1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
// Copyright 2020 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use std::arch::x86_64::CpuidResult;
use std::collections::BTreeMap;
use base::errno_result;
use base::error;
use base::ioctl;
use base::ioctl_with_mut_ptr;
use base::ioctl_with_mut_ref;
use base::ioctl_with_ptr;
use base::ioctl_with_ref;
use base::ioctl_with_val;
use base::AsRawDescriptor;
use base::Error;
use base::IoctlNr;
use base::MappedRegion;
use base::Result;
use data_model::vec_with_array_field;
use data_model::FlexibleArrayWrapper;
use kvm_sys::*;
use libc::E2BIG;
use libc::EAGAIN;
use libc::EIO;
use libc::ENXIO;
use serde::Deserialize;
use serde::Serialize;
use vm_memory::GuestAddress;
use super::Config;
use super::Kvm;
use super::KvmVcpu;
use super::KvmVm;
use crate::host_phys_addr_bits;
use crate::ClockState;
use crate::CpuId;
use crate::CpuIdEntry;
use crate::DebugRegs;
use crate::DescriptorTable;
use crate::DeviceKind;
use crate::Fpu;
use crate::FpuReg;
use crate::HypervisorX86_64;
use crate::IoapicRedirectionTableEntry;
use crate::IoapicState;
use crate::IrqSourceChip;
use crate::LapicState;
use crate::PicSelect;
use crate::PicState;
use crate::PitChannelState;
use crate::PitState;
use crate::ProtectionType;
use crate::Regs;
use crate::Segment;
use crate::Sregs;
use crate::VcpuExit;
use crate::VcpuX86_64;
use crate::VmCap;
use crate::VmX86_64;
use crate::Xsave;
use crate::NUM_IOAPIC_PINS;
type KvmCpuId = FlexibleArrayWrapper<kvm_cpuid2, kvm_cpuid_entry2>;
const KVM_XSAVE_MAX_SIZE: usize = 4096;
const MSR_IA32_APICBASE: u32 = 0x0000001b;
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct VcpuEvents {
pub exception: VcpuExceptionState,
pub interrupt: VcpuInterruptState,
pub nmi: VcpuNmiState,
pub sipi_vector: Option<u32>,
pub smi: VcpuSmiState,
pub triple_fault: VcpuTripleFaultState,
pub exception_payload: Option<u64>,
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct VcpuExceptionState {
pub injected: bool,
pub nr: u8,
pub has_error_code: bool,
pub pending: Option<bool>,
pub error_code: u32,
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct VcpuInterruptState {
pub injected: bool,
pub nr: u8,
pub soft: bool,
pub shadow: Option<u8>,
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct VcpuNmiState {
pub injected: bool,
pub pending: Option<bool>,
pub masked: bool,
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct VcpuSmiState {
pub smm: Option<bool>,
pub pending: bool,
pub smm_inside_nmi: bool,
pub latched_init: u8,
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct VcpuTripleFaultState {
pub pending: Option<bool>,
}
pub fn get_cpuid_with_initial_capacity<T: AsRawDescriptor>(
descriptor: &T,
kind: IoctlNr,
initial_capacity: usize,
) -> Result<CpuId> {
let mut entries: usize = initial_capacity;
loop {
let mut kvm_cpuid = KvmCpuId::new(entries);
let ret = {
// SAFETY:
// ioctl is unsafe. The kernel is trusted not to write beyond the bounds of the
// memory allocated for the struct. The limit is read from nent within KvmCpuId,
// which is set to the allocated size above.
unsafe { ioctl_with_mut_ptr(descriptor, kind, kvm_cpuid.as_mut_ptr()) }
};
if ret < 0 {
let err = Error::last();
match err.errno() {
E2BIG => {
// double the available memory for cpuid entries for kvm.
if let Some(val) = entries.checked_mul(2) {
entries = val;
} else {
return Err(err);
}
}
_ => return Err(err),
}
} else {
return Ok(CpuId::from(&kvm_cpuid));
}
}
}
impl Kvm {
pub fn get_cpuid(&self, kind: IoctlNr) -> Result<CpuId> {
const KVM_MAX_ENTRIES: usize = 256;
get_cpuid_with_initial_capacity(self, kind, KVM_MAX_ENTRIES)
}
pub fn get_vm_type(&self, protection_type: ProtectionType) -> Result<u32> {
if protection_type.isolates_memory() {
Ok(KVM_X86_PKVM_PROTECTED_VM)
} else {
Ok(0)
}
}
/// Get the size of guest physical addresses in bits.
pub fn get_guest_phys_addr_bits(&self) -> u8 {
// Assume the guest physical address size is the same as the host.
host_phys_addr_bits()
}
}
impl HypervisorX86_64 for Kvm {
fn get_supported_cpuid(&self) -> Result<CpuId> {
self.get_cpuid(KVM_GET_SUPPORTED_CPUID)
}
fn get_msr_index_list(&self) -> Result<Vec<u32>> {
const MAX_KVM_MSR_ENTRIES: usize = 256;
let mut msr_list = vec_with_array_field::<kvm_msr_list, u32>(MAX_KVM_MSR_ENTRIES);
msr_list[0].nmsrs = MAX_KVM_MSR_ENTRIES as u32;
let ret = {
// SAFETY:
// ioctl is unsafe. The kernel is trusted not to write beyond the bounds of the memory
// allocated for the struct. The limit is read from nmsrs, which is set to the allocated
// size (MAX_KVM_MSR_ENTRIES) above.
unsafe { ioctl_with_mut_ref(self, KVM_GET_MSR_INDEX_LIST, &mut msr_list[0]) }
};
if ret < 0 {
return errno_result();
}
let mut nmsrs = msr_list[0].nmsrs;
// SAFETY:
// Mapping the unsized array to a slice is unsafe because the length isn't known. Using
// the length we originally allocated with eliminates the possibility of overflow.
let indices: &[u32] = unsafe {
if nmsrs > MAX_KVM_MSR_ENTRIES as u32 {
nmsrs = MAX_KVM_MSR_ENTRIES as u32;
}
msr_list[0].indices.as_slice(nmsrs as usize)
};
Ok(indices.to_vec())
}
}
impl KvmVm {
/// Does platform specific initialization for the KvmVm.
pub fn init_arch(&self, _cfg: &Config) -> Result<()> {
Ok(())
}
/// Whether running under pKVM.
pub fn is_pkvm(&self) -> bool {
false
}
/// Checks if a particular `VmCap` is available, or returns None if arch-independent
/// Vm.check_capability() should handle the check.
pub fn check_capability_arch(&self, c: VmCap) -> Option<bool> {
match c {
VmCap::PvClock => Some(true),
_ => None,
}
}
/// Returns the params to pass to KVM_CREATE_DEVICE for a `kind` device on this arch, or None to
/// let the arch-independent `KvmVm::create_device` handle it.
pub fn get_device_params_arch(&self, _kind: DeviceKind) -> Option<kvm_create_device> {
None
}
/// Arch-specific implementation of `Vm::get_pvclock`.
pub fn get_pvclock_arch(&self) -> Result<ClockState> {
let mut clock_data: kvm_clock_data = Default::default();
let ret =
// SAFETY:
// Safe because we know that our file is a VM fd, we know the kernel will only write correct
// amount of memory to our pointer, and we verify the return result.
unsafe { ioctl_with_mut_ref(self, KVM_GET_CLOCK, &mut clock_data) };
if ret == 0 {
Ok(ClockState::from(&clock_data))
} else {
errno_result()
}
}
/// Arch-specific implementation of `Vm::set_pvclock`.
pub fn set_pvclock_arch(&self, state: &ClockState) -> Result<()> {
let clock_data = kvm_clock_data::from(state);
// SAFETY:
// Safe because we know that our file is a VM fd, we know the kernel will only read correct
// amount of memory from our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_ref(self, KVM_SET_CLOCK, &clock_data) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// Retrieves the state of given interrupt controller by issuing KVM_GET_IRQCHIP ioctl.
///
/// Note that this call can only succeed after a call to `Vm::create_irq_chip`.
pub fn get_pic_state(&self, id: PicSelect) -> Result<kvm_pic_state> {
let mut irqchip_state = kvm_irqchip {
chip_id: id as u32,
..Default::default()
};
let ret = {
// SAFETY:
// Safe because we know our file is a VM fd, we know the kernel will only write
// correct amount of memory to our pointer, and we verify the return result.
unsafe { ioctl_with_mut_ref(self, KVM_GET_IRQCHIP, &mut irqchip_state) }
};
if ret == 0 {
Ok(
// SAFETY:
// Safe as we know that we are retrieving data related to the
// PIC (primary or secondary) and not IOAPIC.
unsafe { irqchip_state.chip.pic },
)
} else {
errno_result()
}
}
/// Sets the state of given interrupt controller by issuing KVM_SET_IRQCHIP ioctl.
///
/// Note that this call can only succeed after a call to `Vm::create_irq_chip`.
pub fn set_pic_state(&self, id: PicSelect, state: &kvm_pic_state) -> Result<()> {
let mut irqchip_state = kvm_irqchip {
chip_id: id as u32,
..Default::default()
};
irqchip_state.chip.pic = *state;
// SAFETY:
// Safe because we know that our file is a VM fd, we know the kernel will only read
// correct amount of memory from our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_ref(self, KVM_SET_IRQCHIP, &irqchip_state) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// Retrieves the number of pins for emulated IO-APIC.
pub fn get_ioapic_num_pins(&self) -> Result<usize> {
Ok(NUM_IOAPIC_PINS)
}
/// Retrieves the state of IOAPIC by issuing KVM_GET_IRQCHIP ioctl.
///
/// Note that this call can only succeed after a call to `Vm::create_irq_chip`.
pub fn get_ioapic_state(&self) -> Result<kvm_ioapic_state> {
let mut irqchip_state = kvm_irqchip {
chip_id: 2,
..Default::default()
};
let ret = {
// SAFETY:
// Safe because we know our file is a VM fd, we know the kernel will only write
// correct amount of memory to our pointer, and we verify the return result.
unsafe { ioctl_with_mut_ref(self, KVM_GET_IRQCHIP, &mut irqchip_state) }
};
if ret == 0 {
Ok(
// SAFETY:
// Safe as we know that we are retrieving data related to the
// IOAPIC and not PIC.
unsafe { irqchip_state.chip.ioapic },
)
} else {
errno_result()
}
}
/// Sets the state of IOAPIC by issuing KVM_SET_IRQCHIP ioctl.
///
/// Note that this call can only succeed after a call to `Vm::create_irq_chip`.
pub fn set_ioapic_state(&self, state: &kvm_ioapic_state) -> Result<()> {
let mut irqchip_state = kvm_irqchip {
chip_id: 2,
..Default::default()
};
irqchip_state.chip.ioapic = *state;
// SAFETY:
// Safe because we know that our file is a VM fd, we know the kernel will only read
// correct amount of memory from our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_ref(self, KVM_SET_IRQCHIP, &irqchip_state) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// Creates a PIT as per the KVM_CREATE_PIT2 ioctl.
///
/// Note that this call can only succeed after a call to `Vm::create_irq_chip`.
pub fn create_pit(&self) -> Result<()> {
let pit_config = kvm_pit_config::default();
// SAFETY:
// Safe because we know that our file is a VM fd, we know the kernel will only read the
// correct amount of memory from our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_ref(self, KVM_CREATE_PIT2, &pit_config) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// Retrieves the state of PIT by issuing KVM_GET_PIT2 ioctl.
///
/// Note that this call can only succeed after a call to `Vm::create_pit`.
pub fn get_pit_state(&self) -> Result<kvm_pit_state2> {
let mut pit_state = Default::default();
// SAFETY:
// Safe because we know that our file is a VM fd, we know the kernel will only write
// correct amount of memory to our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_PIT2, &mut pit_state) };
if ret == 0 {
Ok(pit_state)
} else {
errno_result()
}
}
/// Sets the state of PIT by issuing KVM_SET_PIT2 ioctl.
///
/// Note that this call can only succeed after a call to `Vm::create_pit`.
pub fn set_pit_state(&self, pit_state: &kvm_pit_state2) -> Result<()> {
// SAFETY:
// Safe because we know that our file is a VM fd, we know the kernel will only read
// correct amount of memory from our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_ref(self, KVM_SET_PIT2, pit_state) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// Set MSR_PLATFORM_INFO read access.
pub fn set_platform_info_read_access(&self, allow_read: bool) -> Result<()> {
let mut cap = kvm_enable_cap {
cap: KVM_CAP_MSR_PLATFORM_INFO,
..Default::default()
};
cap.args[0] = allow_read as u64;
// SAFETY:
// Safe because we know that our file is a VM fd, we know that the
// kernel will only read correct amount of memory from our pointer, and
// we verify the return result.
let ret = unsafe { ioctl_with_ref(self, KVM_ENABLE_CAP, &cap) };
if ret < 0 {
errno_result()
} else {
Ok(())
}
}
/// Enable support for split-irqchip.
pub fn enable_split_irqchip(&self, ioapic_pins: usize) -> Result<()> {
let mut cap = kvm_enable_cap {
cap: KVM_CAP_SPLIT_IRQCHIP,
..Default::default()
};
cap.args[0] = ioapic_pins as u64;
// SAFETY:
// safe becuase we allocated the struct and we know the kernel will read
// exactly the size of the struct
let ret = unsafe { ioctl_with_ref(self, KVM_ENABLE_CAP, &cap) };
if ret < 0 {
errno_result()
} else {
Ok(())
}
}
}
impl VmX86_64 for KvmVm {
fn get_hypervisor(&self) -> &dyn HypervisorX86_64 {
&self.kvm
}
fn create_vcpu(&self, id: usize) -> Result<Box<dyn VcpuX86_64>> {
// create_vcpu is declared separately in VmAArch64 and VmX86, so it can return VcpuAArch64
// or VcpuX86. But both use the same implementation in KvmVm::create_vcpu.
Ok(Box::new(KvmVm::create_kvm_vcpu(self, id)?))
}
/// Sets the address of the three-page region in the VM's address space.
///
/// See the documentation on the KVM_SET_TSS_ADDR ioctl.
fn set_tss_addr(&self, addr: GuestAddress) -> Result<()> {
// SAFETY:
// Safe because we know that our file is a VM fd and we verify the return result.
let ret = unsafe { ioctl_with_val(self, KVM_SET_TSS_ADDR, addr.offset()) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// Sets the address of a one-page region in the VM's address space.
///
/// See the documentation on the KVM_SET_IDENTITY_MAP_ADDR ioctl.
fn set_identity_map_addr(&self, addr: GuestAddress) -> Result<()> {
// SAFETY:
// Safe because we know that our file is a VM fd and we verify the return result.
let ret = unsafe { ioctl_with_ref(self, KVM_SET_IDENTITY_MAP_ADDR, &addr.offset()) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
}
impl KvmVcpu {
/// Handles a `KVM_EXIT_SYSTEM_EVENT` with event type `KVM_SYSTEM_EVENT_RESET` with the given
/// event flags and returns the appropriate `VcpuExit` value for the run loop to handle.
pub fn system_event_reset(&self, _event_flags: u64) -> Result<VcpuExit> {
Ok(VcpuExit::SystemEventReset)
}
/// Gets the Xsave size by checking the extension KVM_CAP_XSAVE2.
///
/// Size should always be >=0. If size is negative, an error occurred.
/// If size <= 4096, XSAVE2 is not supported by the CPU or the kernel. KVM_XSAVE_MAX_SIZE is
/// returned (4096).
/// Otherwise, the size will be returned.
fn xsave_size(&self) -> Result<usize> {
let size = {
// SAFETY:
// Safe because we know that our file is a valid VM fd
unsafe { ioctl_with_val(&self.vm, KVM_CHECK_EXTENSION, KVM_CAP_XSAVE2 as u64) }
};
if size < 0 {
return errno_result();
}
// Safe to unwrap since we already tested for negative values
let size: usize = size.try_into().unwrap();
Ok(size.max(KVM_XSAVE_MAX_SIZE))
}
#[inline]
pub(crate) fn handle_vm_exit_arch(&self, run: &mut kvm_run) -> Option<VcpuExit> {
match run.exit_reason {
KVM_EXIT_IO => Some(VcpuExit::Io),
KVM_EXIT_IOAPIC_EOI => {
// SAFETY:
// Safe because the exit_reason (which comes from the kernel) told us which
// union field to use.
let vector = unsafe { run.__bindgen_anon_1.eoi.vector };
Some(VcpuExit::IoapicEoi { vector })
}
KVM_EXIT_HLT => Some(VcpuExit::Hlt),
KVM_EXIT_SET_TPR => Some(VcpuExit::SetTpr),
KVM_EXIT_TPR_ACCESS => Some(VcpuExit::TprAccess),
KVM_EXIT_X86_BUS_LOCK => Some(VcpuExit::BusLock),
_ => None,
}
}
}
impl VcpuX86_64 for KvmVcpu {
#[allow(clippy::cast_ptr_alignment)]
fn set_interrupt_window_requested(&self, requested: bool) {
// SAFETY:
// Safe because we know we mapped enough memory to hold the kvm_run struct because the
// kernel told us how large it was. The pointer is page aligned so casting to a different
// type is well defined, hence the clippy allow attribute.
let run = unsafe { &mut *(self.run_mmap.as_ptr() as *mut kvm_run) };
run.request_interrupt_window = requested.into();
}
#[allow(clippy::cast_ptr_alignment)]
fn ready_for_interrupt(&self) -> bool {
// SAFETY:
// Safe because we know we mapped enough memory to hold the kvm_run struct because the
// kernel told us how large it was. The pointer is page aligned so casting to a different
// type is well defined, hence the clippy allow attribute.
let run = unsafe { &mut *(self.run_mmap.as_ptr() as *mut kvm_run) };
run.ready_for_interrupt_injection != 0 && run.if_flag != 0
}
/// Use the KVM_INTERRUPT ioctl to inject the specified interrupt vector.
///
/// While this ioctl exists on PPC and MIPS as well as x86, the semantics are different and
/// ChromeOS doesn't support PPC or MIPS.
fn interrupt(&self, irq: u8) -> Result<()> {
if !self.ready_for_interrupt() {
return Err(Error::new(EAGAIN));
}
let interrupt = kvm_interrupt { irq: irq.into() };
// SAFETY:
// safe becuase we allocated the struct and we know the kernel will read
// exactly the size of the struct
let ret = unsafe { ioctl_with_ref(self, KVM_INTERRUPT, &interrupt) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
fn inject_nmi(&self) -> Result<()> {
// SAFETY:
// Safe because we know that our file is a VCPU fd.
let ret = unsafe { ioctl(self, KVM_NMI) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
fn get_regs(&self) -> Result<Regs> {
let mut regs: kvm_regs = Default::default();
let ret = {
// SAFETY:
// Safe because we know that our file is a VCPU fd, we know the kernel will only read
// the correct amount of memory from our pointer, and we verify the return
// result.
unsafe { ioctl_with_mut_ref(self, KVM_GET_REGS, &mut regs) }
};
if ret == 0 {
Ok(Regs::from(®s))
} else {
errno_result()
}
}
fn set_regs(&self, regs: &Regs) -> Result<()> {
let regs = kvm_regs::from(regs);
let ret = {
// SAFETY:
// Safe because we know that our file is a VCPU fd, we know the kernel will only read
// the correct amount of memory from our pointer, and we verify the return
// result.
unsafe { ioctl_with_ref(self, KVM_SET_REGS, ®s) }
};
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
fn get_sregs(&self) -> Result<Sregs> {
let mut regs: kvm_sregs = Default::default();
let ret = {
// SAFETY:
// Safe because we know that our file is a VCPU fd, we know the kernel will only write
// the correct amount of memory to our pointer, and we verify the return
// result.
unsafe { ioctl_with_mut_ref(self, KVM_GET_SREGS, &mut regs) }
};
if ret == 0 {
Ok(Sregs::from(®s))
} else {
errno_result()
}
}
fn set_sregs(&self, sregs: &Sregs) -> Result<()> {
// Get the current `kvm_sregs` so we can use its `apic_base` and `interrupt_bitmap`, which
// are not present in `Sregs`.
let mut kvm_sregs: kvm_sregs = Default::default();
// SAFETY:
// Safe because we know that our file is a VCPU fd, we know the kernel will only write the
// correct amount of memory to our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_SREGS, &mut kvm_sregs) };
if ret != 0 {
return errno_result();
}
kvm_sregs.cs = kvm_segment::from(&sregs.cs);
kvm_sregs.ds = kvm_segment::from(&sregs.ds);
kvm_sregs.es = kvm_segment::from(&sregs.es);
kvm_sregs.fs = kvm_segment::from(&sregs.fs);
kvm_sregs.gs = kvm_segment::from(&sregs.gs);
kvm_sregs.ss = kvm_segment::from(&sregs.ss);
kvm_sregs.tr = kvm_segment::from(&sregs.tr);
kvm_sregs.ldt = kvm_segment::from(&sregs.ldt);
kvm_sregs.gdt = kvm_dtable::from(&sregs.gdt);
kvm_sregs.idt = kvm_dtable::from(&sregs.idt);
kvm_sregs.cr0 = sregs.cr0;
kvm_sregs.cr2 = sregs.cr2;
kvm_sregs.cr3 = sregs.cr3;
kvm_sregs.cr4 = sregs.cr4;
kvm_sregs.cr8 = sregs.cr8;
kvm_sregs.efer = sregs.efer;
// SAFETY:
// Safe because we know that our file is a VCPU fd, we know the kernel will only read the
// correct amount of memory from our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_ref(self, KVM_SET_SREGS, &kvm_sregs) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
fn get_fpu(&self) -> Result<Fpu> {
let mut fpu: kvm_fpu = Default::default();
// SAFETY:
// Safe because we know that our file is a VCPU fd, we know the kernel will only write the
// correct amount of memory to our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_FPU, &mut fpu) };
if ret == 0 {
Ok(Fpu::from(&fpu))
} else {
errno_result()
}
}
fn set_fpu(&self, fpu: &Fpu) -> Result<()> {
let fpu = kvm_fpu::from(fpu);
let ret = {
// SAFETY:
// Here we trust the kernel not to read past the end of the kvm_fpu struct.
unsafe { ioctl_with_ref(self, KVM_SET_FPU, &fpu) }
};
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// If the VM reports using XSave2, the function will call XSave2.
fn get_xsave(&self) -> Result<Xsave> {
let size = self.xsave_size()?;
let ioctl_nr = if size > KVM_XSAVE_MAX_SIZE {
KVM_GET_XSAVE2
} else {
KVM_GET_XSAVE
};
let mut xsave = Xsave::new(size);
// SAFETY:
// Safe because we know that our file is a VCPU fd, we know the kernel will only write the
// correct amount of memory to our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_mut_ptr(self, ioctl_nr, xsave.as_mut_ptr()) };
if ret == 0 {
Ok(xsave)
} else {
errno_result()
}
}
fn set_xsave(&self, xsave: &Xsave) -> Result<()> {
let size = self.xsave_size()?;
// Ensure xsave is the same size as used in get_xsave.
// Return err if sizes don't match => not the same extensions are enabled for CPU.
if xsave.len() != size {
return Err(Error::new(EIO));
}
// SAFETY:
// Safe because we know that our file is a VCPU fd, we know the kernel will only write the
// correct amount of memory to our pointer, and we verify the return result.
// Because of the len check above, and because the layout of `struct kvm_xsave` is
// compatible with a slice of `u32`, we can pass the pointer to `xsave` directly.
let ret = unsafe { ioctl_with_ptr(self, KVM_SET_XSAVE, xsave.as_ptr()) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
fn get_interrupt_state(&self) -> Result<serde_json::Value> {
let mut vcpu_evts: kvm_vcpu_events = Default::default();
let ret = {
// SAFETY:
// Safe because we know that our file is a VCPU fd, we know the kernel will only write
// the correct amount of memory to our pointer, and we verify the return
// result.
unsafe { ioctl_with_mut_ref(self, KVM_GET_VCPU_EVENTS, &mut vcpu_evts) }
};
if ret == 0 {
Ok(
serde_json::to_value(VcpuEvents::from(&vcpu_evts)).map_err(|e| {
error!("failed to serialize vcpu_events: {:?}", e);
Error::new(EIO)
})?,
)
} else {
errno_result()
}
}
fn set_interrupt_state(&self, data: serde_json::Value) -> Result<()> {
let vcpu_events =
kvm_vcpu_events::from(&serde_json::from_value::<VcpuEvents>(data).map_err(|e| {
error!("failed to deserialize vcpu_events: {:?}", e);
Error::new(EIO)
})?);
let ret = {
// SAFETY:
// Safe because we know that our file is a VCPU fd, we know the kernel will only read
// the correct amount of memory from our pointer, and we verify the return
// result.
unsafe { ioctl_with_ref(self, KVM_SET_VCPU_EVENTS, &vcpu_events) }
};
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
fn get_debugregs(&self) -> Result<DebugRegs> {
let mut regs: kvm_debugregs = Default::default();
// SAFETY:
// Safe because we know that our file is a VCPU fd, we know the kernel will only write the
// correct amount of memory to our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_DEBUGREGS, &mut regs) };
if ret == 0 {
Ok(DebugRegs::from(®s))
} else {
errno_result()
}
}
fn set_debugregs(&self, dregs: &DebugRegs) -> Result<()> {
let dregs = kvm_debugregs::from(dregs);
let ret = {
// SAFETY:
// Here we trust the kernel not to read past the end of the kvm_debugregs struct.
unsafe { ioctl_with_ref(self, KVM_SET_DEBUGREGS, &dregs) }
};
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
fn get_xcrs(&self) -> Result<BTreeMap<u32, u64>> {
let mut regs: kvm_xcrs = Default::default();
// SAFETY:
// Safe because we know that our file is a VCPU fd, we know the kernel will only write the
// correct amount of memory to our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_XCRS, &mut regs) };
if ret < 0 {
return errno_result();
}
Ok(regs
.xcrs
.iter()
.take(regs.nr_xcrs as usize)
.map(|kvm_xcr| (kvm_xcr.xcr, kvm_xcr.value))
.collect())
}
fn set_xcr(&self, xcr_index: u32, value: u64) -> Result<()> {
let mut kvm_xcr = kvm_xcrs {
nr_xcrs: 1,
..Default::default()
};
kvm_xcr.xcrs[0].xcr = xcr_index;
kvm_xcr.xcrs[0].value = value;
let ret = {
// SAFETY:
// Here we trust the kernel not to read past the end of the kvm_xcrs struct.
unsafe { ioctl_with_ref(self, KVM_SET_XCRS, &kvm_xcr) }
};
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
fn get_msr(&self, msr_index: u32) -> Result<u64> {
let mut msrs = vec_with_array_field::<kvm_msrs, kvm_msr_entry>(1);
msrs[0].nmsrs = 1;
// SAFETY: We initialize a one-element array using `vec_with_array_field` above.
unsafe {
let msr_entries = msrs[0].entries.as_mut_slice(1);
msr_entries[0].index = msr_index;
}
let ret = {
// SAFETY:
// Here we trust the kernel not to read or write past the end of the kvm_msrs struct.
unsafe { ioctl_with_mut_ref(self, KVM_GET_MSRS, &mut msrs[0]) }
};
if ret < 0 {
return errno_result();
}
// KVM_GET_MSRS returns the number of msr entries written.
if ret != 1 {
return Err(base::Error::new(libc::ENOENT));
}
// SAFETY:
// Safe because we trust the kernel to return the correct array length on success.
let value = unsafe {
let msr_entries = msrs[0].entries.as_slice(1);
msr_entries[0].data
};
Ok(value)
}
fn get_all_msrs(&self) -> Result<BTreeMap<u32, u64>> {
let msr_index_list = self.kvm.get_msr_index_list()?;
let mut kvm_msrs = vec_with_array_field::<kvm_msrs, kvm_msr_entry>(msr_index_list.len());
kvm_msrs[0].nmsrs = msr_index_list.len() as u32;
// SAFETY:
// Mapping the unsized array to a slice is unsafe because the length isn't known.
// Providing the length used to create the struct guarantees the entire slice is valid.
unsafe {
kvm_msrs[0]
.entries
.as_mut_slice(msr_index_list.len())
.iter_mut()
.zip(msr_index_list.iter())
.for_each(|(msr_entry, msr_index)| msr_entry.index = *msr_index);
}
let ret = {
// SAFETY:
// Here we trust the kernel not to read or write past the end of the kvm_msrs struct.
unsafe { ioctl_with_mut_ref(self, KVM_GET_MSRS, &mut kvm_msrs[0]) }
};
if ret < 0 {
return errno_result();
}
// KVM_GET_MSRS returns the number of msr entries written.
let count = ret as usize;
if count != msr_index_list.len() {
error!(
"failed to get all MSRs: requested {}, got {}",
msr_index_list.len(),
count,
);
return Err(base::Error::new(libc::EPERM));
}
// SAFETY:
// Safe because we trust the kernel to return the correct array length on success.
let msrs = unsafe {
BTreeMap::from_iter(
kvm_msrs[0]
.entries
.as_slice(count)
.iter()
.map(|kvm_msr| (kvm_msr.index, kvm_msr.data)),
)
};
Ok(msrs)
}
fn set_msr(&self, msr_index: u32, value: u64) -> Result<()> {
let mut kvm_msrs = vec_with_array_field::<kvm_msrs, kvm_msr_entry>(1);
kvm_msrs[0].nmsrs = 1;
// SAFETY: We initialize a one-element array using `vec_with_array_field` above.
unsafe {
let msr_entries = kvm_msrs[0].entries.as_mut_slice(1);
msr_entries[0].index = msr_index;
msr_entries[0].data = value;
}
let ret = {
// SAFETY:
// Here we trust the kernel not to read past the end of the kvm_msrs struct.
unsafe { ioctl_with_ref(self, KVM_SET_MSRS, &kvm_msrs[0]) }
};
if ret < 0 {
return errno_result();
}
// KVM_SET_MSRS returns the number of msr entries written.
if ret != 1 {
error!("failed to set MSR {:#x} to {:#x}", msr_index, value);
return Err(base::Error::new(libc::EPERM));
}
Ok(())
}
fn set_cpuid(&self, cpuid: &CpuId) -> Result<()> {
let cpuid = KvmCpuId::from(cpuid);
let ret = {
// SAFETY:
// Here we trust the kernel not to read past the end of the kvm_msrs struct.
unsafe { ioctl_with_ptr(self, KVM_SET_CPUID2, cpuid.as_ptr()) }
};
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
fn set_guest_debug(&self, addrs: &[GuestAddress], enable_singlestep: bool) -> Result<()> {
use kvm_sys::*;
let mut dbg: kvm_guest_debug = Default::default();
if addrs.len() > 4 {
error!(
"Support 4 breakpoints at most but {} addresses are passed",
addrs.len()
);
return Err(base::Error::new(libc::EINVAL));
}
dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
if enable_singlestep {
dbg.control |= KVM_GUESTDBG_SINGLESTEP;
}
// Set bits 9 and 10.
// bit 9: GE (global exact breakpoint enable) flag.
// bit 10: always 1.
dbg.arch.debugreg[7] = 0x0600;
for (i, addr) in addrs.iter().enumerate() {
dbg.arch.debugreg[i] = addr.0;
// Set global breakpoint enable flag
dbg.arch.debugreg[7] |= 2 << (i * 2);
}
let ret = {
// SAFETY:
// Here we trust the kernel not to read past the end of the kvm_guest_debug struct.
unsafe { ioctl_with_ref(self, KVM_SET_GUEST_DEBUG, &dbg) }
};
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// KVM does not support the VcpuExit::Cpuid exit type.
fn handle_cpuid(&mut self, _entry: &CpuIdEntry) -> Result<()> {
Err(Error::new(ENXIO))
}
fn restore_timekeeping(&self, _host_tsc_reference_moment: u64, _tsc_offset: u64) -> Result<()> {
// On KVM, the TSC MSR is restored as part of SET_MSRS, and no further action is required.
Ok(())
}
}
impl KvmVcpu {
/// X86 specific call to get the state of the "Local Advanced Programmable Interrupt
/// Controller".
///
/// See the documentation for KVM_GET_LAPIC.
pub fn get_lapic(&self) -> Result<kvm_lapic_state> {
let mut klapic: kvm_lapic_state = Default::default();
let ret = {
// SAFETY:
// The ioctl is unsafe unless you trust the kernel not to write past the end of the
// local_apic struct.
unsafe { ioctl_with_mut_ref(self, KVM_GET_LAPIC, &mut klapic) }
};
if ret < 0 {
return errno_result();
}
Ok(klapic)
}
/// X86 specific call to set the state of the "Local Advanced Programmable Interrupt
/// Controller".
///
/// See the documentation for KVM_SET_LAPIC.
pub fn set_lapic(&self, klapic: &kvm_lapic_state) -> Result<()> {
let ret = {
// SAFETY:
// The ioctl is safe because the kernel will only read from the klapic struct.
unsafe { ioctl_with_ref(self, KVM_SET_LAPIC, klapic) }
};
if ret < 0 {
return errno_result();
}
Ok(())
}
/// X86 specific call to get the value of the APIC_BASE MSR.
///
/// See the documentation for The kvm_run structure, and for KVM_GET_LAPIC.
pub fn get_apic_base(&self) -> Result<u64> {
self.get_msr(MSR_IA32_APICBASE)
}
/// X86 specific call to set the value of the APIC_BASE MSR.
///
/// See the documentation for The kvm_run structure, and for KVM_GET_LAPIC.
pub fn set_apic_base(&self, apic_base: u64) -> Result<()> {
self.set_msr(MSR_IA32_APICBASE, apic_base)
}
/// Call to get pending interrupts acknowledged by the APIC but not yet injected into the CPU.
///
/// See the documentation for KVM_GET_SREGS.
pub fn get_interrupt_bitmap(&self) -> Result<[u64; 4usize]> {
let mut regs: kvm_sregs = Default::default();
// SAFETY:
// Safe because we know that our file is a VCPU fd, we know the kernel will only write the
// correct amount of memory to our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_SREGS, &mut regs) };
if ret >= 0 {
Ok(regs.interrupt_bitmap)
} else {
errno_result()
}
}
/// Call to set pending interrupts acknowledged by the APIC but not yet injected into the CPU.
///
/// See the documentation for KVM_GET_SREGS.
pub fn set_interrupt_bitmap(&self, interrupt_bitmap: [u64; 4usize]) -> Result<()> {
// Potentially racy code. Vcpu registers are set in a separate thread and this could result
// in Sregs being modified from the Vcpu initialization thread and the Irq restoring
// thread.
let mut regs: kvm_sregs = Default::default();
// SAFETY:
// Safe because we know that our file is a VCPU fd, we know the kernel will only write the
// correct amount of memory to our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_SREGS, &mut regs) };
if ret >= 0 {
regs.interrupt_bitmap = interrupt_bitmap;
// SAFETY:
// Safe because we know that our file is a VCPU fd, we know the kernel will only read
// the correct amount of memory from our pointer, and we verify the return
// result.
let ret = unsafe { ioctl_with_ref(self, KVM_SET_SREGS, ®s) };
if ret >= 0 {
Ok(())
} else {
errno_result()
}
} else {
errno_result()
}
}
}
impl<'a> From<&'a KvmCpuId> for CpuId {
fn from(kvm_cpuid: &'a KvmCpuId) -> CpuId {
let kvm_entries = kvm_cpuid.entries_slice();
let mut cpu_id_entries = Vec::with_capacity(kvm_entries.len());
for entry in kvm_entries {
let cpu_id_entry = CpuIdEntry {
function: entry.function,
index: entry.index,
flags: entry.flags,
cpuid: CpuidResult {
eax: entry.eax,
ebx: entry.ebx,
ecx: entry.ecx,
edx: entry.edx,
},
};
cpu_id_entries.push(cpu_id_entry)
}
CpuId { cpu_id_entries }
}
}
impl From<&CpuId> for KvmCpuId {
fn from(cpuid: &CpuId) -> KvmCpuId {
let mut kvm = KvmCpuId::new(cpuid.cpu_id_entries.len());
let entries = kvm.mut_entries_slice();
for (i, &e) in cpuid.cpu_id_entries.iter().enumerate() {
entries[i] = kvm_cpuid_entry2 {
function: e.function,
index: e.index,
flags: e.flags,
eax: e.cpuid.eax,
ebx: e.cpuid.ebx,
ecx: e.cpuid.ecx,
edx: e.cpuid.edx,
..Default::default()
};
}
kvm
}
}
impl From<&ClockState> for kvm_clock_data {
fn from(state: &ClockState) -> Self {
kvm_clock_data {
clock: state.clock,
..Default::default()
}
}
}
impl From<&kvm_clock_data> for ClockState {
fn from(clock_data: &kvm_clock_data) -> Self {
ClockState {
clock: clock_data.clock,
}
}
}
impl From<&kvm_pic_state> for PicState {
fn from(item: &kvm_pic_state) -> Self {
PicState {
last_irr: item.last_irr,
irr: item.irr,
imr: item.imr,
isr: item.isr,
priority_add: item.priority_add,
irq_base: item.irq_base,
read_reg_select: item.read_reg_select != 0,
poll: item.poll != 0,
special_mask: item.special_mask != 0,
init_state: item.init_state.into(),
auto_eoi: item.auto_eoi != 0,
rotate_on_auto_eoi: item.rotate_on_auto_eoi != 0,
special_fully_nested_mode: item.special_fully_nested_mode != 0,
use_4_byte_icw: item.init4 != 0,
elcr: item.elcr,
elcr_mask: item.elcr_mask,
}
}
}
impl From<&PicState> for kvm_pic_state {
fn from(item: &PicState) -> Self {
kvm_pic_state {
last_irr: item.last_irr,
irr: item.irr,
imr: item.imr,
isr: item.isr,
priority_add: item.priority_add,
irq_base: item.irq_base,
read_reg_select: item.read_reg_select as u8,
poll: item.poll as u8,
special_mask: item.special_mask as u8,
init_state: item.init_state as u8,
auto_eoi: item.auto_eoi as u8,
rotate_on_auto_eoi: item.rotate_on_auto_eoi as u8,
special_fully_nested_mode: item.special_fully_nested_mode as u8,
init4: item.use_4_byte_icw as u8,
elcr: item.elcr,
elcr_mask: item.elcr_mask,
}
}
}
impl From<&kvm_ioapic_state> for IoapicState {
fn from(item: &kvm_ioapic_state) -> Self {
let mut state = IoapicState {
base_address: item.base_address,
ioregsel: item.ioregsel as u8,
ioapicid: item.id,
current_interrupt_level_bitmap: item.irr,
redirect_table: [IoapicRedirectionTableEntry::default(); NUM_IOAPIC_PINS],
};
for (in_state, out_state) in item.redirtbl.iter().zip(state.redirect_table.iter_mut()) {
*out_state = in_state.into();
}
state
}
}
impl From<&IoapicRedirectionTableEntry> for kvm_ioapic_state__bindgen_ty_1 {
fn from(item: &IoapicRedirectionTableEntry) -> Self {
kvm_ioapic_state__bindgen_ty_1 {
// IoapicRedirectionTableEntry layout matches the exact bit layout of a hardware
// ioapic redirection table entry, so we can simply do a 64-bit copy
bits: item.get(0, 64),
}
}
}
impl From<&kvm_ioapic_state__bindgen_ty_1> for IoapicRedirectionTableEntry {
fn from(item: &kvm_ioapic_state__bindgen_ty_1) -> Self {
let mut entry = IoapicRedirectionTableEntry::default();
// SAFETY:
// Safe because the 64-bit layout of the IoapicRedirectionTableEntry matches the kvm_sys
// table entry layout
entry.set(0, 64, unsafe { item.bits });
entry
}
}
impl From<&IoapicState> for kvm_ioapic_state {
fn from(item: &IoapicState) -> Self {
let mut state = kvm_ioapic_state {
base_address: item.base_address,
ioregsel: item.ioregsel as u32,
id: item.ioapicid,
irr: item.current_interrupt_level_bitmap,
..Default::default()
};
for (in_state, out_state) in item.redirect_table.iter().zip(state.redirtbl.iter_mut()) {
*out_state = in_state.into();
}
state
}
}
impl From<&LapicState> for kvm_lapic_state {
fn from(item: &LapicState) -> Self {
let mut state = kvm_lapic_state::default();
// There are 64 lapic registers
for (reg, value) in item.regs.iter().enumerate() {
// Each lapic register is 16 bytes, but only the first 4 are used
let reg_offset = 16 * reg;
let regs_slice = &mut state.regs[reg_offset..reg_offset + 4];
// to_le_bytes() produces an array of u8, not i8(c_char), so we can't directly use
// copy_from_slice().
for (i, v) in value.to_le_bytes().iter().enumerate() {
regs_slice[i] = *v as i8;
}
}
state
}
}
impl From<&kvm_lapic_state> for LapicState {
fn from(item: &kvm_lapic_state) -> Self {
let mut state = LapicState { regs: [0; 64] };
// There are 64 lapic registers
for reg in 0..64 {
// Each lapic register is 16 bytes, but only the first 4 are used
let reg_offset = 16 * reg;
// from_le_bytes() only works on arrays of u8, not i8(c_char).
let reg_slice = &item.regs[reg_offset..reg_offset + 4];
let mut bytes = [0u8; 4];
for i in 0..4 {
bytes[i] = reg_slice[i] as u8;
}
state.regs[reg] = u32::from_le_bytes(bytes);
}
state
}
}
impl From<&PitState> for kvm_pit_state2 {
fn from(item: &PitState) -> Self {
kvm_pit_state2 {
channels: [
kvm_pit_channel_state::from(&item.channels[0]),
kvm_pit_channel_state::from(&item.channels[1]),
kvm_pit_channel_state::from(&item.channels[2]),
],
flags: item.flags,
..Default::default()
}
}
}
impl From<&kvm_pit_state2> for PitState {
fn from(item: &kvm_pit_state2) -> Self {
PitState {
channels: [
PitChannelState::from(&item.channels[0]),
PitChannelState::from(&item.channels[1]),
PitChannelState::from(&item.channels[2]),
],
flags: item.flags,
}
}
}
impl From<&PitChannelState> for kvm_pit_channel_state {
fn from(item: &PitChannelState) -> Self {
kvm_pit_channel_state {
count: item.count,
latched_count: item.latched_count,
count_latched: item.count_latched as u8,
status_latched: item.status_latched as u8,
status: item.status,
read_state: item.read_state as u8,
write_state: item.write_state as u8,
// kvm's write_latch only stores the low byte of the reload value
write_latch: item.reload_value as u8,
rw_mode: item.rw_mode as u8,
mode: item.mode,
bcd: item.bcd as u8,
gate: item.gate as u8,
count_load_time: item.count_load_time as i64,
}
}
}
impl From<&kvm_pit_channel_state> for PitChannelState {
fn from(item: &kvm_pit_channel_state) -> Self {
PitChannelState {
count: item.count,
latched_count: item.latched_count,
count_latched: item.count_latched.into(),
status_latched: item.status_latched != 0,
status: item.status,
read_state: item.read_state.into(),
write_state: item.write_state.into(),
// kvm's write_latch only stores the low byte of the reload value
reload_value: item.write_latch as u16,
rw_mode: item.rw_mode.into(),
mode: item.mode,
bcd: item.bcd != 0,
gate: item.gate != 0,
count_load_time: item.count_load_time as u64,
}
}
}
// This function translates an IrqSrouceChip to the kvm u32 equivalent. It has a different
// implementation between x86_64 and aarch64 because the irqchip KVM constants are not defined on
// all architectures.
pub(super) fn chip_to_kvm_chip(chip: IrqSourceChip) -> u32 {
match chip {
IrqSourceChip::PicPrimary => KVM_IRQCHIP_PIC_MASTER,
IrqSourceChip::PicSecondary => KVM_IRQCHIP_PIC_SLAVE,
IrqSourceChip::Ioapic => KVM_IRQCHIP_IOAPIC,
_ => {
error!("Invalid IrqChipSource for X86 {:?}", chip);
0
}
}
}
impl From<&kvm_regs> for Regs {
fn from(r: &kvm_regs) -> Self {
Regs {
rax: r.rax,
rbx: r.rbx,
rcx: r.rcx,
rdx: r.rdx,
rsi: r.rsi,
rdi: r.rdi,
rsp: r.rsp,
rbp: r.rbp,
r8: r.r8,
r9: r.r9,
r10: r.r10,
r11: r.r11,
r12: r.r12,
r13: r.r13,
r14: r.r14,
r15: r.r15,
rip: r.rip,
rflags: r.rflags,
}
}
}
impl From<&Regs> for kvm_regs {
fn from(r: &Regs) -> Self {
kvm_regs {
rax: r.rax,
rbx: r.rbx,
rcx: r.rcx,
rdx: r.rdx,
rsi: r.rsi,
rdi: r.rdi,
rsp: r.rsp,
rbp: r.rbp,
r8: r.r8,
r9: r.r9,
r10: r.r10,
r11: r.r11,
r12: r.r12,
r13: r.r13,
r14: r.r14,
r15: r.r15,
rip: r.rip,
rflags: r.rflags,
}
}
}
impl From<&VcpuEvents> for kvm_vcpu_events {
fn from(ve: &VcpuEvents) -> Self {
let mut kvm_ve: kvm_vcpu_events = Default::default();
kvm_ve.exception.injected = ve.exception.injected as u8;
kvm_ve.exception.nr = ve.exception.nr;
kvm_ve.exception.has_error_code = ve.exception.has_error_code as u8;
if let Some(pending) = ve.exception.pending {
kvm_ve.exception.pending = pending as u8;
if ve.exception_payload.is_some() {
kvm_ve.exception_has_payload = true as u8;
}
kvm_ve.exception_payload = ve.exception_payload.unwrap_or(0);
kvm_ve.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
}
kvm_ve.exception.error_code = ve.exception.error_code;
kvm_ve.interrupt.injected = ve.interrupt.injected as u8;
kvm_ve.interrupt.nr = ve.interrupt.nr;
kvm_ve.interrupt.soft = ve.interrupt.soft as u8;
if let Some(shadow) = ve.interrupt.shadow {
kvm_ve.interrupt.shadow = shadow;
kvm_ve.flags |= KVM_VCPUEVENT_VALID_SHADOW;
}
kvm_ve.nmi.injected = ve.nmi.injected as u8;
if let Some(pending) = ve.nmi.pending {
kvm_ve.nmi.pending = pending as u8;
kvm_ve.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
}
kvm_ve.nmi.masked = ve.nmi.masked as u8;
if let Some(sipi_vector) = ve.sipi_vector {
kvm_ve.sipi_vector = sipi_vector;
kvm_ve.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
}
if let Some(smm) = ve.smi.smm {
kvm_ve.smi.smm = smm as u8;
kvm_ve.flags |= KVM_VCPUEVENT_VALID_SMM;
}
kvm_ve.smi.pending = ve.smi.pending as u8;
kvm_ve.smi.smm_inside_nmi = ve.smi.smm_inside_nmi as u8;
kvm_ve.smi.latched_init = ve.smi.latched_init;
if let Some(pending) = ve.triple_fault.pending {
kvm_ve.triple_fault.pending = pending as u8;
kvm_ve.flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
}
kvm_ve
}
}
impl From<&kvm_vcpu_events> for VcpuEvents {
fn from(ve: &kvm_vcpu_events) -> Self {
let exception = VcpuExceptionState {
injected: ve.exception.injected != 0,
nr: ve.exception.nr,
has_error_code: ve.exception.has_error_code != 0,
pending: if ve.flags & KVM_VCPUEVENT_VALID_PAYLOAD != 0 {
Some(ve.exception.pending != 0)
} else {
None
},
error_code: ve.exception.error_code,
};
let interrupt = VcpuInterruptState {
injected: ve.interrupt.injected != 0,
nr: ve.interrupt.nr,
soft: ve.interrupt.soft != 0,
shadow: if ve.flags & KVM_VCPUEVENT_VALID_SHADOW != 0 {
Some(ve.interrupt.shadow)
} else {
None
},
};
let nmi = VcpuNmiState {
injected: ve.interrupt.injected != 0,
pending: if ve.flags & KVM_VCPUEVENT_VALID_NMI_PENDING != 0 {
Some(ve.nmi.pending != 0)
} else {
None
},
masked: ve.nmi.masked != 0,
};
let sipi_vector = if ve.flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR != 0 {
Some(ve.sipi_vector)
} else {
None
};
let smi = VcpuSmiState {
smm: if ve.flags & KVM_VCPUEVENT_VALID_SMM != 0 {
Some(ve.smi.smm != 0)
} else {
None
},
pending: ve.smi.pending != 0,
smm_inside_nmi: ve.smi.smm_inside_nmi != 0,
latched_init: ve.smi.latched_init,
};
let triple_fault = VcpuTripleFaultState {
pending: if ve.flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT != 0 {
Some(ve.triple_fault.pending != 0)
} else {
None
},
};
let exception_payload = if ve.flags & KVM_VCPUEVENT_VALID_PAYLOAD != 0 {
Some(ve.exception_payload)
} else {
None
};
VcpuEvents {
exception,
interrupt,
nmi,
sipi_vector,
smi,
triple_fault,
exception_payload,
}
}
}
impl From<&kvm_segment> for Segment {
fn from(s: &kvm_segment) -> Self {
Segment {
base: s.base,
limit_bytes: s.limit,
selector: s.selector,
type_: s.type_,
present: s.present,
dpl: s.dpl,
db: s.db,
s: s.s,
l: s.l,
g: s.g,
avl: s.avl,
}
}
}
impl From<&Segment> for kvm_segment {
fn from(s: &Segment) -> Self {
kvm_segment {
base: s.base,
limit: s.limit_bytes,
selector: s.selector,
type_: s.type_,
present: s.present,
dpl: s.dpl,
db: s.db,
s: s.s,
l: s.l,
g: s.g,
avl: s.avl,
unusable: match s.present {
0 => 1,
_ => 0,
},
..Default::default()
}
}
}
impl From<&kvm_dtable> for DescriptorTable {
fn from(dt: &kvm_dtable) -> Self {
DescriptorTable {
base: dt.base,
limit: dt.limit,
}
}
}
impl From<&DescriptorTable> for kvm_dtable {
fn from(dt: &DescriptorTable) -> Self {
kvm_dtable {
base: dt.base,
limit: dt.limit,
..Default::default()
}
}
}
impl From<&kvm_sregs> for Sregs {
fn from(r: &kvm_sregs) -> Self {
Sregs {
cs: Segment::from(&r.cs),
ds: Segment::from(&r.ds),
es: Segment::from(&r.es),
fs: Segment::from(&r.fs),
gs: Segment::from(&r.gs),
ss: Segment::from(&r.ss),
tr: Segment::from(&r.tr),
ldt: Segment::from(&r.ldt),
gdt: DescriptorTable::from(&r.gdt),
idt: DescriptorTable::from(&r.idt),
cr0: r.cr0,
cr2: r.cr2,
cr3: r.cr3,
cr4: r.cr4,
cr8: r.cr8,
efer: r.efer,
}
}
}
impl From<&kvm_fpu> for Fpu {
fn from(r: &kvm_fpu) -> Self {
Fpu {
fpr: FpuReg::from_16byte_arrays(&r.fpr),
fcw: r.fcw,
fsw: r.fsw,
ftwx: r.ftwx,
last_opcode: r.last_opcode,
last_ip: r.last_ip,
last_dp: r.last_dp,
xmm: r.xmm,
mxcsr: r.mxcsr,
}
}
}
impl From<&Fpu> for kvm_fpu {
fn from(r: &Fpu) -> Self {
kvm_fpu {
fpr: FpuReg::to_16byte_arrays(&r.fpr),
fcw: r.fcw,
fsw: r.fsw,
ftwx: r.ftwx,
last_opcode: r.last_opcode,
last_ip: r.last_ip,
last_dp: r.last_dp,
xmm: r.xmm,
mxcsr: r.mxcsr,
..Default::default()
}
}
}
impl From<&kvm_debugregs> for DebugRegs {
fn from(r: &kvm_debugregs) -> Self {
DebugRegs {
db: r.db,
dr6: r.dr6,
dr7: r.dr7,
}
}
}
impl From<&DebugRegs> for kvm_debugregs {
fn from(r: &DebugRegs) -> Self {
kvm_debugregs {
db: r.db,
dr6: r.dr6,
dr7: r.dr7,
..Default::default()
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn vcpu_event_to_from() {
// All data is random.
let mut kvm_ve: kvm_vcpu_events = Default::default();
kvm_ve.exception.injected = 1;
kvm_ve.exception.nr = 65;
kvm_ve.exception.has_error_code = 1;
kvm_ve.exception.error_code = 110;
kvm_ve.exception.pending = 1;
kvm_ve.interrupt.injected = 1;
kvm_ve.interrupt.nr = 100;
kvm_ve.interrupt.soft = 1;
kvm_ve.interrupt.shadow = 114;
kvm_ve.nmi.injected = 1;
kvm_ve.nmi.pending = 1;
kvm_ve.nmi.masked = 0;
kvm_ve.sipi_vector = 105;
kvm_ve.smi.smm = 1;
kvm_ve.smi.pending = 1;
kvm_ve.smi.smm_inside_nmi = 1;
kvm_ve.smi.latched_init = 100;
kvm_ve.triple_fault.pending = 0;
kvm_ve.exception_payload = 33;
kvm_ve.exception_has_payload = 1;
kvm_ve.flags = 0
| KVM_VCPUEVENT_VALID_PAYLOAD
| KVM_VCPUEVENT_VALID_SMM
| KVM_VCPUEVENT_VALID_NMI_PENDING
| KVM_VCPUEVENT_VALID_SIPI_VECTOR
| KVM_VCPUEVENT_VALID_SHADOW;
let ve: VcpuEvents = VcpuEvents::from(&kvm_ve);
assert_eq!(ve.exception.injected, true);
assert_eq!(ve.exception.nr, 65);
assert_eq!(ve.exception.has_error_code, true);
assert_eq!(ve.exception.error_code, 110);
assert_eq!(ve.exception.pending.unwrap(), true);
assert_eq!(ve.interrupt.injected, true);
assert_eq!(ve.interrupt.nr, 100);
assert_eq!(ve.interrupt.soft, true);
assert_eq!(ve.interrupt.shadow.unwrap(), 114);
assert_eq!(ve.nmi.injected, true);
assert_eq!(ve.nmi.pending.unwrap(), true);
assert_eq!(ve.nmi.masked, false);
assert_eq!(ve.sipi_vector.unwrap(), 105);
assert_eq!(ve.smi.smm.unwrap(), true);
assert_eq!(ve.smi.pending, true);
assert_eq!(ve.smi.smm_inside_nmi, true);
assert_eq!(ve.smi.latched_init, 100);
assert_eq!(ve.triple_fault.pending, None);
assert_eq!(ve.exception_payload.unwrap(), 33);
let kvm_ve_restored: kvm_vcpu_events = kvm_vcpu_events::from(&ve);
assert_eq!(kvm_ve_restored.exception.injected, 1);
assert_eq!(kvm_ve_restored.exception.nr, 65);
assert_eq!(kvm_ve_restored.exception.has_error_code, 1);
assert_eq!(kvm_ve_restored.exception.error_code, 110);
assert_eq!(kvm_ve_restored.exception.pending, 1);
assert_eq!(kvm_ve_restored.interrupt.injected, 1);
assert_eq!(kvm_ve_restored.interrupt.nr, 100);
assert_eq!(kvm_ve_restored.interrupt.soft, 1);
assert_eq!(kvm_ve_restored.interrupt.shadow, 114);
assert_eq!(kvm_ve_restored.nmi.injected, 1);
assert_eq!(kvm_ve_restored.nmi.pending, 1);
assert_eq!(kvm_ve_restored.nmi.masked, 0);
assert_eq!(kvm_ve_restored.sipi_vector, 105);
assert_eq!(kvm_ve_restored.smi.smm, 1);
assert_eq!(kvm_ve_restored.smi.pending, 1);
assert_eq!(kvm_ve_restored.smi.smm_inside_nmi, 1);
assert_eq!(kvm_ve_restored.smi.latched_init, 100);
assert_eq!(kvm_ve_restored.triple_fault.pending, 0);
assert_eq!(kvm_ve_restored.exception_payload, 33);
assert_eq!(kvm_ve_restored.exception_has_payload, 1);
}
}