1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
// Copyright 2022 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! Virtio version of a linux pvclock clocksource.
//!
//! Driver source is here:
//! <https://android.googlesource.com/kernel/common/+/ebaa2c516811825b141de844cee7a38653058ef5/drivers/virtio/virtio_pvclock.c>
//!
//! # Background
//!
//! Userland applications often rely on CLOCK_MONOTONIC to be relatively continuous.
//! Large jumps can signal problems (e.g., triggering Android watchdogs).
//! This assumption breaks down in virtualized environments, where a VM's suspension isn't
//! inherently linked to the guest kernel's concept of "suspend".
//! Since fixing all userland code is impractical, virtio-pvclock allows the VMM and guest kernel
//! to collaborate on emulating the expected clock behavior around suspend/resume.
//!
//! # How it works
//!
//! ## Core functions of virtio-pvclock device:
//!
//! 1. Adjusts hardware clocksource offsets to make the guest clocks appear suspended when the VM is
//! suspended.
//! - This is achieved through the pvclock mechanism implemented in x86 KVM used by kvm-clock.
//! 2. Provides the guest kernel with the duration of VM suspension, allowing the guest to adjust
//! its clocks accordingly.
//! - Since the offset between the CLOCK_MONOTONIC and CLOCK_BOOTTIME is maintained by the guest
//! kernel, applying the adjustment is the guest driver's responsibility.
//!
//! ## Expected guest clock behaviors under virtio-pvclock is enabled
//!
//! - Monotonicity of CLOCK_MONOTONIC and CLOCK_BOOTTIME is maintained.
//! - CLOCK_MONOTONIC will not include the time passed during crosvm is suspended from its run mode
//! perspective.
//! - CLOCK_BOOTTIME will be adjusted to include the time passed during crosvm is suspended.
//!
//! # Why it is needed
//!
//! Because the existing solution does not cover some expectations we need.
//!
//! kvm-clock is letting the host to manage the offsets of CLOCK_MONOTONIC.
//! However, it doesn't address the difference between CLOCK_BOOTTIME and CLOCK_MONOTONIC related
//! to host's suspend/resume, as it is designed to maintain the CLOCK_REALTIME in sync mainly.
#[cfg(target_arch = "aarch64")]
use std::arch::asm;
use std::collections::BTreeMap;
use std::mem::replace;
use std::mem::size_of;
use std::sync::atomic::AtomicU64;
use std::sync::atomic::Ordering;
use std::sync::Arc;
use std::time::Duration;
use anyhow::anyhow;
use anyhow::bail;
use anyhow::Context;
use anyhow::Result;
use base::error;
use base::info;
use base::warn;
use base::AsRawDescriptor;
#[cfg(windows)]
use base::CloseNotifier;
use base::Error;
use base::Event;
use base::EventToken;
use base::RawDescriptor;
use base::ReadNotifier;
use base::Tube;
use base::WaitContext;
use base::WorkerThread;
use chrono::DateTime;
use chrono::Utc;
use data_model::Le32;
use data_model::Le64;
use serde::Deserialize;
use serde::Serialize;
use vm_control::PvClockCommand;
use vm_control::PvClockCommandResponse;
use vm_memory::GuestAddress;
use vm_memory::GuestMemory;
use vm_memory::GuestMemoryError;
use zerocopy::AsBytes;
use zerocopy::FromBytes;
use zerocopy::FromZeroes;
use super::copy_config;
use super::DeviceType;
use super::Interrupt;
use super::Queue;
use super::VirtioDevice;
// Pvclock has one virtio queue: set_pvclock_page
const QUEUE_SIZE: u16 = 1;
const QUEUE_SIZES: &[u16] = &[QUEUE_SIZE];
// pvclock flag bits
const PVCLOCK_TSC_STABLE_BIT: u8 = 1;
const PVCLOCK_GUEST_STOPPED: u8 = 2;
// The feature bitmap for virtio pvclock
const VIRTIO_PVCLOCK_F_TSC_STABLE: u64 = 0; // TSC is stable
const VIRTIO_PVCLOCK_F_INJECT_SLEEP: u64 = 1; // Inject sleep for suspend
const VIRTIO_PVCLOCK_F_CLOCKSOURCE_RATING: u64 = 2; // Use device clocksource rating
// Status values for a virtio_pvclock request.
const VIRTIO_PVCLOCK_S_OK: u8 = 0;
const VIRTIO_PVCLOCK_S_IOERR: u8 = 1;
const VIRTIO_PVCLOCK_CLOCKSOURCE_RATING: u32 = 450;
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
fn read_clock_counter() -> u64 {
// SAFETY: rdtsc is unprivileged and have no side effects.
unsafe { std::arch::x86_64::_rdtsc() }
}
#[cfg(target_arch = "aarch64")]
fn read_clock_counter() -> u64 {
let mut x: u64;
// SAFETY: This instruction have no side effect apart from storing the current timestamp counter
// into the specified register.
unsafe {
asm!("mrs {x}, cntvct_el0",
x = out(reg) x,
);
}
x
}
/// Calculate a (multiplier, shift) pair for scaled math of clocks.
/// The values are passed on to `pvclock_scale_delta` in the guest kernel and satisfy the following
/// (approximate) equality:
/// `n * scaled_hz / base_hz ~= ((n << shift) * multiplier) >> 32`
/// The logic here is roughly based on `kvm_get_time_scale` (but simplified as we can use u128).
/// # Arguments
/// * `scaled_hz` - Frequency to convert to. When dealing with clocksources, this is NSEC_PER_SEC.
/// * `base_hz` - Frequency to convert from. When dealing with clocksources, this is the counter
/// frequency.
fn freq_scale_shift(scaled_hz: u64, base_hz: u64) -> (u32, i8) {
assert!(scaled_hz > 0 && base_hz > 0);
// We treat `multiplier` as a 0.32 fixed-point number by folding the >> 32 into its definition.
// With this definition, `multiplier` can be calculated as `(scaled_hz / base_hz) >> shift`
// with a corresponding `shift`.
//
// The value of `shift` should satisfy a few constraints:
// 1. `multiplier` needs to be < 1.0 due to the representable range of 0.32 fixed-point (maximum
// (2^32-1)/2^32).
// 2. `shift` should be minimized because `pvclock_scale_delta` applies `shift` on the 64-bit
// TSC value before extending to 128-bit and large positive shifts reduce the TSC rollover
// time.
//
// Minimizing `shift` means maximizing `multiplier`. From the < 1.0 constraint, this is
// equivalent to having a multiplier within [0.5, 1.0). The logic below picks a multiplier
// satisfying that, while updating `shift` accordingly when we double or halve the multiplier.
let mut shift = 0;
// Convert to u128 so that overflow handling becomes much easier.
let mut scaled_hz = scaled_hz as u128;
let mut base_hz = base_hz as u128;
if scaled_hz >= base_hz {
while scaled_hz >= base_hz {
// `multiplier` >= 1.0; iteratively scale it down
// scaled_hz is at most 64 bits, so after this loop base_hz is at most 65 bits.
base_hz <<= 1;
shift += 1;
}
} else {
while base_hz > 2 * scaled_hz {
// `multiplier` < 0.5; iteratively scale it up
// base_hz is at most 64 bits. If the loop condition passes then scaled_hz is at most 63
// bits, otherwise at most 64 bits. Post-loop scaled_hz is at most 64 bits.
scaled_hz <<= 1;
shift -= 1;
}
}
// From above, we know that the values are at most 65 bits. This provides sufficient headroom
// for scaled_hz << 32 below.
assert!(base_hz < (1u128 << 65) && scaled_hz < (1u128 << 65));
let mult: u32 = ((scaled_hz << 32) / base_hz)
.try_into()
.expect("should not overflow");
(mult, shift)
}
// The config structure being exposed to the guest to tell them how much suspend time should be
// injected to the guest's CLOCK_BOOTTIME.
#[derive(Debug, Clone, Copy, Default, AsBytes, FromZeroes, FromBytes)]
#[allow(non_camel_case_types)]
#[repr(C)]
struct virtio_pvclock_config {
// Total duration the VM has been paused while the guest kernel is not in the suspended state
// (from the power management and timekeeping perspective).
suspend_time_ns: Le64,
// Device-suggested rating of the pvclock clocksource.
clocksource_rating: Le32,
padding: u32,
}
#[derive(Debug, Clone, Copy, Default, FromZeroes, FromBytes, AsBytes)]
#[allow(non_camel_case_types)]
#[repr(C)]
struct virtio_pvclock_set_pvclock_page_req {
// Physical address of pvclock page.
pvclock_page_pa: Le64,
// Current system time.
system_time: Le64,
// Current tsc value.
tsc_timestamp: Le64,
// Status of this request, one of VIRTIO_PVCLOCK_S_*.
status: u8,
padding: [u8; 7],
}
// Data structure for interacting with pvclock shared memory.
struct PvclockSharedData {
mem: GuestMemory,
seqlock_addr: GuestAddress,
tsc_suspended_delta_addr: GuestAddress,
tsc_frequency_multiplier_addr: GuestAddress,
tsc_frequency_shift_addr: GuestAddress,
flags_addr: GuestAddress,
}
impl PvclockSharedData {
pub fn new(mem: GuestMemory, addr: GuestAddress) -> Self {
PvclockSharedData {
mem,
// The addresses of the various fields that we need to modify are relative to the
// base of the pvclock page. For reference, see the pvclock_vcpu_time_info struct.
seqlock_addr: addr,
tsc_suspended_delta_addr: addr.unchecked_add(8),
tsc_frequency_multiplier_addr: addr.unchecked_add(24),
tsc_frequency_shift_addr: addr.unchecked_add(28),
flags_addr: addr.unchecked_add(29),
}
}
/// Only the seqlock_addr is needed to re-create this struct at restore
/// time, so that is all our snapshot contains.
fn snapshot(&self) -> GuestAddress {
self.seqlock_addr
}
/// Set all fields to zero.
pub fn zero_fill(&mut self) -> Result<()> {
// The pvclock data structure is 32 bytes long, so we write 32 bytes of 0s
self.mem
.write_all_at_addr(&[0u8; 32], self.seqlock_addr)
.context("failed to zero fill the pvclock shared data")
}
pub fn increment_seqlock(&mut self) -> Result<()> {
// TODO (b/264931437): reads and writes using read/write_obj_from/at_addr are not
// guaranteed to be atomic. Although this should not be a problem for the seqlock
// or the other fields in the pvclock shared data (whch are protected via the seqlock)
// we might want to update these calls to be as atomic as possible if/when we have
// the ability to do so, just as a general cleanup and to be consistent.
let value = self
.mem
.read_obj_from_addr::<u32>(self.seqlock_addr)
.context("failed to read seqlock value")?;
self.mem
.write_obj_at_addr(value.wrapping_add(1), self.seqlock_addr)
.context("failed to write seqlock value")
}
pub fn set_tsc_suspended_delta(&mut self, delta: u64) -> Result<()> {
self.mem
.write_obj_at_addr(delta, self.tsc_suspended_delta_addr)
.context("failed to write tsc suspended delta")
}
pub fn set_tsc_frequency(&mut self, frequency: u64) -> Result<()> {
let (multiplier, shift): (u32, i8) = freq_scale_shift(1_000_000_000, frequency);
self.mem
.write_obj_at_addr(multiplier, self.tsc_frequency_multiplier_addr)
.context("failed to write tsc frequency mlutiplier")?;
self.mem
.write_obj_at_addr(shift, self.tsc_frequency_shift_addr)
.context("failed to write tsc frequency shift")
}
pub fn enable_pvclock_flags(&mut self, flags: u8) -> Result<()> {
let value = self
.mem
.read_obj_from_addr::<u8>(self.flags_addr)
.context("failed to read flags")?;
self.mem
.write_obj_at_addr(value | flags, self.flags_addr)
.context("failed to write flags")
}
}
/// Serializable part of the [PvClock] struct which will be used by the virtio_snapshot / restore.
#[derive(Serialize, Deserialize)]
struct PvClockState {
tsc_frequency: u64,
/// If the device is sleeping, a [PvClockWorkerSnapshot] that can re-create the worker
/// will be stored here. (We can't just store the worker itself as it contains an object
/// tree with references to [GuestMemory].)
paused_main_worker: Option<PvClockWorkerSnapshot>,
/// The total time the vm has been suspended, this is in an `Arc<AtomicU64>>` because it's set
/// by the PvClockWorker thread but read by PvClock from the mmio bus in the main thread.
total_suspend_ns: Arc<AtomicU64>,
features: u64,
acked_features: u64,
}
/// An enum to keep dynamic state of pvclock workers in a type safe manner.
enum PvClockWorkerState {
/// Idle means no worker is running.
/// This tube is for communicating with this device from the crosvm threads.
Idle(Tube),
/// A stub worker to respond pvclock commands when the device is not activated yet.
Stub(WorkerThread<StubWorkerReturn>),
/// A main worker to respond pvclock commands while the device is active.
Main(WorkerThread<MainWorkerReturn>),
/// None is used only for handling transitional state between the states above.
None,
}
/// A struct that represents virtio-pvclock device.
pub struct PvClock {
state: PvClockState,
worker_state: PvClockWorkerState,
}
impl PvClock {
pub fn new(base_features: u64, tsc_frequency: u64, suspend_tube: Tube) -> Self {
let state = PvClockState {
tsc_frequency,
paused_main_worker: None,
total_suspend_ns: Arc::new(AtomicU64::new(0)),
features: base_features
| 1 << VIRTIO_PVCLOCK_F_TSC_STABLE
| 1 << VIRTIO_PVCLOCK_F_INJECT_SLEEP
| 1 << VIRTIO_PVCLOCK_F_CLOCKSOURCE_RATING,
acked_features: 0,
};
PvClock {
state,
worker_state: PvClockWorkerState::Idle(suspend_tube),
}
}
fn get_config(&self) -> virtio_pvclock_config {
virtio_pvclock_config {
suspend_time_ns: self.state.total_suspend_ns.load(Ordering::SeqCst).into(),
clocksource_rating: VIRTIO_PVCLOCK_CLOCKSOURCE_RATING.into(),
padding: 0,
}
}
/// Use switch_to_*_worker unless needed to keep the state transition consistent
fn start_main_worker(
&mut self,
interrupt: Interrupt,
pvclock_worker: PvClockWorker,
mut queues: BTreeMap<usize, Queue>,
) -> anyhow::Result<()> {
let last_state = replace(&mut self.worker_state, PvClockWorkerState::None);
if let PvClockWorkerState::Idle(suspend_tube) = last_state {
if queues.len() != QUEUE_SIZES.len() {
self.worker_state = PvClockWorkerState::Idle(suspend_tube);
return Err(anyhow!(
"expected {} queues, got {}",
QUEUE_SIZES.len(),
queues.len()
));
}
let set_pvclock_page_queue = queues.remove(&0).unwrap();
self.worker_state = PvClockWorkerState::Main(WorkerThread::start(
"virtio_pvclock".to_string(),
move |kill_evt| {
run_main_worker(
pvclock_worker,
set_pvclock_page_queue,
suspend_tube,
interrupt,
kill_evt,
)
},
));
} else {
panic!("Invalid state transition");
}
Ok(())
}
/// Use switch_to_*_worker unless needed to keep the state transition consistent
fn start_stub_worker(&mut self) {
let last_state = replace(&mut self.worker_state, PvClockWorkerState::None);
self.worker_state = if let PvClockWorkerState::Idle(suspend_tube) = last_state {
PvClockWorkerState::Stub(WorkerThread::start(
"virtio_pvclock_stub".to_string(),
move |kill_evt| run_stub_worker(suspend_tube, kill_evt),
))
} else {
panic!("Invalid state transition");
};
}
/// Use switch_to_*_worker unless needed to keep the state transition consistent
fn stop_stub_worker(&mut self) {
let last_state = replace(&mut self.worker_state, PvClockWorkerState::None);
self.worker_state = if let PvClockWorkerState::Stub(stub_worker_thread) = last_state {
let stub_worker_ret = stub_worker_thread.stop();
PvClockWorkerState::Idle(stub_worker_ret.suspend_tube)
} else {
panic!("Invalid state transition");
}
}
/// Use switch_to_*_worker unless needed to keep the state transition consistent
fn stop_main_worker(&mut self) {
let last_state = replace(&mut self.worker_state, PvClockWorkerState::None);
if let PvClockWorkerState::Main(main_worker_thread) = last_state {
let main_worker_ret = main_worker_thread.stop();
self.worker_state = PvClockWorkerState::Idle(main_worker_ret.suspend_tube);
let mut queues = BTreeMap::new();
queues.insert(0, main_worker_ret.set_pvclock_page_queue);
self.state.paused_main_worker = Some(main_worker_ret.worker.into());
} else {
panic!("Invalid state transition");
}
}
fn switch_to_stub_worker(&mut self) {
self.stop_main_worker();
self.start_stub_worker();
}
fn switch_to_main_worker(
&mut self,
interrupt: Interrupt,
pvclock_worker: PvClockWorker,
queues: BTreeMap<usize, Queue>,
) -> anyhow::Result<()> {
self.stop_stub_worker();
self.start_main_worker(interrupt, pvclock_worker, queues)
}
}
/// Represents a moment in time including the TSC counter value at that time.
#[derive(Serialize, Deserialize, Clone)]
struct PvclockInstant {
time: DateTime<Utc>,
tsc_value: u64,
}
/// The unique data retained by [PvClockWorker] which can be used to re-create
/// an identical worker.
#[derive(Serialize, Deserialize, Clone)]
struct PvClockWorkerSnapshot {
suspend_time: Option<PvclockInstant>,
total_suspend_tsc_delta: u64,
pvclock_shared_data_base_address: Option<GuestAddress>,
}
impl From<PvClockWorker> for PvClockWorkerSnapshot {
fn from(worker: PvClockWorker) -> Self {
PvClockWorkerSnapshot {
suspend_time: worker.suspend_time,
total_suspend_tsc_delta: worker.total_suspend_tsc_delta,
pvclock_shared_data_base_address: worker
.pvclock_shared_data
.map(|pvclock| pvclock.snapshot()),
}
}
}
/// Worker struct for the virtio-pvclock device.
///
/// Handles virtio requests, storing information about suspend/resume, adjusting the
/// pvclock data in shared memory, and injecting suspend durations via config
/// changes.
struct PvClockWorker {
tsc_frequency: u64,
// The moment the last suspend occurred.
suspend_time: Option<PvclockInstant>,
// The total time the vm has been suspended, this is in an Arc<AtomicU64>> because it's set
// by the PvClockWorker thread but read by PvClock from the mmio bus in the main thread.
total_injected_ns: Arc<AtomicU64>,
// The total change in the TSC value over suspensions.
total_suspend_tsc_delta: u64,
// Pvclock shared data.
pvclock_shared_data: Option<PvclockSharedData>,
mem: GuestMemory,
}
impl PvClockWorker {
pub fn new(tsc_frequency: u64, total_injected_ns: Arc<AtomicU64>, mem: GuestMemory) -> Self {
PvClockWorker {
tsc_frequency,
suspend_time: None,
total_injected_ns,
total_suspend_tsc_delta: 0,
pvclock_shared_data: None,
mem,
}
}
fn from_snapshot(
tsc_frequency: u64,
total_injected_ns: Arc<AtomicU64>,
snap: PvClockWorkerSnapshot,
mem: GuestMemory,
) -> Self {
PvClockWorker {
tsc_frequency,
suspend_time: snap.suspend_time,
total_injected_ns,
total_suspend_tsc_delta: snap.total_suspend_tsc_delta,
pvclock_shared_data: snap
.pvclock_shared_data_base_address
.map(|addr| PvclockSharedData::new(mem.clone(), addr)),
mem,
}
}
/// Initialize the pvclock for initial boot. We assume that the systemtime of 0 corresponds
/// to the tsc time of 0, so we do not set these. We set the tsc frequency based on the vcpu
/// tsc frequency and we set PVCLOCK_TSC_STABLE_BIT in flags to tell the guest that it's
/// safe to use vcpu0's pvclock page for use by the vdso. The order of writing the different
/// fields doesn't matter at this point, but does matter when updating.
fn set_pvclock_page(&mut self, addr: u64) -> Result<()> {
if self.pvclock_shared_data.is_some() {
return Err(Error::new(libc::EALREADY)).context("pvclock page already set");
}
let mut shared_data = PvclockSharedData::new(self.mem.clone(), GuestAddress(addr));
// set all fields to 0 first
shared_data.zero_fill()?;
shared_data.set_tsc_frequency(self.tsc_frequency)?;
shared_data.enable_pvclock_flags(PVCLOCK_TSC_STABLE_BIT)?;
self.pvclock_shared_data = Some(shared_data);
Ok(())
}
pub fn suspend(&mut self) {
if self.suspend_time.is_some() {
warn!("Suspend time already set, ignoring new suspend time");
return;
}
self.suspend_time = Some(PvclockInstant {
time: Utc::now(),
tsc_value: read_clock_counter(),
});
}
pub fn resume(&mut self) -> Result<u64> {
// First, increment the sequence lock by 1 before writing to the pvclock page.
self.increment_pvclock_seqlock()?;
// The guest makes sure there are memory barriers in between reads of the seqlock and other
// fields, we should make sure there are memory barriers in between writes of seqlock and
// writes to other fields.
std::sync::atomic::fence(Ordering::SeqCst);
// Set the guest_stopped_bit and tsc suspended delta in pvclock struct. We only need to set
// the bit, the guest will unset it once the guest has handled the stoppage.
// We get the result here because we want to call increment_pvclock_seqlock regardless of
// the result of these calls.
let result = self
.set_guest_stopped_bit()
.and_then(|_| self.set_suspended_time());
// The guest makes sure there are memory barriers in between reads of the seqlock and other
// fields, we should make sure there are memory barriers in between writes of seqlock and
// writes to other fields.
std::sync::atomic::fence(Ordering::SeqCst);
// Do a final increment once changes are done.
self.increment_pvclock_seqlock()?;
result
}
fn get_suspended_duration(suspend_time: &PvclockInstant) -> Duration {
match Utc::now().signed_duration_since(suspend_time.time).to_std() {
Ok(duration) => duration,
Err(e) => {
error!(
"pvclock found suspend time in the future (was the host \
clock adjusted?). Guest boot/realtime clock may now be \
incorrect. Details: {}",
e
);
Duration::ZERO
}
}
}
fn set_suspended_time(&mut self) -> Result<u64> {
let (this_suspend_duration, this_suspend_tsc_delta) =
if let Some(suspend_time) = self.suspend_time.take() {
(
Self::get_suspended_duration(&suspend_time),
// NB: This calculation may wrap around, as TSC can be reset to zero when
// the device has resumed from the "deep" suspend state (it may not happen for
// s2idle cases). It also happens when the tsc value itself wraps.
read_clock_counter().wrapping_sub(suspend_time.tsc_value),
)
} else {
return Err(Error::new(libc::ENOTSUP))
.context("Cannot set suspend time because suspend was never called");
};
// update the total tsc delta during all suspends
// NB: This calculation may wrap around, as the suspend time can be bigger than u64 range.
self.total_suspend_tsc_delta = self
.total_suspend_tsc_delta
.wrapping_add(this_suspend_tsc_delta);
// save tsc_suspended_delta to shared memory
self.pvclock_shared_data
.as_mut()
.ok_or(
anyhow::Error::new(Error::new(libc::ENODATA)).context("pvclock page is not set"),
)?
.set_tsc_suspended_delta(self.total_suspend_tsc_delta)?;
info!(
"set total suspend tsc delta to {}",
self.total_suspend_tsc_delta
);
// update total suspend ns
self.total_injected_ns
.fetch_add(this_suspend_duration.as_nanos() as u64, Ordering::SeqCst);
Ok(self.total_suspend_tsc_delta)
}
fn increment_pvclock_seqlock(&mut self) -> Result<()> {
self.pvclock_shared_data
.as_mut()
.ok_or(
anyhow::Error::new(Error::new(libc::ENODATA)).context("pvclock page is not set"),
)?
.increment_seqlock()
}
fn set_guest_stopped_bit(&mut self) -> Result<()> {
self.pvclock_shared_data
.as_mut()
.ok_or(
anyhow::Error::new(Error::new(libc::ENODATA)).context("pvclock page is not set"),
)?
.enable_pvclock_flags(PVCLOCK_GUEST_STOPPED)
}
}
fn pvclock_response_error_from_anyhow(error: anyhow::Error) -> base::Error {
for cause in error.chain() {
if let Some(e) = cause.downcast_ref::<base::Error>() {
return *e;
}
if let Some(e) = cause.downcast_ref::<GuestMemoryError>() {
return match e {
// Two kinds of GuestMemoryError contain base::Error
GuestMemoryError::MemoryAddSealsFailed(e) => *e,
GuestMemoryError::MemoryCreationFailed(e) => *e,
// Otherwise return EINVAL
_ => Error::new(libc::EINVAL),
};
}
}
// Unknown base error
Error::new(libc::EFAULT)
}
struct StubWorkerReturn {
suspend_tube: Tube,
}
/// A stub worker to respond any requests when the device is inactive.
fn run_stub_worker(suspend_tube: Tube, kill_evt: Event) -> StubWorkerReturn {
#[derive(EventToken, Debug)]
enum Token {
SomePvClockRequest,
Kill,
}
let wait_ctx: WaitContext<Token> = match WaitContext::build_with(&[
(suspend_tube.get_read_notifier(), Token::SomePvClockRequest),
// TODO(b/242743502): Can also close on Tube closure for Unix once CloseNotifier is
// implemented for Tube.
#[cfg(windows)]
(suspend_tube.get_close_notifier(), Token::Kill),
(&kill_evt, Token::Kill),
]) {
Ok(wait_ctx) => wait_ctx,
Err(e) => {
error!("failed creating WaitContext: {}", e);
return StubWorkerReturn { suspend_tube };
}
};
'wait: loop {
let events = match wait_ctx.wait() {
Ok(v) => v,
Err(e) => {
error!("failed polling for events: {}", e);
break;
}
};
for event in events.iter().filter(|e| e.is_readable) {
match event.token {
Token::SomePvClockRequest => {
match suspend_tube.recv::<PvClockCommand>() {
Ok(req) => req,
Err(e) => {
error!("failed to receive request: {}", e);
continue;
}
};
if let Err(e) = suspend_tube.send(&PvClockCommandResponse::DeviceInactive) {
error!("error sending PvClockCommandResponse: {}", e);
}
}
Token::Kill => {
break 'wait;
}
}
}
}
StubWorkerReturn { suspend_tube }
}
struct MainWorkerReturn {
worker: PvClockWorker,
set_pvclock_page_queue: Queue,
suspend_tube: Tube,
}
// TODO(b/237300012): asyncify this device.
/// A worker to process PvClockCommand requests
fn run_main_worker(
mut worker: PvClockWorker,
mut set_pvclock_page_queue: Queue,
suspend_tube: Tube,
interrupt: Interrupt,
kill_evt: Event,
) -> MainWorkerReturn {
#[derive(EventToken)]
enum Token {
SetPvClockPageQueue,
SuspendResume,
InterruptResample,
Kill,
}
let wait_ctx: WaitContext<Token> = match WaitContext::build_with(&[
(set_pvclock_page_queue.event(), Token::SetPvClockPageQueue),
(suspend_tube.get_read_notifier(), Token::SuspendResume),
// TODO(b/242743502): Can also close on Tube closure for Unix once CloseNotifier is
// implemented for Tube.
#[cfg(windows)]
(suspend_tube.get_close_notifier(), Token::Kill),
(&kill_evt, Token::Kill),
]) {
Ok(pc) => pc,
Err(e) => {
error!("failed creating WaitContext: {}", e);
return MainWorkerReturn {
suspend_tube,
set_pvclock_page_queue,
worker,
};
}
};
if let Some(resample_evt) = interrupt.get_resample_evt() {
if wait_ctx
.add(resample_evt, Token::InterruptResample)
.is_err()
{
error!("failed creating WaitContext");
return MainWorkerReturn {
suspend_tube,
set_pvclock_page_queue,
worker,
};
}
}
'wait: loop {
let events = match wait_ctx.wait() {
Ok(v) => v,
Err(e) => {
error!("failed polling for events: {}", e);
break;
}
};
for event in events.iter().filter(|e| e.is_readable) {
match event.token {
Token::SetPvClockPageQueue => {
let _ = set_pvclock_page_queue.event().wait();
let desc_chain = match set_pvclock_page_queue.pop() {
Some(desc_chain) => desc_chain,
None => {
error!("set_pvclock_page queue was empty");
continue;
}
};
// This device does not follow the virtio spec requirements for device-readable
// vs. device-writable descriptors, so we can't use `Reader`/`Writer`. Pick the
// first descriptor from the chain and assume the whole req structure is
// contained within it.
let desc = desc_chain
.reader
.get_remaining_regions()
.chain(desc_chain.writer.get_remaining_regions())
.next()
.unwrap();
let len = if desc.len < size_of::<virtio_pvclock_set_pvclock_page_req>() {
error!("pvclock descriptor too short");
0
} else {
let addr = GuestAddress(desc.offset);
let mut req: virtio_pvclock_set_pvclock_page_req = match worker
.mem
.read_obj_from_addr(addr)
{
Ok(req) => req,
Err(e) => {
error!("failed to read request from set_pvclock_page queue: {}", e);
continue;
}
};
req.status = match worker.set_pvclock_page(req.pvclock_page_pa.into()) {
Err(e) => {
error!("failed to set pvclock page: {:#}", e);
VIRTIO_PVCLOCK_S_IOERR
}
Ok(_) => VIRTIO_PVCLOCK_S_OK,
};
if let Err(e) = worker.mem.write_obj_at_addr(req, addr) {
error!("failed to write set_pvclock_page status: {}", e);
continue;
}
desc.len as u32
};
set_pvclock_page_queue.add_used(desc_chain, len);
set_pvclock_page_queue.trigger_interrupt();
}
Token::SuspendResume => {
let req = match suspend_tube.recv::<PvClockCommand>() {
Ok(req) => req,
Err(e) => {
error!("failed to receive request: {}", e);
continue;
}
};
let resp = match req {
PvClockCommand::Suspend => {
worker.suspend();
PvClockCommandResponse::Ok
}
PvClockCommand::Resume => {
match worker.resume() {
Ok(total_suspended_ticks) => {
// signal to the driver that the total_suspend_ns has changed
interrupt.signal_config_changed();
PvClockCommandResponse::Resumed {
total_suspended_ticks,
}
}
Err(e) => {
error!("Failed to resume pvclock: {:#}", e);
PvClockCommandResponse::Err(pvclock_response_error_from_anyhow(
e,
))
}
}
}
};
if let Err(e) = suspend_tube.send(&resp) {
error!("error sending PvClockCommandResponse: {}", e);
}
}
Token::InterruptResample => {
interrupt.interrupt_resample();
}
Token::Kill => {
break 'wait;
}
}
}
}
MainWorkerReturn {
suspend_tube,
set_pvclock_page_queue,
worker,
}
}
impl VirtioDevice for PvClock {
fn keep_rds(&self) -> Vec<RawDescriptor> {
if let PvClockWorkerState::Idle(suspend_tube) = &self.worker_state {
vec![suspend_tube.as_raw_descriptor()]
} else {
Vec::new()
}
}
fn device_type(&self) -> DeviceType {
DeviceType::Pvclock
}
fn queue_max_sizes(&self) -> &[u16] {
QUEUE_SIZES
}
fn features(&self) -> u64 {
self.state.features
}
fn ack_features(&mut self, mut value: u64) {
if value & !self.features() != 0 {
warn!("virtio-pvclock got unknown feature ack {:x}", value);
value &= self.features();
}
self.state.acked_features |= value;
}
fn read_config(&self, offset: u64, data: &mut [u8]) {
copy_config(data, 0, self.get_config().as_bytes(), offset);
}
fn write_config(&mut self, offset: u64, data: &[u8]) {
// Pvclock device doesn't expect a guest write to config
warn!(
"Unexpected write to virtio-pvclock config at offset {}: {:?}",
offset, data
);
}
fn activate(
&mut self,
mem: GuestMemory,
interrupt: Interrupt,
queues: BTreeMap<usize, Queue>,
) -> anyhow::Result<()> {
let tsc_frequency = self.state.tsc_frequency;
let total_suspend_ns = self.state.total_suspend_ns.clone();
let worker = PvClockWorker::new(tsc_frequency, total_suspend_ns, mem);
self.switch_to_main_worker(interrupt, worker, queues)
}
fn reset(&mut self) -> Result<()> {
self.switch_to_stub_worker();
Ok(())
}
fn virtio_sleep(&mut self) -> anyhow::Result<Option<BTreeMap<usize, Queue>>> {
let last_state = replace(&mut self.worker_state, PvClockWorkerState::None);
match last_state {
PvClockWorkerState::Main(main_worker_thread) => {
let main_worker_ret = main_worker_thread.stop();
let mut queues = BTreeMap::new();
queues.insert(0, main_worker_ret.set_pvclock_page_queue);
self.worker_state = PvClockWorkerState::Idle(main_worker_ret.suspend_tube);
self.state.paused_main_worker = Some(main_worker_ret.worker.into());
Ok(Some(queues))
}
PvClockWorkerState::Stub(stub_worker_thread) => {
let stub_ret = stub_worker_thread.stop();
self.worker_state = PvClockWorkerState::Idle(stub_ret.suspend_tube);
Ok(None)
}
PvClockWorkerState::Idle(suspend_tube) => {
self.worker_state = PvClockWorkerState::Idle(suspend_tube);
Ok(None)
}
PvClockWorkerState::None => panic!("invalid state transition"),
}
}
fn virtio_wake(
&mut self,
queues_state: Option<(GuestMemory, Interrupt, BTreeMap<usize, Queue>)>,
) -> anyhow::Result<()> {
if let Some((mem, interrupt, queues)) = queues_state {
let worker_snap = self
.state
.paused_main_worker
.take()
.ok_or(anyhow!("a sleeping pvclock must have a paused worker"))?;
let worker = PvClockWorker::from_snapshot(
self.state.tsc_frequency,
self.state.total_suspend_ns.clone(),
worker_snap,
mem,
);
// Use unchecked as no worker is running at this point
self.start_main_worker(interrupt, worker, queues)?;
} else {
// If the device wasn't activated, we should bring up the stub worker since that's
// what is supposed to be running for an un-activated device.
self.start_stub_worker();
}
Ok(())
}
fn virtio_snapshot(&mut self) -> anyhow::Result<serde_json::Value> {
serde_json::to_value(&self.state).context("failed to serialize PvClockState")
}
fn virtio_restore(&mut self, data: serde_json::Value) -> anyhow::Result<()> {
let state: PvClockState = serde_json::from_value(data).context("error deserializing")?;
if state.features != self.features() {
bail!(
"expected virtio_features to match, but they did not. Live: {:?}, snapshot {:?}",
self.features(),
state.features,
);
}
// TODO(b/291346907): we assume that the TSC frequency has NOT changed
// since the snapshot was made. Assuming we have not moved machines,
// this is a reasonable assumption. We don't verify the frequency
// because TSC calibration noisy.
self.state = state;
Ok(())
}
fn on_device_sandboxed(&mut self) {
self.start_stub_worker();
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::virtio::QueueConfig;
const TEST_QUEUE_SIZE: u16 = 2048;
fn make_interrupt() -> Interrupt {
Interrupt::new_for_test()
}
fn create_pvclock_device() -> (Tube, PvClock) {
let (host_tube, device_tube) = Tube::pair().unwrap();
let mut pvclock_device = PvClock::new(0, 1e9 as u64, device_tube);
// Simulate the device initialization to start the stub thread.
// In the real case, on_device_sandboxed will be called after the device is sandboxed
// (or at some point during the device initializtion when the sandbox is disabled) to
// allow devices to use multi-threads (as spawning new threads before sandboxing is
// prohibited because of the minijail's restriction).
pvclock_device.on_device_sandboxed();
(host_tube, pvclock_device)
}
fn create_sleeping_device() -> (PvClock, GuestMemory, Tube) {
let (_host_tube, mut pvclock_device) = create_pvclock_device();
// The queue won't actually be used, so passing one that isn't
// fully configured is fine.
let mut fake_queue = QueueConfig::new(TEST_QUEUE_SIZE, 0);
fake_queue.set_ready(true);
let mem = GuestMemory::new(&[(GuestAddress(0), 0x10000)]).unwrap();
let interrupt = make_interrupt();
pvclock_device
.activate(
mem.clone(),
interrupt.clone(),
BTreeMap::from([(
0,
fake_queue
.activate(&mem, Event::new().unwrap(), interrupt)
.unwrap(),
)]),
)
.expect("activate should succeed");
let queues = pvclock_device
.virtio_sleep()
.expect("sleep should succeed")
.expect("sleep should yield queues");
assert_eq!(queues.len(), 1);
assert_eq!(
queues.get(&0).expect("queue must be present").size(),
TEST_QUEUE_SIZE
);
assert!(pvclock_device.state.paused_main_worker.is_some());
(pvclock_device, mem, _host_tube)
}
fn assert_wake_successful(pvclock_device: &mut PvClock, mem: &GuestMemory) {
// We just create a new queue here, because it isn't actually accessed
// by the device in these tests.
let mut wake_queues = BTreeMap::new();
let mut fake_queue = QueueConfig::new(TEST_QUEUE_SIZE, 0);
let interrupt = make_interrupt();
fake_queue.set_ready(true);
wake_queues.insert(
0,
fake_queue
.activate(mem, Event::new().unwrap(), interrupt.clone())
.unwrap(),
);
let queues_state = (mem.clone(), interrupt, wake_queues);
pvclock_device
.virtio_wake(Some(queues_state))
.expect("wake should succeed");
assert!(pvclock_device.state.paused_main_worker.is_none());
}
#[test]
fn test_command_response_when_inactive() {
let (host_tube, _pvclock_device) = create_pvclock_device();
assert!(host_tube.send(&PvClockCommand::Suspend).is_ok());
let res = host_tube.recv::<PvClockCommandResponse>();
assert!(matches!(res, Ok(PvClockCommandResponse::DeviceInactive)));
}
#[test]
fn test_sleep_wake_smoke() {
let (mut pvclock_device, mem, _tube) = create_sleeping_device();
assert_wake_successful(&mut pvclock_device, &mem);
}
#[test]
fn test_save_restore() {
let (mut pvclock_device, mem, _tube) = create_sleeping_device();
let test_suspend_ns = 9999;
// Store a test value we can look for later in the test to verify
// we're restoring properties.
pvclock_device
.state
.total_suspend_ns
.store(test_suspend_ns, Ordering::SeqCst);
let snap = pvclock_device.virtio_snapshot().unwrap();
pvclock_device
.state
.total_suspend_ns
.store(0, Ordering::SeqCst);
pvclock_device.virtio_restore(snap).unwrap();
assert_eq!(
pvclock_device.state.total_suspend_ns.load(Ordering::SeqCst),
test_suspend_ns
);
assert_wake_successful(&mut pvclock_device, &mem);
}
/// A simplified clone of `pvclock_scale_delta` from Linux kernel to emulate
/// what the kernel does when converting TSC to ktime.
fn pvclock_scale_tsc(mult: u32, shift: i8, tsc: u64) -> u64 {
let shifted = if shift < 0 {
tsc >> -shift
} else {
tsc << shift
};
let product = shifted as u128 * mult as u128;
(product >> 32).try_into().expect("should not overflow")
}
/// Helper function for checking the behavior of `freq_scale_shift`.
fn check_freq_scale(f: u64, input: u64) {
// We only test `scaled_hz` = 1GHz because that is the only value used in the code base.
let (mult, shift) = freq_scale_shift(1_000_000_000, f);
let scaled = pvclock_scale_tsc(mult, shift, input);
// Use relative error <= 1e-8 as the target. TSC can be huge so this isn't really a super
// accurate target, and our goal is to simply sanity check the math without adding too many
// requirements about rounding errors.
let expected: u64 = (input as u128 * 1_000_000_000u128 / f as u128) as u64;
let expected_lo: u64 = (input as u128 * 999_999_990u128 / f as u128) as u64;
let expected_hi: u64 = (input as u128 * 1_000_000_010u128 / f as u128) as u64;
assert!(
(expected_lo..=expected_hi).contains(&scaled),
"{scaled} should be close to {expected} (base_hz={f}, mult={mult}, shift={shift})"
);
}
#[test]
fn test_freq_scale_shift_accuracy() {
// Basic check for formula correctness: scaling `scaled_hz` to `base_hz` should yield
// `base_hz`.
for f in (1..=50).map(|n| n * 100_000_000) {
check_freq_scale(f, f);
}
}
#[test]
fn test_freq_scale_shift_overflow_high_freq() {
// For scale factors < 1.0, test that we can correctly convert the maximum TSC value without
// overflow. We must be able to handle values as large as it realistically can be, as the
// kernel clock breaks if the calculated ktime goes backwards (b/342168920).
for f in (11..=50).map(|n| n * 100_000_000) {
check_freq_scale(f, u64::MAX);
}
}
#[test]
fn test_freq_scale_shift_overflow_low_freq() {
fn prev_power_of_two(n: u64) -> u64 {
assert_ne!(n, 0);
let highest_bit_set = 63 - n.leading_zeros();
1 << highest_bit_set
}
// Same test as above, but for scale factors >= 1.0. The difference is that for scale
// factors >= 1.0 we first round up the factor, then apply a multiplier (< 1.0). We reflect
// this limitation in our tested maximum value.
for f in (1..=10).map(|n| n * 100_000_000) {
// Truncate the remainder since prev_power_of_two rounds down anyway.
let factor = 1_000_000_000 / f;
// This is like (exp2(floor(log2(factor)) + 1)).
let target = u64::MAX / (prev_power_of_two(factor) << 1);
check_freq_scale(f, target);
}
}
}