>,
    pub masked: bool,
}

#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct VcpuSmiState {
    pub smm: Option<bool>,
    pub pending: bool,
    pub smm_inside_nmi: bool,
    pub latched_init: u8,
}

#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct VcpuTripleFaultState {
    pub pending: Option<bool>,
}

pub fn get_cpuid_with_initial_capacity<T: AsRawDescriptor>(
    descriptor: &T,
    kind: IoctlNr,
    initial_capacity: usize,
) -> Result<CpuId> {
    let mut entries: usize = initial_capacity;

    loop {
        let mut kvm_cpuid = KvmCpuId::new(entries);

        let ret = {
            // SAFETY:
            // ioctl is unsafe. The kernel is trusted not to write beyond the bounds of the
            // memory allocated for the struct. The limit is read from nent within KvmCpuId,
            // which is set to the allocated size above.
            unsafe { ioctl_with_mut_ptr(descriptor, kind, kvm_cpuid.as_mut_ptr()) }
        };
        if ret < 0 {
            let err = Error::last();
            match err.errno() {
                E2BIG => {
                    // double the available memory for cpuid entries for kvm.
                    if let Some(val) = entries.checked_mul(2) {
                        entries = val;
                    } else {
                        return Err(err);
                    }
                }
                _ => return Err(err),
            }
        } else {
            return Ok(CpuId::from(&kvm_cpuid));
        }
    }
}

impl Kvm {
    pub fn get_cpuid(&self, kind: IoctlNr) -> Result<CpuId> {
        const KVM_MAX_ENTRIES: usize = 256;
        get_cpuid_with_initial_capacity(self, kind, KVM_MAX_ENTRIES)
    }

    pub fn get_vm_type(&self, protection_type: ProtectionType) -> Result<u32> {
        if protection_type.isolates_memory() {
            Ok(KVM_X86_PKVM_PROTECTED_VM)
        } else {
            Ok(0)
        }
    }

    /// Get the size of guest physical addresses in bits.
    pub fn get_guest_phys_addr_bits(&self) -> u8 {
        // Assume the guest physical address size is the same as the host.
        host_phys_addr_bits()
    }
}

impl HypervisorX86_64 for Kvm {
    fn get_supported_cpuid(&self) -> Result<CpuId> {
        self.get_cpuid(KVM_GET_SUPPORTED_CPUID)
    }

    fn get_msr_index_list(&self) -> Result<Vec<u32>> {
        const MAX_KVM_MSR_ENTRIES: usize = 256;

        let mut msr_list = vec_with_array_field::<kvm_msr_list, u32>(MAX_KVM_MSR_ENTRIES);
        msr_list[0].nmsrs = MAX_KVM_MSR_ENTRIES as u32;

        let ret = {
            // SAFETY:
            // ioctl is unsafe. The kernel is trusted not to write beyond the bounds of the memory
            // allocated for the struct. The limit is read from nmsrs, which is set to the allocated
            // size (MAX_KVM_MSR_ENTRIES) above.
            unsafe { ioctl_with_mut_ref(self, KVM_GET_MSR_INDEX_LIST, &mut msr_list[0]) }
        };
        if ret < 0 {
            return errno_result();
        }

        let mut nmsrs = msr_list[0].nmsrs;

        // SAFETY:
        // Mapping the unsized array to a slice is unsafe because the length isn't known.  Using
        // the length we originally allocated with eliminates the possibility of overflow.
        let indices: &[u32] = unsafe {
            if nmsrs > MAX_KVM_MSR_ENTRIES as u32 {
                nmsrs = MAX_KVM_MSR_ENTRIES as u32;
            }
            msr_list[0].indices.as_slice(nmsrs as usize)
        };

        Ok(indices.to_vec())
    }
}

impl KvmVm {
    /// Does platform specific initialization for the KvmVm.
    pub fn init_arch(&self, _cfg: &Config) -> Result<()> {
        Ok(())
    }

    /// Whether running under pKVM.
    pub fn is_pkvm(&self) -> bool {
        false
    }

    /// Checks if a particular `VmCap` is available, or returns None if arch-independent
    /// Vm.check_capability() should handle the check.
    pub fn check_capability_arch(&self, c: VmCap) -> Option<bool> {
        match c {
            VmCap::PvClock => Some(true),
            _ => None,
        }
    }

    /// Returns the params to pass to KVM_CREATE_DEVICE for a `kind` device on this arch, or None to
    /// let the arch-independent `KvmVm::create_device` handle it.
    pub fn get_device_params_arch(&self, _kind: DeviceKind) -> Option<kvm_create_device> {
        None
    }

    /// Arch-specific implementation of `Vm::get_pvclock`.
    pub fn get_pvclock_arch(&self) -> Result<ClockState> {
        let mut clock_data: kvm_clock_data = Default::default();
        let ret =
            // SAFETY:
            // Safe because we know that our file is a VM fd, we know the kernel will only write correct
            // amount of memory to our pointer, and we verify the return result.
            unsafe { ioctl_with_mut_ref(self, KVM_GET_CLOCK, &mut clock_data) };
        if ret == 0 {
            Ok(ClockState::from(&clock_data))
        } else {
            errno_result()
        }
    }

    /// Arch-specific implementation of `Vm::set_pvclock`.
    pub fn set_pvclock_arch(&self, state: &ClockState) -> Result<()> {
        let clock_data = kvm_clock_data::from(state);
        // SAFETY:
        // Safe because we know that our file is a VM fd, we know the kernel will only read correct
        // amount of memory from our pointer, and we verify the return result.
        let ret = unsafe { ioctl_with_ref(self, KVM_SET_CLOCK, &clock_data) };
        if ret == 0 {
            Ok(())
        } else {
            errno_result()
        }
    }

    /// Retrieves the state of given interrupt controller by issuing KVM_GET_IRQCHIP ioctl.
    ///
    /// Note that this call can only succeed after a call to `Vm::create_irq_chip`.
    pub fn get_pic_state(&self, id: PicSelect) -> Result<kvm_pic_state> {
        let mut irqchip_state = kvm_irqchip {
            chip_id: id as u32,
            ..Default::default()
        };
        let ret = {
            // SAFETY:
            // Safe because we know our file is a VM fd, we know the kernel will only write
            // correct amount of memory to our pointer, and we verify the return result.
            unsafe { ioctl_with_mut_ref(self, KVM_GET_IRQCHIP, &mut irqchip_state) }
        };
        if ret == 0 {
            Ok(
                // SAFETY:
                // Safe as we know that we are retrieving data related to the
                // PIC (primary or secondary) and not IOAPIC.
                unsafe { irqchip_state.chip.pic },
            )
        } else {
            errno_result()
        }
    }

    /// Sets the state of given interrupt controller by issuing KVM_SET_IRQCHIP ioctl.
    ///
    /// Note that this call can only succeed after a call to `Vm::create_irq_chip`.
    pub fn set_pic_state(&self, id: PicSelect, state: &kvm_pic_state) -> Result<()> {
        let mut irqchip_state = kvm_irqchip {
            chip_id: id as u32,
            ..Default::default()
        };
        irqchip_state.chip.pic = *state;
        // SAFETY:
        // Safe because we know that our file is a VM fd, we know the kernel will only read
        // correct amount of memory from our pointer, and we verify the return result.
        let ret = unsafe { ioctl_with_ref(self, KVM_SET_IRQCHIP, &irqchip_state) };
        if ret == 0 {
            Ok(())
        } else {
            errno_result()
        }
    }

    /// Retrieves the number of pins for emulated IO-APIC.
    pub fn get_ioapic_num_pins(&self) -> Result<usize> {
        Ok(NUM_IOAPIC_PINS)
    }

    /// Retrieves the state of IOAPIC by issuing KVM_GET_IRQCHIP ioctl.
    ///
    /// Note that this call can only succeed after a call to `Vm::create_irq_chip`.
    pub fn get_ioapic_state(&self) -> Result<kvm_ioapic_state> {
        let mut irqchip_state = kvm_irqchip {
            chip_id: 2,
            ..Default::default()
        };
        let ret = {
            // SAFETY:
            // Safe because we know our file is a VM fd, we know the kernel will only write
            // correct amount of memory to our pointer, and we verify the return result.
            unsafe { ioctl_with_mut_ref(self, KVM_GET_IRQCHIP, &mut irqchip_state) }
        };
        if ret == 0 {
            Ok(
                // SAFETY:
                // Safe as we know that we are retrieving data related to the
                // IOAPIC and not PIC.
                unsafe { irqchip_state.chip.ioapic },
            )
        } else {
            errno_result()
        }
    }

    /// Sets the state of IOAPIC by issuing KVM_SET_IRQCHIP ioctl.
    ///
    /// Note that this call can only succeed after a call to `Vm::create_irq_chip`.
    pub fn set_ioapic_state(&self, state: &kvm_ioapic_state) -> Result<()> {
        let mut irqchip_state = kvm_irqchip {
            chip_id: 2,
            ..Default::default()
        };
        irqchip_state.chip.ioapic = *state;
        // SAFETY:
        // Safe because we know that our file is a VM fd, we know the kernel will only read
        // correct amount of memory from our pointer, and we verify the return result.
        let ret = unsafe { ioctl_with_ref(self, KVM_SET_IRQCHIP, &irqchip_state) };
        if ret == 0 {
            Ok(())
        } else {
            errno_result()
        }
    }

    /// Creates a PIT as per the KVM_CREATE_PIT2 ioctl.
    ///
    /// Note that this call can only succeed after a call to `Vm::create_irq_chip`.
    pub fn create_pit(&self) -> Result<()> {
        let pit_config = kvm_pit_config::default();
        // SAFETY:
        // Safe because we know that our file is a VM fd, we know the kernel will only read the
        // correct amount of memory from our pointer, and we verify the return result.
        let ret = unsafe { ioctl_with_ref(self, KVM_CREATE_PIT2, &pit_config) };
        if ret == 0 {
            Ok(())
        } else {
            errno_result()
        }
    }

    /// Retrieves the state of PIT by issuing KVM_GET_PIT2 ioctl.
    ///
    /// Note that this call can only succeed after a call to `Vm::create_pit`.
    pub fn get_pit_state(&self) -> Result<kvm_pit_state2> {
        let mut pit_state = Default::default();
        // SAFETY:
        // Safe because we know that our file is a VM fd, we know the kernel will only write
        // correct amount of memory to our pointer, and we verify the return result.
        let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_PIT2, &mut pit_state) };
        if ret == 0 {
            Ok(pit_state)
        } else {
            errno_result()
        }
    }

    /// Sets the state of PIT by issuing KVM_SET_PIT2 ioctl.
    ///
    /// Note that this call can only succeed after a call to `Vm::create_pit`.
    pub fn set_pit_state(&self, pit_state: &kvm_pit_state2) -> Result<()> {
        // SAFETY:
        // Safe because we know that our file is a VM fd, we know the kernel will only read
        // correct amount of memory from our pointer, and we verify the return result.
        let ret = unsafe { ioctl_with_ref(self, KVM_SET_PIT2, pit_state) };
        if ret == 0 {
            Ok(())
        } else {
            errno_result()
        }
    }

    /// Set MSR_PLATFORM_INFO read access.
    pub fn set_platform_info_read_access(&self, allow_read: bool) -> Result<()> {
        let mut cap = kvm_enable_cap {
            cap: KVM_CAP_MSR_PLATFORM_INFO,
            ..Default::default()
        };
        cap.args[0] = allow_read as u64;

        // SAFETY:
        // Safe because we know that our file is a VM fd, we know that the
        // kernel will only read correct amount of memory from our pointer, and
        // we verify the return result.
        let ret = unsafe { ioctl_with_ref(self, KVM_ENABLE_CAP, &cap) };
        if ret < 0 {
            errno_result()
        } else {
            Ok(())
        }
    }

    /// Enable support for split-irqchip.
    pub fn enable_split_irqchip(&self, ioapic_pins: usize) -> Result<()> {
        let mut cap = kvm_enable_cap {
            cap: KVM_CAP_SPLIT_IRQCHIP,
            ..Default::default()
        };
        cap.args[0] = ioapic_pins as u64;
        // SAFETY:
        // safe becuase we allocated the struct and we know the kernel will read
        // exactly the size of the struct
        let ret = unsafe { ioctl_with_ref(self, KVM_ENABLE_CAP, &cap) };
        if ret < 0 {
            errno_result()
        } else {
            Ok(())
        }
    }

    /// Get pKVM hypervisor details, e.g. the firmware size.
    ///
    /// Returns `Err` if not running under pKVM.
    ///
    /// Uses `KVM_ENABLE_CAP` internally, but it is only a getter, there should be no side effects
    /// in KVM.
    fn get_protected_vm_info(&self) -> Result<KvmProtectedVmInfo> {
        let mut info = KvmProtectedVmInfo {
            firmware_size: 0,
            reserved: [0; 7],
        };
        // SAFETY:
        // Safe because we allocated the struct and we know the kernel won't write beyond the end of
        // the struct or keep a pointer to it.
        unsafe {
            self.enable_raw_capability(
                KvmCap::X86ProtectedVm,
                KVM_CAP_X86_PROTECTED_VM_FLAGS_INFO,
                &[&mut info as *mut KvmProtectedVmInfo as u64, 0, 0, 0],
            )
        }?;
        Ok(info)
    }

    fn set_protected_vm_firmware_gpa(&self, fw_addr: GuestAddress) -> Result<()> {
        // SAFETY:
        // Safe because none of the args are pointers.
        unsafe {
            self.enable_raw_capability(
                KvmCap::X86ProtectedVm,
                KVM_CAP_X86_PROTECTED_VM_FLAGS_SET_FW_GPA,
                &[fw_addr.0, 0, 0, 0],
            )
        }
    }
}

#[repr(C)]
struct KvmProtectedVmInfo {
    firmware_size: u64,
    reserved: [u64; 7],
}

impl VmX86_64 for KvmVm {
    fn get_hypervisor(&self) -> &dyn HypervisorX86_64 {
        &self.kvm
    }

    fn load_protected_vm_firmware(
        &mut self,
        fw_addr: GuestAddress,
        fw_max_size: u64,
    ) -> Result<()> {
        let info = self.get_protected_vm_info()?;
        if info.firmware_size == 0 {
            Err(Error::new(EINVAL))
        } else {
            if info.firmware_size > fw_max_size {
                return Err(Error::new(ENOMEM));
            }
            self.set_protected_vm_firmware_gpa(fw_addr)
        }
    }

    fn create_vcpu(&self, id: usize) -> Result<Box<dyn VcpuX86_64>> {
        // create_vcpu is declared separately in VmAArch64 and VmX86, so it can return VcpuAArch64
        // or VcpuX86.  But both use the same implementation in KvmVm::create_vcpu.
        Ok(Box::new(KvmVm::create_kvm_vcpu(self, id)?))
    }

    /// Sets the address of the three-page region in the VM's address space.
    ///
    /// See the documentation on the KVM_SET_TSS_ADDR ioctl.
    fn set_tss_addr(&self, addr: GuestAddress) -> Result<()> {
        // SAFETY:
        // Safe because we know that our file is a VM fd and we verify the return result.
        let ret = unsafe { ioctl_with_val(self, KVM_SET_TSS_ADDR, addr.offset()) };
        if ret == 0 {
            Ok(())
        } else {
            errno_result()
        }
    }

    /// Sets the address of a one-page region in the VM's address space.
    ///
    /// See the documentation on the KVM_SET_IDENTITY_MAP_ADDR ioctl.
    fn set_identity_map_addr(&self, addr: GuestAddress) -> Result<()> {
        // SAFETY:
        // Safe because we know that our file is a VM fd and we verify the return result.
        let ret = unsafe { ioctl_with_ref(self, KVM_SET_IDENTITY_MAP_ADDR, &addr.offset()) };
        if ret == 0 {
            Ok(())
        } else {
            errno_result()
        }
    }
}

impl KvmVcpu {
    /// Handles a `KVM_EXIT_SYSTEM_EVENT` with event type `KVM_SYSTEM_EVENT_RESET` with the given
    /// event flags and returns the appropriate `VcpuExit` value for the run loop to handle.
    pub fn system_event_reset(&self, _event_flags: u64) -> Result<VcpuExit> {
        Ok(VcpuExit::SystemEventReset)
    }

    /// Gets the Xsave size by checking the extension KVM_CAP_XSAVE2.
    ///
    /// Size should always be >=0. If size is negative, an error occurred.
    /// If size <= 4096, XSAVE2 is not supported by the CPU or the kernel. KVM_XSAVE_MAX_SIZE is
    /// returned (4096).
    /// Otherwise, the size will be returned.
    fn xsave_size(&self) -> Result<usize> {
        let size = {
            // SAFETY:
            // Safe because we know that our file is a valid VM fd
            unsafe { ioctl_with_val(&self.vm, KVM_CHECK_EXTENSION, KVM_CAP_XSAVE2 as u64) }
        };
        if size < 0 {
            return errno_result();
        }
        // Safe to unwrap since we already tested for negative values
        let size: usize = size.try_into().unwrap();
        Ok(size.max(KVM_XSAVE_MAX_SIZE))
    }

    #[inline]
    pub(crate) fn handle_vm_exit_arch(&self, run: &mut kvm_run) -> Option<VcpuExit> {
        match run.exit_reason {
            KVM_EXIT_IO => Some(VcpuExit::Io),
            KVM_EXIT_IOAPIC_EOI => {
                // SAFETY:
                // Safe because the exit_reason (which comes from the kernel) told us which
                // union field to use.
                let vector = unsafe { run.__bindgen_anon_1.eoi.vector };
                Some(VcpuExit::IoapicEoi { vector })
            }
            KVM_EXIT_HLT => Some(VcpuExit::Hlt),
            KVM_EXIT_SET_TPR => Some(VcpuExit::SetTpr),
            KVM_EXIT_TPR_ACCESS => Some(VcpuExit::TprAccess),
            KVM_EXIT_X86_BUS_LOCK => Some(VcpuExit::BusLock),
            _ => None,
        }
    }
}

impl VcpuX86_64 for KvmVcpu {
    #[allow(clippy::cast_ptr_alignment)]
    fn set_interrupt_window_requested(&self, requested: bool) {
        // SAFETY:
        // Safe because we know we mapped enough memory to hold the kvm_run struct because the
        // kernel told us how large it was. The pointer is page aligned so casting to a different
        // type is well defined, hence the clippy allow attribute.
        let run = unsafe { &mut *(self.run_mmap.as_ptr() as *mut kvm_run) };
        run.request_interrupt_window = requested.into();
    }

    #[allow(clippy::cast_ptr_alignment)]
    fn ready_for_interrupt(&self) -> bool {
        // SAFETY:
        // Safe because we know we mapped enough memory to hold the kvm_run struct because the
        // kernel told us how large it was. The pointer is page aligned so casting to a different
        // type is well defined, hence the clippy allow attribute.
        let run = unsafe { &mut *(self.run_mmap.as_ptr() as *mut kvm_run) };
        run.ready_for_interrupt_injection != 0 && run.if_flag != 0
    }

    /// Use the KVM_INTERRUPT ioctl to inject the specified interrupt vector.
    ///
    /// While this ioctl exists on PPC and MIPS as well as x86, the semantics are different and
    /// ChromeOS doesn't support PPC or MIPS.
    fn interrupt(&self, irq: u8) -> Result<()> {
        if !self.ready_for_interrupt() {
            return Err(Error::new(EAGAIN));
        }

        let interrupt = kvm_interrupt { irq: irq.into() };
        // SAFETY:
        // safe becuase we allocated the struct and we know the kernel will read
        // exactly the size of the struct
        let ret = unsafe { ioctl_with_ref(self, KVM_INTERRUPT, &interrupt) };
        if ret == 0 {
            Ok(())
        } else {
            errno_result()
        }
    }

    fn inject_nmi(&self) -> Result<()> {
        // SAFETY:
        // Safe because we know that our file is a VCPU fd.
        let ret = unsafe { ioctl(self, KVM_NMI) };
        if ret == 0 {
            Ok(())
        } else {
            errno_result()
        }
    }

    fn get_regs(&self) -> Result<Regs> {
        let mut regs: kvm_regs = Default::default();
        let ret = {
            // SAFETY:
            // Safe because we know that our file is a VCPU fd, we know the kernel will only read
            // the correct amount of memory from our pointer, and we verify the return
            // result.
            unsafe { ioctl_with_mut_ref(self, KVM_GET_REGS, &mut regs) }
        };
        if ret == 0 {
            Ok(Regs::from(&regs))
        } else {
            errno_result()
        }
    }

    fn set_regs(&self, regs: &Regs) -> Result<()> {
        let regs = kvm_regs::from(regs);
        let ret = {
            // SAFETY:
            // Safe because we know that our file is a VCPU fd, we know the kernel will only read
            // the correct amount of memory from our pointer, and we verify the return
            // result.
            unsafe { ioctl_with_ref(self, KVM_SET_REGS, &regs) }
        };
        if ret == 0 {
            Ok(())
        } else {
            errno_result()
        }
    }

    fn get_sregs(&self) -> Result<Sregs> {
        let mut regs: kvm_sregs = Default::default();
        let ret = {
            // SAFETY:
            // Safe because we know that our file is a VCPU fd, we know the kernel will only write
            // the correct amount of memory to our pointer, and we verify the return
            // result.
            unsafe { ioctl_with_mut_ref(self, KVM_GET_SREGS, &mut regs) }
        };
        if ret == 0 {
            Ok(Sregs::from(&regs))
        } else {
            errno_result()
        }
    }

    fn set_sregs(&self, sregs: &Sregs) -> Result<()> {
        // Get the current `kvm_sregs` so we can use its `apic_base` and `interrupt_bitmap`, which
        // are not present in `Sregs`.
        let mut kvm_sregs: kvm_sregs = Default::default();
        // SAFETY:
        // Safe because we know that our file is a VCPU fd, we know the kernel will only write the
        // correct amount of memory to our pointer, and we verify the return result.
        let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_SREGS, &mut kvm_sregs) };
        if ret != 0 {
            return errno_result();
        }

        kvm_sregs.cs = kvm_segment::from(&sregs.cs);
        kvm_sregs.ds = kvm_segment::from(&sregs.ds);
        kvm_sregs.es = kvm_segment::from(&sregs.es);
        kvm_sregs.fs = kvm_segment::from(&sregs.fs);
        kvm_sregs.gs = kvm_segment::from(&sregs.gs);
        kvm_sregs.ss = kvm_segment::from(&sregs.ss);
        kvm_sregs.tr = kvm_segment::from(&sregs.tr);
        kvm_sregs.ldt = kvm_segment::from(&sregs.ldt);
        kvm_sregs.gdt = kvm_dtable::from(&sregs.gdt);
        kvm_sregs.idt = kvm_dtable::from(&sregs.idt);
        kvm_sregs.cr0 = sregs.cr0;
        kvm_sregs.cr2 = sregs.cr2;
        kvm_sregs.cr3 = sregs.cr3;
        kvm_sregs.cr4 = sregs.cr4;
        kvm_sregs.cr8 = sregs.cr8;
        kvm_sregs.efer = sregs.efer;

        // SAFETY:
        // Safe because we know that our file is a VCPU fd, we know the kernel will only read the
        // correct amount of memory from our pointer, and we verify the return result.
        let ret = unsafe { ioctl_with_ref(self, KVM_SET_SREGS, &kvm_sregs) };
        if ret == 0 {
            Ok(())
        } else {
            errno_result()
        }
    }

    fn get_fpu(&self) -> Result<Fpu> {
        let mut fpu: kvm_fpu = Default::default();
        // SAFETY:
        // Safe because we know that our file is a VCPU fd, we know the kernel will only write the
        // correct amount of memory to our pointer, and we verify the return result.
        let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_FPU, &mut fpu) };
        if ret == 0 {
            Ok(Fpu::from(&fpu))
        } else {
            errno_result()
        }
    }

    fn set_fpu(&self, fpu: &Fpu) -> Result<()> {
        let fpu = kvm_fpu::from(fpu);
        let ret = {
            // SAFETY:
            // Here we trust the kernel not to read past the end of the kvm_fpu struct.
            unsafe { ioctl_with_ref(self, KVM_SET_FPU, &fpu) }
        };
        if ret == 0 {
            Ok(())
        } else {
            errno_result()
        }
    }

    /// If the VM reports using XSave2, the function will call XSave2.
    fn get_xsave(&self) -> Result<Xsave> {
        let size = self.xsave_size()?;
        let ioctl_nr = if size > KVM_XSAVE_MAX_SIZE {
            KVM_GET_XSAVE2
        } else {
            KVM_GET_XSAVE
        };
        let mut xsave = Xsave::new(size);

        // SAFETY:
        // Safe because we know that our file is a VCPU fd, we know the kernel will only write the
        // correct amount of memory to our pointer, and we verify the return result.
        let ret = unsafe { ioctl_with_mut_ptr(self, ioctl_nr, xsave.as_mut_ptr()) };
        if ret == 0 {
            Ok(xsave)
        } else {
            errno_result()
        }
    }

    fn set_xsave(&self, xsave: &Xsave) -> Result<()> {
        let size = self.xsave_size()?;
        // Ensure xsave is the same size as used in get_xsave.
        // Return err if sizes don't match => not the same extensions are enabled for CPU.
        if xsave.len() != size {
            return Err(Error::new(EIO));
        }

        // SAFETY:
        // Safe because we know that our file is a VCPU fd, we know the kernel will only write the
        // correct amount of memory to our pointer, and we verify the return result.
        // Because of the len check above, and because the layout of `struct kvm_xsave` is
        // compatible with a slice of `u32`, we can pass the pointer to `xsave` directly.
        let ret = unsafe { ioctl_with_ptr(self, KVM_SET_XSAVE, xsave.as_ptr()) };
        if ret == 0 {
            Ok(())
        } else {
            errno_result()
        }
    }

    fn get_interrupt_state(&self) -> Result<serde_json::Value> {
        let mut vcpu_evts: kvm_vcpu_events = Default::default();
        let ret = {
            // SAFETY:
            // Safe because we know that our file is a VCPU fd, we know the kernel will only write
            // the correct amount of memory to our pointer, and we verify the return
            // result.
            unsafe { ioctl_with_mut_ref(self, KVM_GET_VCPU_EVENTS, &mut vcpu_evts) }
        };
        if ret == 0 {
            Ok(
                serde_json::to_value(VcpuEvents::from(&vcpu_evts)).map_err(|e| {
                    error!("failed to serialize vcpu_events: {:?}", e);
                    Error::new(EIO)
                })?,
            )
        } else {
            errno_result()
        }
    }

    fn set_interrupt_state(&self, data: serde_json::Value) -> Result<()> {
        let vcpu_events =
            kvm_vcpu_events::from(&serde_json::from_value::<VcpuEvents>(data).map_err(|e| {
                error!("failed to deserialize vcpu_events: {:?}", e);
                Error::new(EIO)
            })?);
        let ret = {
            // SAFETY:
            // Safe because we know that our file is a VCPU fd, we know the kernel will only read
            // the correct amount of memory from our pointer, and we verify the return
            // result.
            unsafe { ioctl_with_ref(self, KVM_SET_VCPU_EVENTS, &vcpu_events) }
        };
        if ret == 0 {
            Ok(())
        } else {
            errno_result()
        }
    }

    fn get_debugregs(&self) -> Result<DebugRegs> {
        let mut regs: kvm_debugregs = Default::default();
        // SAFETY:
        // Safe because we know that our file is a VCPU fd, we know the kernel will only write the
        // correct amount of memory to our pointer, and we verify the return result.
        let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_DEBUGREGS, &mut regs) };
        if ret == 0 {
            Ok(DebugRegs::from(&regs))
        } else {
            errno_result()
        }
    }

    fn set_debugregs(&self, dregs: &DebugRegs) -> Result<()> {
        let dregs = kvm_debugregs::from(dregs);
        let ret = {
            // SAFETY:
            // Here we trust the kernel not to read past the end of the kvm_debugregs struct.
            unsafe { ioctl_with_ref(self, KVM_SET_DEBUGREGS, &dregs) }
        };
        if ret == 0 {
            Ok(())
        } else {
            errno_result()
        }
    }

    fn get_xcrs(&self) -> Result<BTreeMap<u32, u64>> {
        let mut regs: kvm_xcrs = Default::default();
        // SAFETY:
        // Safe because we know that our file is a VCPU fd, we know the kernel will only write the
        // correct amount of memory to our pointer, and we verify the return result.
        let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_XCRS, &mut regs) };
        if ret < 0 {
            return errno_result();
        }

        Ok(regs
            .xcrs
            .iter()
            .take(regs.nr_xcrs as usize)
            .map(|kvm_xcr| (kvm_xcr.xcr, kvm_xcr.value))
            .collect())
    }

    fn set_xcr(&self, xcr_index: u32, value: u64) -> Result<()> {
        let mut kvm_xcr = kvm_xcrs {
            nr_xcrs: 1,
            ..Default::default()
        };
        kvm_xcr.xcrs[0].xcr = xcr_index;
        kvm_xcr.xcrs[0].value = value;

        let ret = {
            // SAFETY:
            // Here we trust the kernel not to read past the end of the kvm_xcrs struct.
            unsafe { ioctl_with_ref(self, KVM_SET_XCRS, &kvm_xcr) }
        };
        if ret == 0 {
            Ok(())
        } else {
            errno_result()
        }
    }

    fn get_msr(&self, msr_index: u32) -> Result<u64> {
        let mut msrs = vec_with_array_field::<kvm_msrs, kvm_msr_entry>(1);
        msrs[0].nmsrs = 1;

        // SAFETY: We initialize a one-element array using `vec_with_array_field` above.
        unsafe {
            let msr_entries = msrs[0].entries.as_mut_slice(1);
            msr_entries[0].index = msr_index;
        }

        let ret = {
            // SAFETY:
            // Here we trust the kernel not to read or write past the end of the kvm_msrs struct.
            unsafe { ioctl_with_mut_ref(self, KVM_GET_MSRS, &mut msrs[0]) }
        };
        if ret < 0 {
            return errno_result();
        }

        // KVM_GET_MSRS returns the number of msr entries written.
        if ret != 1 {
            return Err(base::Error::new(libc::ENOENT));
        }

        // SAFETY:
        // Safe because we trust the kernel to return the correct array length on success.
        let value = unsafe {
            let msr_entries = msrs[0].entries.as_slice(1);
            msr_entries[0].data
        };

        Ok(value)
    }

    fn get_all_msrs(&self) -> Result<BTreeMap<u32, u64>> {
        let msr_index_list = self.kvm.get_msr_index_list()?;
        let mut kvm_msrs = vec_with_array_field::<kvm_msrs, kvm_msr_entry>(msr_index_list.len());
        kvm_msrs[0].nmsrs = msr_index_list.len() as u32;
        // SAFETY:
        // Mapping the unsized array to a slice is unsafe because the length isn't known.
        // Providing the length used to create the struct guarantees the entire slice is valid.
        unsafe {
            kvm_msrs[0]
                .entries
                .as_mut_slice(msr_index_list.len())
                .iter_mut()
                .zip(msr_index_list.iter())
                .for_each(|(msr_entry, msr_index)| msr_entry.index = *msr_index);
        }

        let ret = {
            // SAFETY:
            // Here we trust the kernel not to read or write past the end of the kvm_msrs struct.
            unsafe { ioctl_with_mut_ref(self, KVM_GET_MSRS, &mut kvm_msrs[0]) }
        };
        if ret < 0 {
            return errno_result();
        }

        // KVM_GET_MSRS returns the number of msr entries written.
        let count = ret as usize;
        if count != msr_index_list.len() {
            error!(
                "failed to get all MSRs: requested {}, got {}",
                msr_index_list.len(),
                count,
            );
            return Err(base::Error::new(libc::EPERM));
        }

        // SAFETY:
        // Safe because we trust the kernel to return the correct array length on success.
        let msrs = unsafe {
            BTreeMap::from_iter(
                kvm_msrs[0]
                    .entries
                    .as_slice(count)
                    .iter()
                    .map(|kvm_msr| (kvm_msr.index, kvm_msr.data)),
            )
        };

        Ok(msrs)
    }

    fn set_msr(&self, msr_index: u32, value: u64) -> Result<()> {
        let mut kvm_msrs = vec_with_array_field::<kvm_msrs, kvm_msr_entry>(1);
        kvm_msrs[0].nmsrs = 1;

        // SAFETY: We initialize a one-element array using `vec_with_array_field` above.
        unsafe {
            let msr_entries = kvm_msrs[0].entries.as_mut_slice(1);
            msr_entries[0].index = msr_index;
            msr_entries[0].data = value;
        }

        let ret = {
            // SAFETY:
            // Here we trust the kernel not to read past the end of the kvm_msrs struct.
            unsafe { ioctl_with_ref(self, KVM_SET_MSRS, &kvm_msrs[0]) }
        };
        if ret < 0 {
            return errno_result();
        }

        // KVM_SET_MSRS returns the number of msr entries written.
        if ret != 1 {
            error!("failed to set MSR {:#x} to {:#x}", msr_index, value);
            return Err(base::Error::new(libc::EPERM));
        }

        Ok(())
    }

    fn set_cpuid(&self, cpuid: &CpuId) -> Result<()> {
        let cpuid = KvmCpuId::from(cpuid);
        let ret = {
            // SAFETY:
            // Here we trust the kernel not to read past the end of the kvm_msrs struct.
            unsafe { ioctl_with_ptr(self, KVM_SET_CPUID2, cpuid.as_ptr()) }
        };
        if ret == 0 {
            Ok(())
        } else {
            errno_result()
        }
    }

    fn set_guest_debug(&self, addrs: &[GuestAddress], enable_singlestep: bool) -> Result<()> {
        use kvm_sys::*;
        let mut dbg: kvm_guest_debug = Default::default();

        if addrs.len() > 4 {
            error!(
                "Support 4 breakpoints at most but {} addresses are passed",
                addrs.len()
            );
            return Err(base::Error::new(libc::EINVAL));
        }

        dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
        if enable_singlestep {
            dbg.control |= KVM_GUESTDBG_SINGLESTEP;
        }

        // Set bits 9 and 10.
        // bit 9: GE (global exact breakpoint enable) flag.
        // bit 10: always 1.
        dbg.arch.debugreg[7] = 0x0600;

        for (i, addr) in addrs.iter().enumerate() {
            dbg.arch.debugreg[i] = addr.0;
            // Set global breakpoint enable flag
            dbg.arch.debugreg[7] |= 2 << (i * 2);
        }

        let ret = {
            // SAFETY:
            // Here we trust the kernel not to read past the end of the kvm_guest_debug struct.
            unsafe { ioctl_with_ref(self, KVM_SET_GUEST_DEBUG, &dbg) }
        };
        if ret == 0 {
            Ok(())
        } else {
            errno_result()
        }
    }

    /// KVM does not support the VcpuExit::Cpuid exit type.
    fn handle_cpuid(&mut self, _entry: &CpuIdEntry) -> Result<()> {
        Err(Error::new(ENXIO))
    }

    fn restore_timekeeping(&self, _host_tsc_reference_moment: u64, _tsc_offset: u64) -> Result<()> {
        // On KVM, the TSC MSR is restored as part of SET_MSRS, and no further action is required.
        Ok(())
    }
}

impl KvmVcpu {
    /// X86 specific call to get the state of the "Local Advanced Programmable Interrupt
    /// Controller".
    ///
    /// See the documentation for KVM_GET_LAPIC.
    pub fn get_lapic(&self) -> Result<kvm_lapic_state> {
        let mut klapic: kvm_lapic_state = Default::default();

        let ret = {
            // SAFETY:
            // The ioctl is unsafe unless you trust the kernel not to write past the end of the
            // local_apic struct.
            unsafe { ioctl_with_mut_ref(self, KVM_GET_LAPIC, &mut klapic) }
        };
        if ret < 0 {
            return errno_result();
        }
        Ok(klapic)
    }

    /// X86 specific call to set the state of the "Local Advanced Programmable Interrupt
    /// Controller".
    ///
    /// See the documentation for KVM_SET_LAPIC.
    pub fn set_lapic(&self, klapic: &kvm_lapic_state) -> Result<()> {
        let ret = {
            // SAFETY:
            // The ioctl is safe because the kernel will only read from the klapic struct.
            unsafe { ioctl_with_ref(self, KVM_SET_LAPIC, klapic) }
        };
        if ret < 0 {
            return errno_result();
        }
        Ok(())
    }

    /// X86 specific call to get the value of the APIC_BASE MSR.
    ///
    /// See the documentation for The kvm_run structure, and for KVM_GET_LAPIC.
    pub fn get_apic_base(&self) -> Result<u64> {
        self.get_msr(MSR_IA32_APICBASE)
    }

    /// X86 specific call to set the value of the APIC_BASE MSR.
    ///
    /// See the documentation for The kvm_run structure, and for KVM_GET_LAPIC.
    pub fn set_apic_base(&self, apic_base: u64) -> Result<()> {
        self.set_msr(MSR_IA32_APICBASE, apic_base)
    }

    /// Call to get pending interrupts acknowledged by the APIC but not yet injected into the CPU.
    ///
    /// See the documentation for KVM_GET_SREGS.
    pub fn get_interrupt_bitmap(&self) -> Result<[u64; 4usize]> {
        let mut regs: kvm_sregs = Default::default();
        // SAFETY:
        // Safe because we know that our file is a VCPU fd, we know the kernel will only write the
        // correct amount of memory to our pointer, and we verify the return result.
        let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_SREGS, &mut regs) };
        if ret >= 0 {
            Ok(regs.interrupt_bitmap)
        } else {
            errno_result()
        }
    }

    /// Call to set pending interrupts acknowledged by the APIC but not yet injected into the CPU.
    ///
    /// See the documentation for KVM_GET_SREGS.
    pub fn set_interrupt_bitmap(&self, interrupt_bitmap: [u64; 4usize]) -> Result<()> {
        // Potentially racy code. Vcpu registers are set in a separate thread and this could result
        // in Sregs being modified from the Vcpu initialization thread and the Irq restoring
        // thread.
        let mut regs: kvm_sregs = Default::default();
        // SAFETY:
        // Safe because we know that our file is a VCPU fd, we know the kernel will only write the
        // correct amount of memory to our pointer, and we verify the return result.
        let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_SREGS, &mut regs) };
        if ret >= 0 {
            regs.interrupt_bitmap = interrupt_bitmap;
            // SAFETY:
            // Safe because we know that our file is a VCPU fd, we know the kernel will only read
            // the correct amount of memory from our pointer, and we verify the return
            // result.
            let ret = unsafe { ioctl_with_ref(self, KVM_SET_SREGS, &regs) };
            if ret >= 0 {
                Ok(())
            } else {
                errno_result()
            }
        } else {
            errno_result()
        }
    }
}

impl<'a> From<&'a KvmCpuId> for CpuId {
    fn from(kvm_cpuid: &'a KvmCpuId) -> CpuId {
        let kvm_entries = kvm_cpuid.entries_slice();
        let mut cpu_id_entries = Vec::with_capacity(kvm_entries.len());

        for entry in kvm_entries {
            let cpu_id_entry = CpuIdEntry {
                function: entry.function,
                index: entry.index,
                flags: entry.flags,
                cpuid: CpuidResult {
                    eax: entry.eax,
                    ebx: entry.ebx,
                    ecx: entry.ecx,
                    edx: entry.edx,
                },
            };
            cpu_id_entries.push(cpu_id_entry)
        }
        CpuId { cpu_id_entries }
    }
}

impl From<&CpuId> for KvmCpuId {
    fn from(cpuid: &CpuId) -> KvmCpuId {
        let mut kvm = KvmCpuId::new(cpuid.cpu_id_entries.len());
        let entries = kvm.mut_entries_slice();
        for (i, &e) in cpuid.cpu_id_entries.iter().enumerate() {
            entries[i] = kvm_cpuid_entry2 {
                function: e.function,
                index: e.index,
                flags: e.flags,
                eax: e.cpuid.eax,
                ebx: e.cpuid.ebx,
                ecx: e.cpuid.ecx,
                edx: e.cpuid.edx,
                ..Default::default()
            };
        }
        kvm
    }
}

impl From<&ClockState> for kvm_clock_data {
    fn from(state: &ClockState) -> Self {
        kvm_clock_data {
            clock: state.clock,
            ..Default::default()
        }
    }
}

impl From<&kvm_clock_data> for ClockState {
    fn from(clock_data: &kvm_clock_data) -> Self {
        ClockState {
            clock: clock_data.clock,
        }
    }
}

impl From<&kvm_pic_state> for PicState {
    fn from(item: &kvm_pic_state) -> Self {
        PicState {
            last_irr: item.last_irr,
            irr: item.irr,
            imr: item.imr,
            isr: item.isr,
            priority_add: item.priority_add,
            irq_base: item.irq_base,
            read_reg_select: item.read_reg_select != 0,
            poll: item.poll != 0,
            special_mask: item.special_mask != 0,
            init_state: item.init_state.into(),
            auto_eoi: item.auto_eoi != 0,
            rotate_on_auto_eoi: item.rotate_on_auto_eoi != 0,
            special_fully_nested_mode: item.special_fully_nested_mode != 0,
            use_4_byte_icw: item.init4 != 0,
            elcr: item.elcr,
            elcr_mask: item.elcr_mask,
        }
    }
}

impl From<&PicState> for kvm_pic_state {
    fn from(item: &PicState) -> Self {
        kvm_pic_state {
            last_irr: item.last_irr,
            irr: item.irr,
            imr: item.imr,
            isr: item.isr,
            priority_add: item.priority_add,
            irq_base: item.irq_base,
            read_reg_select: item.read_reg_select as u8,
            poll: item.poll as u8,
            special_mask: item.special_mask as u8,
            init_state: item.init_state as u8,
            auto_eoi: item.auto_eoi as u8,
            rotate_on_auto_eoi: item.rotate_on_auto_eoi as u8,
            special_fully_nested_mode: item.special_fully_nested_mode as u8,
            init4: item.use_4_byte_icw as u8,
            elcr: item.elcr,
            elcr_mask: item.elcr_mask,
        }
    }
}

impl From<&kvm_ioapic_state> for IoapicState {
    fn from(item: &kvm_ioapic_state) -> Self {
        let mut state = IoapicState {
            base_address: item.base_address,
            ioregsel: item.ioregsel as u8,
            ioapicid: item.id,
            current_interrupt_level_bitmap: item.irr,
            redirect_table: [IoapicRedirectionTableEntry::default(); NUM_IOAPIC_PINS],
        };
        for (in_state, out_state) in item.redirtbl.iter().zip(state.redirect_table.iter_mut()) {
            *out_state = in_state.into();
        }
        state
    }
}

impl From<&IoapicRedirectionTableEntry> for kvm_ioapic_state__bindgen_ty_1 {
    fn from(item: &IoapicRedirectionTableEntry) -> Self {
        kvm_ioapic_state__bindgen_ty_1 {
            // IoapicRedirectionTableEntry layout matches the exact bit layout of a hardware
            // ioapic redirection table entry, so we can simply do a 64-bit copy
            bits: item.get(0, 64),
        }
    }
}

impl From<&kvm_ioapic_state__bindgen_ty_1> for IoapicRedirectionTableEntry {
    fn from(item: &kvm_ioapic_state__bindgen_ty_1) -> Self {
        let mut entry = IoapicRedirectionTableEntry::default();
        // SAFETY:
        // Safe because the 64-bit layout of the IoapicRedirectionTableEntry matches the kvm_sys
        // table entry layout
        entry.set(0, 64, unsafe { item.bits });
        entry
    }
}

impl From<&IoapicState> for kvm_ioapic_state {
    fn from(item: &IoapicState) -> Self {
        let mut state = kvm_ioapic_state {
            base_address: item.base_address,
            ioregsel: item.ioregsel as u32,
            id: item.ioapicid,
            irr: item.current_interrupt_level_bitmap,
            ..Default::default()
        };
        for (in_state, out_state) in item.redirect_table.iter().zip(state.redirtbl.iter_mut()) {
            *out_state = in_state.into();
        }
        state
    }
}

impl From<&LapicState> for kvm_lapic_state {
    fn from(item: &LapicState) -> Self {
        let mut state = kvm_lapic_state::default();
        // There are 64 lapic registers
        for (reg, value) in item.regs.iter().enumerate() {
            // Each lapic register is 16 bytes, but only the first 4 are used
            let reg_offset = 16 * reg;
            let regs_slice = &mut state.regs[reg_offset..reg_offset + 4];

            // to_le_bytes() produces an array of u8, not i8(c_char), so we can't directly use
            // copy_from_slice().
            for (i, v) in value.to_le_bytes().iter().enumerate() {
                regs_slice[i] = *v as i8;
            }
        }
        state
    }
}

impl From<&kvm_lapic_state> for LapicState {
    fn from(item: &kvm_lapic_state) -> Self {
        let mut state = LapicState { regs: [0; 64] };
        // There are 64 lapic registers
        for reg in 0..64 {
            // Each lapic register is 16 bytes, but only the first 4 are used
            let reg_offset = 16 * reg;

            // from_le_bytes() only works on arrays of u8, not i8(c_char).
            let reg_slice = &item.regs[reg_offset..reg_offset + 4];
            let mut bytes = [0u8; 4];
            for i in 0..4 {
                bytes[i] = reg_slice[i] as u8;
            }
            state.regs[reg] = u32::from_le_bytes(bytes);
        }
        state
    }
}

impl From<&PitState> for kvm_pit_state2 {
    fn from(item: &PitState) -> Self {
        kvm_pit_state2 {
            channels: [
                kvm_pit_channel_state::from(&item.channels[0]),
                kvm_pit_channel_state::from(&item.channels[1]),
                kvm_pit_channel_state::from(&item.channels[2]),
            ],
            flags: item.flags,
            ..Default::default()
        }
    }
}

impl From<&kvm_pit_state2> for PitState {
    fn from(item: &kvm_pit_state2) -> Self {
        PitState {
            channels: [
                PitChannelState::from(&item.channels[0]),
                PitChannelState::from(&item.channels[1]),
                PitChannelState::from(&item.channels[2]),
            ],
            flags: item.flags,
        }
    }
}

impl From<&PitChannelState> for kvm_pit_channel_state {
    fn from(item: &PitChannelState) -> Self {
        kvm_pit_channel_state {
            count: item.count,
            latched_count: item.latched_count,
            count_latched: item.count_latched as u8,
            status_latched: item.status_latched as u8,
            status: item.status,
            read_state: item.read_state as u8,
            write_state: item.write_state as u8,
            // kvm's write_latch only stores the low byte of the reload value
            write_latch: item.reload_value as u8,
            rw_mode: item.rw_mode as u8,
            mode: item.mode,
            bcd: item.bcd as u8,
            gate: item.gate as u8,
            count_load_time: item.count_load_time as i64,
        }
    }
}

impl From<&kvm_pit_channel_state> for PitChannelState {
    fn from(item: &kvm_pit_channel_state) -> Self {
        PitChannelState {
            count: item.count,
            latched_count: item.latched_count,
            count_latched: item.count_latched.into(),
            status_latched: item.status_latched != 0,
            status: item.status,
            read_state: item.read_state.into(),
            write_state: item.write_state.into(),
            // kvm's write_latch only stores the low byte of the reload value
            reload_value: item.write_latch as u16,
            rw_mode: item.rw_mode.into(),
            mode: item.mode,
            bcd: item.bcd != 0,
            gate: item.gate != 0,
            count_load_time: item.count_load_time as u64,
        }
    }
}

// This function translates an IrqSrouceChip to the kvm u32 equivalent. It has a different
// implementation between x86_64 and aarch64 because the irqchip KVM constants are not defined on
// all architectures.
pub(super) fn chip_to_kvm_chip(chip: IrqSourceChip) -> u32 {
    match chip {
        IrqSourceChip::PicPrimary => KVM_IRQCHIP_PIC_MASTER,
        IrqSourceChip::PicSecondary => KVM_IRQCHIP_PIC_SLAVE,
        IrqSourceChip::Ioapic => KVM_IRQCHIP_IOAPIC,
        _ => {
            error!("Invalid IrqChipSource for X86 {:?}", chip);
            0
        }
    }
}

impl From<&kvm_regs> for Regs {
    fn from(r: &kvm_regs) -> Self {
        Regs {
            rax: r.rax,
            rbx: r.rbx,
            rcx: r.rcx,
            rdx: r.rdx,
            rsi: r.rsi,
            rdi: r.rdi,
            rsp: r.rsp,
            rbp: r.rbp,
            r8: r.r8,
            r9: r.r9,
            r10: r.r10,
            r11: r.r11,
            r12: r.r12,
            r13: r.r13,
            r14: r.r14,
            r15: r.r15,
            rip: r.rip,
            rflags: r.rflags,
        }
    }
}

impl From<&Regs> for kvm_regs {
    fn from(r: &Regs) -> Self {
        kvm_regs {
            rax: r.rax,
            rbx: r.rbx,
            rcx: r.rcx,
            rdx: r.rdx,
            rsi: r.rsi,
            rdi: r.rdi,
            rsp: r.rsp,
            rbp: r.rbp,
            r8: r.r8,
            r9: r.r9,
            r10: r.r10,
            r11: r.r11,
            r12: r.r12,
            r13: r.r13,
            r14: r.r14,
            r15: r.r15,
            rip: r.rip,
            rflags: r.rflags,
        }
    }
}

impl From<&VcpuEvents> for kvm_vcpu_events {
    fn from(ve: &VcpuEvents) -> Self {
        let mut kvm_ve: kvm_vcpu_events = Default::default();

        kvm_ve.exception.injected = ve.exception.injected as u8;
        kvm_ve.exception.nr = ve.exception.nr;
        kvm_ve.exception.has_error_code = ve.exception.has_error_code as u8;
        if let Some(pending) = ve.exception.pending {
            kvm_ve.exception.pending = pending as u8;
            if ve.exception_payload.is_some() {
                kvm_ve.exception_has_payload = true as u8;
            }
            kvm_ve.exception_payload = ve.exception_payload.unwrap_or(0);
            kvm_ve.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
        }
        kvm_ve.exception.error_code = ve.exception.error_code;

        kvm_ve.interrupt.injected = ve.interrupt.injected as u8;
        kvm_ve.interrupt.nr = ve.interrupt.nr;
        kvm_ve.interrupt.soft = ve.interrupt.soft as u8;
        if let Some(shadow) = ve.interrupt.shadow {
            kvm_ve.interrupt.shadow = shadow;
            kvm_ve.flags |= KVM_VCPUEVENT_VALID_SHADOW;
        }

        kvm_ve.nmi.injected = ve.nmi.injected as u8;
        if let Some(pending) = ve.nmi.pending {
            kvm_ve.nmi.pending = pending as u8;
            kvm_ve.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
        }
        kvm_ve.nmi.masked = ve.nmi.masked as u8;

        if let Some(sipi_vector) = ve.sipi_vector {
            kvm_ve.sipi_vector = sipi_vector;
            kvm_ve.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
        }

        if let Some(smm) = ve.smi.smm {
            kvm_ve.smi.smm = smm as u8;
            kvm_ve.flags |= KVM_VCPUEVENT_VALID_SMM;
        }
        kvm_ve.smi.pending = ve.smi.pending as u8;
        kvm_ve.smi.smm_inside_nmi = ve.smi.smm_inside_nmi as u8;
        kvm_ve.smi.latched_init = ve.smi.latched_init;

        if let Some(pending) = ve.triple_fault.pending {
            kvm_ve.triple_fault.pending = pending as u8;
            kvm_ve.flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
        }
        kvm_ve
    }
}

impl From<&kvm_vcpu_events> for VcpuEvents {
    fn from(ve: &kvm_vcpu_events) -> Self {
        let exception = VcpuExceptionState {
            injected: ve.exception.injected != 0,
            nr: ve.exception.nr,
            has_error_code: ve.exception.has_error_code != 0,
            pending: if ve.flags & KVM_VCPUEVENT_VALID_PAYLOAD != 0 {
                Some(ve.exception.pending != 0)
            } else {
                None
            },
            error_code: ve.exception.error_code,
        };

        let interrupt = VcpuInterruptState {
            injected: ve.interrupt.injected != 0,
            nr: ve.interrupt.nr,
            soft: ve.interrupt.soft != 0,
            shadow: if ve.flags & KVM_VCPUEVENT_VALID_SHADOW != 0 {
                Some(ve.interrupt.shadow)
            } else {
                None
            },
        };

        let nmi = VcpuNmiState {
            injected: ve.interrupt.injected != 0,
            pending: if ve.flags & KVM_VCPUEVENT_VALID_NMI_PENDING != 0 {
                Some(ve.nmi.pending != 0)
            } else {
                None
            },
            masked: ve.nmi.masked != 0,
        };

        let sipi_vector = if ve.flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR != 0 {
            Some(ve.sipi_vector)
        } else {
            None
        };

        let smi = VcpuSmiState {
            smm: if ve.flags & KVM_VCPUEVENT_VALID_SMM != 0 {
                Some(ve.smi.smm != 0)
            } else {
                None
            },
            pending: ve.smi.pending != 0,
            smm_inside_nmi: ve.smi.smm_inside_nmi != 0,
            latched_init: ve.smi.latched_init,
        };

        let triple_fault = VcpuTripleFaultState {
            pending: if ve.flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT != 0 {
                Some(ve.triple_fault.pending != 0)
            } else {
                None
            },
        };

        let exception_payload = if ve.flags & KVM_VCPUEVENT_VALID_PAYLOAD != 0 {
            Some(ve.exception_payload)
        } else {
            None
        };

        VcpuEvents {
            exception,
            interrupt,
            nmi,
            sipi_vector,
            smi,
            triple_fault,
            exception_payload,
        }
    }
}

impl From<&kvm_segment> for Segment {
    fn from(s: &kvm_segment) -> Self {
        Segment {
            base: s.base,
            limit_bytes: s.limit,
            selector: s.selector,
            type_: s.type_,
            present: s.present,
            dpl: s.dpl,
            db: s.db,
            s: s.s,
            l: s.l,
            g: s.g,
            avl: s.avl,
        }
    }
}

impl From<&Segment> for kvm_segment {
    fn from(s: &Segment) -> Self {
        kvm_segment {
            base: s.base,
            limit: s.limit_bytes,
            selector: s.selector,
            type_: s.type_,
            present: s.present,
            dpl: s.dpl,
            db: s.db,
            s: s.s,
            l: s.l,
            g: s.g,
            avl: s.avl,
            unusable: match s.present {
                0 => 1,
                _ => 0,
            },
            ..Default::default()
        }
    }
}

impl From<&kvm_dtable> for DescriptorTable {
    fn from(dt: &kvm_dtable) -> Self {
        DescriptorTable {
            base: dt.base,
            limit: dt.limit,
        }
    }
}

impl From<&DescriptorTable> for kvm_dtable {
    fn from(dt: &DescriptorTable) -> Self {
        kvm_dtable {
            base: dt.base,
            limit: dt.limit,
            ..Default::default()
        }
    }
}

impl From<&kvm_sregs> for Sregs {
    fn from(r: &kvm_sregs) -> Self {
        Sregs {
            cs: Segment::from(&r.cs),
            ds: Segment::from(&r.ds),
            es: Segment::from(&r.es),
            fs: Segment::from(&r.fs),
            gs: Segment::from(&r.gs),
            ss: Segment::from(&r.ss),
            tr: Segment::from(&r.tr),
            ldt: Segment::from(&r.ldt),
            gdt: DescriptorTable::from(&r.gdt),
            idt: DescriptorTable::from(&r.idt),
            cr0: r.cr0,
            cr2: r.cr2,
            cr3: r.cr3,
            cr4: r.cr4,
            cr8: r.cr8,
            efer: r.efer,
        }
    }
}

impl From<&kvm_fpu> for Fpu {
    fn from(r: &kvm_fpu) -> Self {
        Fpu {
            fpr: FpuReg::from_16byte_arrays(&r.fpr),
            fcw: r.fcw,
            fsw: r.fsw,
            ftwx: r.ftwx,
            last_opcode: r.last_opcode,
            last_ip: r.last_ip,
            last_dp: r.last_dp,
            xmm: r.xmm,
            mxcsr: r.mxcsr,
        }
    }
}

impl From<&Fpu> for kvm_fpu {
    fn from(r: &Fpu) -> Self {
        kvm_fpu {
            fpr: FpuReg::to_16byte_arrays(&r.fpr),
            fcw: r.fcw,
            fsw: r.fsw,
            ftwx: r.ftwx,
            last_opcode: r.last_opcode,
            last_ip: r.last_ip,
            last_dp: r.last_dp,
            xmm: r.xmm,
            mxcsr: r.mxcsr,
            ..Default::default()
        }
    }
}

impl From<&kvm_debugregs> for DebugRegs {
    fn from(r: &kvm_debugregs) -> Self {
        DebugRegs {
            db: r.db,
            dr6: r.dr6,
            dr7: r.dr7,
        }
    }
}

impl From<&DebugRegs> for kvm_debugregs {
    fn from(r: &DebugRegs) -> Self {
        kvm_debugregs {
            db: r.db,
            dr6: r.dr6,
            dr7: r.dr7,
            ..Default::default()
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn vcpu_event_to_from() {
        // All data is random.
        let mut kvm_ve: kvm_vcpu_events = Default::default();
        kvm_ve.exception.injected = 1;
        kvm_ve.exception.nr = 65;
        kvm_ve.exception.has_error_code = 1;
        kvm_ve.exception.error_code = 110;
        kvm_ve.exception.pending = 1;

        kvm_ve.interrupt.injected = 1;
        kvm_ve.interrupt.nr = 100;
        kvm_ve.interrupt.soft = 1;
        kvm_ve.interrupt.shadow = 114;

        kvm_ve.nmi.injected = 1;
        kvm_ve.nmi.pending = 1;
        kvm_ve.nmi.masked = 0;

        kvm_ve.sipi_vector = 105;

        kvm_ve.smi.smm = 1;
        kvm_ve.smi.pending = 1;
        kvm_ve.smi.smm_inside_nmi = 1;
        kvm_ve.smi.latched_init = 100;

        kvm_ve.triple_fault.pending = 0;

        kvm_ve.exception_payload = 33;
        kvm_ve.exception_has_payload = 1;

        kvm_ve.flags = 0
            | KVM_VCPUEVENT_VALID_PAYLOAD
            | KVM_VCPUEVENT_VALID_SMM
            | KVM_VCPUEVENT_VALID_NMI_PENDING
            | KVM_VCPUEVENT_VALID_SIPI_VECTOR
            | KVM_VCPUEVENT_VALID_SHADOW;

        let ve: VcpuEvents = VcpuEvents::from(&kvm_ve);
        assert_eq!(ve.exception.injected, true);
        assert_eq!(ve.exception.nr, 65);
        assert_eq!(ve.exception.has_error_code, true);
        assert_eq!(ve.exception.error_code, 110);
        assert_eq!(ve.exception.pending.unwrap(), true);

        assert_eq!(ve.interrupt.injected, true);
        assert_eq!(ve.interrupt.nr, 100);
        assert_eq!(ve.interrupt.soft, true);
        assert_eq!(ve.interrupt.shadow.unwrap(), 114);

        assert_eq!(ve.nmi.injected, true);
        assert_eq!(ve.nmi.pending.unwrap(), true);
        assert_eq!(ve.nmi.masked, false);

        assert_eq!(ve.sipi_vector.unwrap(), 105);

        assert_eq!(ve.smi.smm.unwrap(), true);
        assert_eq!(ve.smi.pending, true);
        assert_eq!(ve.smi.smm_inside_nmi, true);
        assert_eq!(ve.smi.latched_init, 100);

        assert_eq!(ve.triple_fault.pending, None);

        assert_eq!(ve.exception_payload.unwrap(), 33);

        let kvm_ve_restored: kvm_vcpu_events = kvm_vcpu_events::from(&ve);
        assert_eq!(kvm_ve_restored.exception.injected, 1);
        assert_eq!(kvm_ve_restored.exception.nr, 65);
        assert_eq!(kvm_ve_restored.exception.has_error_code, 1);
        assert_eq!(kvm_ve_restored.exception.error_code, 110);
        assert_eq!(kvm_ve_restored.exception.pending, 1);

        assert_eq!(kvm_ve_restored.interrupt.injected, 1);
        assert_eq!(kvm_ve_restored.interrupt.nr, 100);
        assert_eq!(kvm_ve_restored.interrupt.soft, 1);
        assert_eq!(kvm_ve_restored.interrupt.shadow, 114);

        assert_eq!(kvm_ve_restored.nmi.injected, 1);
        assert_eq!(kvm_ve_restored.nmi.pending, 1);
        assert_eq!(kvm_ve_restored.nmi.masked, 0);

        assert_eq!(kvm_ve_restored.sipi_vector, 105);

        assert_eq!(kvm_ve_restored.smi.smm, 1);
        assert_eq!(kvm_ve_restored.smi.pending, 1);
        assert_eq!(kvm_ve_restored.smi.smm_inside_nmi, 1);
        assert_eq!(kvm_ve_restored.smi.latched_init, 100);

        assert_eq!(kvm_ve_restored.triple_fault.pending, 0);

        assert_eq!(kvm_ve_restored.exception_payload, 33);
        assert_eq!(kvm_ve_restored.exception_has_payload, 1);
    }
}