1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
// Copyright 2017 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! A safe wrapper around the kernel's KVM interface.
//!
//! New code should use the `hypervisor` crate instead.

#![cfg(any(target_os = "android", target_os = "linux"))]

mod cap;

use std::cell::RefCell;
use std::cmp::min;
use std::cmp::Ordering;
use std::collections::BTreeMap;
use std::collections::BinaryHeap;
use std::ffi::CString;
use std::fs::File;
use std::mem::size_of;
use std::ops::Deref;
use std::ops::DerefMut;
use std::os::raw::*;
use std::os::unix::prelude::OsStrExt;
use std::path::Path;
use std::ptr::copy_nonoverlapping;
use std::sync::Arc;

#[allow(unused_imports)]
use base::ioctl;
#[allow(unused_imports)]
use base::ioctl_with_mut_ptr;
#[allow(unused_imports)]
use base::ioctl_with_mut_ref;
#[allow(unused_imports)]
use base::ioctl_with_ptr;
#[allow(unused_imports)]
use base::ioctl_with_ref;
#[allow(unused_imports)]
use base::ioctl_with_val;
#[allow(unused_imports)]
use base::pagesize;
#[allow(unused_imports)]
use base::signal;
use base::sys::BlockedSignal;
#[allow(unused_imports)]
use base::unblock_signal;
#[allow(unused_imports)]
use base::warn;
use base::AsRawDescriptor;
#[allow(unused_imports)]
use base::Error;
#[allow(unused_imports)]
use base::Event;
use base::FromRawDescriptor;
#[allow(unused_imports)]
use base::IoctlNr;
#[allow(unused_imports)]
use base::MappedRegion;
#[allow(unused_imports)]
use base::MemoryMapping;
#[allow(unused_imports)]
use base::MemoryMappingBuilder;
#[allow(unused_imports)]
use base::MmapError;
use base::RawDescriptor;
#[allow(unused_imports)]
use base::Result;
#[allow(unused_imports)]
use base::SIGRTMIN;
use data_model::vec_with_array_field;
#[cfg(target_arch = "x86_64")]
use data_model::FlexibleArrayWrapper;
use kvm_sys::*;
use libc::open64;
use libc::sigset_t;
use libc::EBUSY;
use libc::EINVAL;
use libc::ENOENT;
use libc::ENOSPC;
use libc::EOVERFLOW;
use libc::O_CLOEXEC;
use libc::O_RDWR;
use sync::Mutex;
use vm_memory::GuestAddress;
use vm_memory::GuestMemory;

pub use crate::cap::*;

fn errno_result<T>() -> Result<T> {
    Err(Error::last())
}

unsafe fn set_user_memory_region<F: AsRawDescriptor>(
    fd: &F,
    slot: u32,
    read_only: bool,
    log_dirty_pages: bool,
    guest_addr: u64,
    memory_size: u64,
    userspace_addr: *mut u8,
) -> Result<()> {
    let mut flags = if read_only { KVM_MEM_READONLY } else { 0 };
    if log_dirty_pages {
        flags |= KVM_MEM_LOG_DIRTY_PAGES;
    }
    let region = kvm_userspace_memory_region {
        slot,
        flags,
        guest_phys_addr: guest_addr,
        memory_size,
        userspace_addr: userspace_addr as u64,
    };

    let ret = ioctl_with_ref(fd, KVM_SET_USER_MEMORY_REGION, &region);
    if ret == 0 {
        Ok(())
    } else {
        errno_result()
    }
}

/// Helper function to determine the size in bytes of a dirty log bitmap for the given memory region
/// size.
///
/// # Arguments
///
/// * `size` - Number of bytes in the memory region being queried.
pub fn dirty_log_bitmap_size(size: usize) -> usize {
    let page_size = pagesize();
    (((size + page_size - 1) / page_size) + 7) / 8
}

/// A wrapper around opening and using `/dev/kvm`.
///
/// Useful for querying extensions and basic values from the KVM backend. A `Kvm` is required to
/// create a `Vm` object.
pub struct Kvm {
    kvm: File,
}

impl Kvm {
    /// Opens `/dev/kvm` and returns a Kvm object on success.
    pub fn new() -> Result<Kvm> {
        Kvm::new_with_path(Path::new("/dev/kvm"))
    }

    /// Opens a KVM device at `device_path` and returns a Kvm object on success.
    pub fn new_with_path(device_path: &Path) -> Result<Kvm> {
        let c_path = CString::new(device_path.as_os_str().as_bytes()).unwrap();
        // SAFETY:
        // Open calls are safe because we give a nul-terminated string and verify the result.
        let ret = unsafe { open64(c_path.as_ptr(), O_RDWR | O_CLOEXEC) };
        if ret < 0 {
            return errno_result();
        }
        Ok(Kvm {
            kvm: {
                // SAFETY:
                // Safe because we verify that ret is valid and we own the fd.
                unsafe { File::from_raw_descriptor(ret) }
            },
        })
    }

    fn check_extension_int(&self, c: Cap) -> i32 {
        // SAFETY:
        // Safe because we know that our file is a KVM fd and that the extension is one of the ones
        // defined by kernel.
        unsafe { ioctl_with_val(self, KVM_CHECK_EXTENSION, c as c_ulong) }
    }

    /// Checks if a particular `Cap` is available.
    pub fn check_extension(&self, c: Cap) -> bool {
        self.check_extension_int(c) == 1
    }

    /// Gets the size of the mmap required to use vcpu's `kvm_run` structure.
    pub fn get_vcpu_mmap_size(&self) -> Result<usize> {
        // SAFETY:
        // Safe because we know that our file is a KVM fd and we verify the return result.
        let res = unsafe { ioctl(self, KVM_GET_VCPU_MMAP_SIZE) };
        if res > 0 {
            Ok(res as usize)
        } else {
            errno_result()
        }
    }

    #[cfg(target_arch = "x86_64")]
    fn get_cpuid(&self, kind: IoctlNr) -> Result<CpuId> {
        const MAX_KVM_CPUID_ENTRIES: usize = 256;
        let mut cpuid = CpuId::new(MAX_KVM_CPUID_ENTRIES);

        // SAFETY:
        // ioctl is unsafe. The kernel is trusted not to write beyond the bounds of the memory
        // allocated for the struct. The limit is read from nent, which is set to the allocated
        // size(MAX_KVM_CPUID_ENTRIES) above.
        let ret = unsafe { ioctl_with_mut_ptr(self, kind, cpuid.as_mut_ptr()) };
        if ret < 0 {
            return errno_result();
        }

        Ok(cpuid)
    }

    /// X86 specific call to get the system supported CPUID values
    #[cfg(target_arch = "x86_64")]
    pub fn get_supported_cpuid(&self) -> Result<CpuId> {
        self.get_cpuid(KVM_GET_SUPPORTED_CPUID)
    }

    /// X86 specific call to get the system emulated CPUID values
    #[cfg(target_arch = "x86_64")]
    pub fn get_emulated_cpuid(&self) -> Result<CpuId> {
        self.get_cpuid(KVM_GET_EMULATED_CPUID)
    }

    /// X86 specific call to get list of supported MSRS
    ///
    /// See the documentation for KVM_GET_MSR_INDEX_LIST.
    #[cfg(target_arch = "x86_64")]
    pub fn get_msr_index_list(&self) -> Result<Vec<u32>> {
        const MAX_KVM_MSR_ENTRIES: usize = 256;

        let mut msr_list = vec_with_array_field::<kvm_msr_list, u32>(MAX_KVM_MSR_ENTRIES);
        msr_list[0].nmsrs = MAX_KVM_MSR_ENTRIES as u32;

        // SAFETY:
        // ioctl is unsafe. The kernel is trusted not to write beyond the bounds of the memory
        // allocated for the struct. The limit is read from nmsrs, which is set to the allocated
        // size (MAX_KVM_MSR_ENTRIES) above.
        let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_MSR_INDEX_LIST, &mut msr_list[0]) };
        if ret < 0 {
            return errno_result();
        }

        let mut nmsrs = msr_list[0].nmsrs;

        // SAFETY:
        // Mapping the unsized array to a slice is unsafe because the length isn't known.  Using
        // the length we originally allocated with eliminates the possibility of overflow.
        let indices: &[u32] = unsafe {
            if nmsrs > MAX_KVM_MSR_ENTRIES as u32 {
                nmsrs = MAX_KVM_MSR_ENTRIES as u32;
            }
            msr_list[0].indices.as_slice(nmsrs as usize)
        };

        Ok(indices.to_vec())
    }

    #[cfg(any(target_arch = "x86_64", target_arch = "riscv64"))]
    // The x86 and riscv machine type is always 0
    pub fn get_vm_type(&self) -> c_ulong {
        0
    }

    #[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
    // Compute the machine type, which should be the IPA range for the VM
    // Ideally, this would take a description of the memory map and return
    // the closest machine type for this VM. Here, we just return the maximum
    // the kernel support.
    #[allow(clippy::useless_conversion)]
    pub fn get_vm_type(&self) -> c_ulong {
        // SAFETY:
        // Safe because we know self is a real kvm fd
        match unsafe { ioctl_with_val(self, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE.into()) } {
            // Not supported? Use 0 as the machine type, which implies 40bit IPA
            ret if ret < 0 => 0,
            // Use the lower 8 bits representing the IPA space as the machine type
            ipa => (ipa & 0xff) as c_ulong,
        }
    }
}

impl AsRawDescriptor for Kvm {
    fn as_raw_descriptor(&self) -> RawDescriptor {
        self.kvm.as_raw_descriptor()
    }
}

/// An address either in programmable I/O space or in memory mapped I/O space.
#[derive(Copy, Clone, Debug)]
pub enum IoeventAddress {
    Pio(u64),
    Mmio(u64),
}

/// Used in `Vm::register_ioevent` to indicate a size and optionally value to match.
pub enum Datamatch {
    AnyLength,
    U8(Option<u8>),
    U16(Option<u16>),
    U32(Option<u32>),
    U64(Option<u64>),
}

/// A source of IRQs in an `IrqRoute`.
pub enum IrqSource {
    Irqchip { chip: u32, pin: u32 },
    Msi { address: u64, data: u32 },
}

/// A single route for an IRQ.
pub struct IrqRoute {
    pub gsi: u32,
    pub source: IrqSource,
}

/// Interrupt controller IDs
pub enum PicId {
    Primary = 0,
    Secondary = 1,
}

/// Number of pins on the IOAPIC.
pub const NUM_IOAPIC_PINS: usize = 24;

// Used to invert the order when stored in a max-heap.
#[derive(Copy, Clone, Eq, PartialEq)]
struct MemSlot(u32);

impl Ord for MemSlot {
    fn cmp(&self, other: &MemSlot) -> Ordering {
        // Notice the order is inverted so the lowest magnitude slot has the highest priority in a
        // max-heap.
        other.0.cmp(&self.0)
    }
}

impl PartialOrd for MemSlot {
    fn partial_cmp(&self, other: &MemSlot) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

/// A wrapper around creating and using a VM.
pub struct Vm {
    vm: File,
    guest_mem: GuestMemory,
    mem_regions: Arc<Mutex<BTreeMap<u32, Box<dyn MappedRegion>>>>,
    mem_slot_gaps: Arc<Mutex<BinaryHeap<MemSlot>>>,
}

impl Vm {
    /// Constructs a new `Vm` using the given `Kvm` instance.
    pub fn new(kvm: &Kvm, guest_mem: GuestMemory) -> Result<Vm> {
        // SAFETY:
        // Safe because we know kvm is a real kvm fd as this module is the only one that can make
        // Kvm objects.
        let ret = unsafe { ioctl_with_val(kvm, KVM_CREATE_VM, kvm.get_vm_type()) };
        if ret >= 0 {
            // SAFETY:
            // Safe because we verify the value of ret and we are the owners of the fd.
            let vm_file = unsafe { File::from_raw_descriptor(ret) };
            for region in guest_mem.regions() {
                // SAFETY:
                // Safe because the guest regions are guaranteed not to overlap.
                unsafe {
                    set_user_memory_region(
                        &vm_file,
                        region.index as u32,
                        false,
                        false,
                        region.guest_addr.offset(),
                        region.size as u64,
                        region.host_addr as *mut u8,
                    )
                }?;
            }

            Ok(Vm {
                vm: vm_file,
                guest_mem,
                mem_regions: Arc::new(Mutex::new(BTreeMap::new())),
                mem_slot_gaps: Arc::new(Mutex::new(BinaryHeap::new())),
            })
        } else {
            errno_result()
        }
    }

    /// Checks if a particular `Cap` is available.
    ///
    /// This is distinct from the `Kvm` version of this method because the some extensions depend on
    /// the particular `Vm` existence. This method is encouraged by the kernel because it more
    /// accurately reflects the usable capabilities.
    pub fn check_extension(&self, c: Cap) -> bool {
        // SAFETY:
        // Safe because we know that our file is a KVM fd and that the extension is one of the ones
        // defined by kernel.
        unsafe { ioctl_with_val(self, KVM_CHECK_EXTENSION, c as c_ulong) == 1 }
    }

    /// Inserts the given `mem` into the VM's address space at `guest_addr`.
    ///
    /// The slot that was assigned the kvm memory mapping is returned on success. The slot can be
    /// given to `Vm::remove_memory_region` to remove the memory from the VM's address space and
    /// take back ownership of `mem`.
    ///
    /// Note that memory inserted into the VM's address space must not overlap with any other memory
    /// slot's region.
    ///
    /// If `read_only` is true, the guest will be able to read the memory as normal, but attempts to
    /// write will trigger a mmio VM exit, leaving the memory untouched.
    ///
    /// If `log_dirty_pages` is true, the slot number can be used to retrieve the pages written to
    /// by the guest with `get_dirty_log`.
    pub fn add_memory_region(
        &mut self,
        guest_addr: GuestAddress,
        mem: Box<dyn MappedRegion>,
        read_only: bool,
        log_dirty_pages: bool,
    ) -> Result<u32> {
        let size = mem.size() as u64;
        let end_addr = guest_addr
            .checked_add(size)
            .ok_or_else(|| Error::new(EOVERFLOW))?;
        if self.guest_mem.range_overlap(guest_addr, end_addr) {
            return Err(Error::new(ENOSPC));
        }
        let mut regions = self.mem_regions.lock();
        let mut gaps = self.mem_slot_gaps.lock();
        let slot = match gaps.pop() {
            Some(gap) => gap.0,
            None => (regions.len() + self.guest_mem.num_regions() as usize) as u32,
        };

        // SAFETY:
        // Safe because we check that the given guest address is valid and has no overlaps. We also
        // know that the pointer and size are correct because the MemoryMapping interface ensures
        // this. We take ownership of the memory mapping so that it won't be unmapped until the slot
        // is removed.
        let res = unsafe {
            set_user_memory_region(
                &self.vm,
                slot,
                read_only,
                log_dirty_pages,
                guest_addr.offset(),
                size,
                mem.as_ptr(),
            )
        };

        if let Err(e) = res {
            gaps.push(MemSlot(slot));
            return Err(e);
        }
        regions.insert(slot, mem);
        Ok(slot)
    }

    /// Removes memory that was previously added at the given slot.
    ///
    /// Ownership of the host memory mapping associated with the given slot is returned on success.
    pub fn remove_memory_region(&mut self, slot: u32) -> Result<Box<dyn MappedRegion>> {
        let mut regions = self.mem_regions.lock();
        if !regions.contains_key(&slot) {
            return Err(Error::new(ENOENT));
        }
        // SAFETY:
        // Safe because the slot is checked against the list of memory slots.
        unsafe {
            set_user_memory_region(&self.vm, slot, false, false, 0, 0, std::ptr::null_mut())?;
        }
        self.mem_slot_gaps.lock().push(MemSlot(slot));
        // This remove will always succeed because of the contains_key check above.
        Ok(regions.remove(&slot).unwrap())
    }

    /// Gets the bitmap of dirty pages since the last call to `get_dirty_log` for the memory at
    /// `slot`.
    ///
    /// The size of `dirty_log` must be at least as many bits as there are pages in the memory
    /// region `slot` represents. For example, if the size of `slot` is 16 pages, `dirty_log` must
    /// be 2 bytes or greater.
    pub fn get_dirty_log(&self, slot: u32, dirty_log: &mut [u8]) -> Result<()> {
        match self.mem_regions.lock().get(&slot) {
            Some(mem) => {
                // Ensures that there are as many bytes in dirty_log as there are pages in the mmap.
                if dirty_log_bitmap_size(mem.size()) > dirty_log.len() {
                    return Err(Error::new(EINVAL));
                }
                let mut dirty_log_kvm = kvm_dirty_log {
                    slot,
                    ..Default::default()
                };
                dirty_log_kvm.__bindgen_anon_1.dirty_bitmap = dirty_log.as_ptr() as *mut c_void;
                // SAFETY:
                // Safe because the `dirty_bitmap` pointer assigned above is guaranteed to be valid
                // (because it's from a slice) and we checked that it will be large enough to hold
                // the entire log.
                let ret = unsafe { ioctl_with_ref(self, KVM_GET_DIRTY_LOG, &dirty_log_kvm) };
                if ret == 0 {
                    Ok(())
                } else {
                    errno_result()
                }
            }
            _ => Err(Error::new(ENOENT)),
        }
    }

    /// Gets a reference to the guest memory owned by this VM.
    ///
    /// Note that `GuestMemory` does not include any mmio memory that may have been added after
    /// this VM was constructed.
    pub fn get_memory(&self) -> &GuestMemory {
        &self.guest_mem
    }

    /// Sets the address of a one-page region in the VM's address space.
    ///
    /// See the documentation on the KVM_SET_IDENTITY_MAP_ADDR ioctl.
    #[cfg(target_arch = "x86_64")]
    pub fn set_identity_map_addr(&self, addr: GuestAddress) -> Result<()> {
        // SAFETY:
        // Safe because we know that our file is a VM fd and we verify the return result.
        let ret = unsafe { ioctl_with_ref(self, KVM_SET_IDENTITY_MAP_ADDR, &addr.offset()) };
        if ret == 0 {
            Ok(())
        } else {
            errno_result()
        }
    }

    /// Retrieves the current timestamp of kvmclock as seen by the current guest.
    ///
    /// See the documentation on the KVM_GET_CLOCK ioctl.
    #[cfg(target_arch = "x86_64")]
    pub fn get_clock(&self) -> Result<kvm_clock_data> {
        // SAFETY: trivially safe
        let mut clock_data = unsafe { std::mem::zeroed() };
        // SAFETY:
        // Safe because we know that our file is a VM fd, we know the kernel will only write
        // correct amount of memory to our pointer, and we verify the return result.
        let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_CLOCK, &mut clock_data) };
        if ret == 0 {
            Ok(clock_data)
        } else {
            errno_result()
        }
    }

    /// Sets the current timestamp of kvmclock to the specified value.
    ///
    /// See the documentation on the KVM_SET_CLOCK ioctl.
    #[cfg(target_arch = "x86_64")]
    pub fn set_clock(&self, clock_data: &kvm_clock_data) -> Result<()> {
        // SAFETY:
        // Safe because we know that our file is a VM fd, we know the kernel will only read
        // correct amount of memory from our pointer, and we verify the return result.
        let ret = unsafe { ioctl_with_ref(self, KVM_SET_CLOCK, clock_data) };
        if ret == 0 {
            Ok(())
        } else {
            errno_result()
        }
    }

    /// Crates an in kernel interrupt controller.
    ///
    /// See the documentation on the KVM_CREATE_IRQCHIP ioctl.
    #[cfg(any(target_arch = "x86_64", target_arch = "arm", target_arch = "aarch64"))]
    pub fn create_irq_chip(&self) -> Result<()> {
        // SAFETY:
        // Safe because we know that our file is a VM fd and we verify the return result.
        let ret = unsafe { ioctl(self, KVM_CREATE_IRQCHIP) };
        if ret == 0 {
            Ok(())
        } else {
            errno_result()
        }
    }

    /// Retrieves the state of given interrupt controller by issuing KVM_GET_IRQCHIP ioctl.
    ///
    /// Note that this call can only succeed after a call to `Vm::create_irq_chip`.
    #[cfg(target_arch = "x86_64")]
    pub fn get_pic_state(&self, id: PicId) -> Result<kvm_pic_state> {
        let mut irqchip_state = kvm_irqchip {
            chip_id: id as u32,
            ..Default::default()
        };
        // SAFETY:
        // Safe because we know our file is a VM fd, we know the kernel will only write
        // correct amount of memory to our pointer, and we verify the return result.
        let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_IRQCHIP, &mut irqchip_state) };
        if ret == 0 {
            Ok(
                // SAFETY:
                // Safe as we know that we are retrieving data related to the
                // PIC (primary or secondary) and not IOAPIC.
                unsafe { irqchip_state.chip.pic },
            )
        } else {
            errno_result()
        }
    }

    /// Sets the state of given interrupt controller by issuing KVM_SET_IRQCHIP ioctl.
    ///
    /// Note that this call can only succeed after a call to `Vm::create_irq_chip`.
    #[cfg(target_arch = "x86_64")]
    pub fn set_pic_state(&self, id: PicId, state: &kvm_pic_state) -> Result<()> {
        let mut irqchip_state = kvm_irqchip {
            chip_id: id as u32,
            ..Default::default()
        };
        irqchip_state.chip.pic = *state;
        // SAFETY:
        // Safe because we know that our file is a VM fd, we know the kernel will only read
        // correct amount of memory from our pointer, and we verify the return result.
        let ret = unsafe { ioctl_with_ref(self, KVM_SET_IRQCHIP, &irqchip_state) };
        if ret == 0 {
            Ok(())
        } else {
            errno_result()
        }
    }

    /// Retrieves the state of IOAPIC by issuing KVM_GET_IRQCHIP ioctl.
    ///
    /// Note that this call can only succeed after a call to `Vm::create_irq_chip`.
    #[cfg(target_arch = "x86_64")]
    pub fn get_ioapic_state(&self) -> Result<kvm_ioapic_state> {
        let mut irqchip_state = kvm_irqchip {
            chip_id: 2,
            ..Default::default()
        };
        let ret =
            // SAFETY:
            // Safe because we know our file is a VM fd, we know the kernel will only write
            // correct amount of memory to our pointer, and we verify the return result.
            unsafe {
                ioctl_with_mut_ref(self, KVM_GET_IRQCHIP, &mut irqchip_state)
        };
        if ret == 0 {
            Ok(
                // SAFETY:
                // Safe as we know that we are retrieving data related to the
                // IOAPIC and not PIC.
                unsafe { irqchip_state.chip.ioapic },
            )
        } else {
            errno_result()
        }
    }

    /// Sets the state of IOAPIC by issuing KVM_SET_IRQCHIP ioctl.
    ///
    /// Note that this call can only succeed after a call to `Vm::create_irq_chip`.
    #[cfg(target_arch = "x86_64")]
    pub fn set_ioapic_state(&self, state: &kvm_ioapic_state) -> Result<()> {
        let mut irqchip_state = kvm_irqchip {
            chip_id: 2,
            ..Default::default()
        };
        irqchip_state.chip.ioapic = *state;
        // SAFETY:
        // Safe because we know that our file is a VM fd, we know the kernel will only read
        // correct amount of memory from our pointer, and we verify the return result.
        let ret = unsafe { ioctl_with_ref(self, KVM_SET_IRQCHIP, &irqchip_state) };
        if ret == 0 {
            Ok(())
        } else {
            errno_result()
        }
    }

    /// Sets the level on the given irq to 1 if `active` is true, and 0 otherwise.
    #[cfg(any(target_arch = "x86_64", target_arch = "arm", target_arch = "aarch64"))]
    pub fn set_irq_line(&self, irq: u32, active: bool) -> Result<()> {
        let mut irq_level = kvm_irq_level::default();
        irq_level.__bindgen_anon_1.irq = irq;
        irq_level.level = active.into();

        // SAFETY:
        // Safe because we know that our file is a VM fd, we know the kernel will only read the
        // correct amount of memory from our pointer, and we verify the return result.
        let ret = unsafe { ioctl_with_ref(self, KVM_IRQ_LINE, &irq_level) };
        if ret == 0 {
            Ok(())
        } else {
            errno_result()
        }
    }

    /// Creates a PIT as per the KVM_CREATE_PIT2 ioctl.
    ///
    /// Note that this call can only succeed after a call to `Vm::create_irq_chip`.
    #[cfg(target_arch = "x86_64")]
    pub fn create_pit(&self) -> Result<()> {
        let pit_config = kvm_pit_config::default();
        // SAFETY:
        // Safe because we know that our file is a VM fd, we know the kernel will only read the
        // correct amount of memory from our pointer, and we verify the return result.
        let ret = unsafe { ioctl_with_ref(self, KVM_CREATE_PIT2, &pit_config) };
        if ret == 0 {
            Ok(())
        } else {
            errno_result()
        }
    }

    /// Retrieves the state of PIT by issuing KVM_GET_PIT2 ioctl.
    ///
    /// Note that this call can only succeed after a call to `Vm::create_pit`.
    #[cfg(target_arch = "x86_64")]
    pub fn get_pit_state(&self) -> Result<kvm_pit_state2> {
        // SAFETY: trivially safe
        let mut pit_state = unsafe { std::mem::zeroed() };
        // SAFETY:
        // Safe because we know that our file is a VM fd, we know the kernel will only write
        // correct amount of memory to our pointer, and we verify the return result.
        let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_PIT2, &mut pit_state) };
        if ret == 0 {
            Ok(pit_state)
        } else {
            errno_result()
        }
    }

    /// Sets the state of PIT by issuing KVM_SET_PIT2 ioctl.
    ///
    /// Note that this call can only succeed after a call to `Vm::create_pit`.
    #[cfg(target_arch = "x86_64")]
    pub fn set_pit_state(&self, pit_state: &kvm_pit_state2) -> Result<()> {
        // SAFETY:
        // Safe because we know that our file is a VM fd, we know the kernel will only read
        // correct amount of memory from our pointer, and we verify the return result.
        let ret = unsafe { ioctl_with_ref(self, KVM_SET_PIT2, pit_state) };
        if ret == 0 {
            Ok(())
        } else {
            errno_result()
        }
    }

    /// Registers an event to be signaled whenever a certain address is written to.
    ///
    /// The `datamatch` parameter can be used to limit signaling `evt` to only the cases where the
    /// value being written is equal to `datamatch`. Note that the size of `datamatch` is important
    /// and must match the expected size of the guest's write.
    ///
    /// In all cases where `evt` is signaled, the ordinary vmexit to userspace that would be
    /// triggered is prevented.
    pub fn register_ioevent(
        &self,
        evt: &Event,
        addr: IoeventAddress,
        datamatch: Datamatch,
    ) -> Result<()> {
        self.ioeventfd(evt, addr, datamatch, false)
    }

    /// Unregisters an event previously registered with `register_ioevent`.
    ///
    /// The `evt`, `addr`, and `datamatch` set must be the same as the ones passed into
    /// `register_ioevent`.
    pub fn unregister_ioevent(
        &self,
        evt: &Event,
        addr: IoeventAddress,
        datamatch: Datamatch,
    ) -> Result<()> {
        self.ioeventfd(evt, addr, datamatch, true)
    }

    fn ioeventfd(
        &self,
        evt: &Event,
        addr: IoeventAddress,
        datamatch: Datamatch,
        deassign: bool,
    ) -> Result<()> {
        let (do_datamatch, datamatch_value, datamatch_len) = match datamatch {
            Datamatch::AnyLength => (false, 0, 0),
            Datamatch::U8(v) => match v {
                Some(u) => (true, u as u64, 1),
                None => (false, 0, 1),
            },
            Datamatch::U16(v) => match v {
                Some(u) => (true, u as u64, 2),
                None => (false, 0, 2),
            },
            Datamatch::U32(v) => match v {
                Some(u) => (true, u as u64, 4),
                None => (false, 0, 4),
            },
            Datamatch::U64(v) => match v {
                Some(u) => (true, u, 8),
                None => (false, 0, 8),
            },
        };
        let mut flags = 0;
        if deassign {
            flags |= 1 << kvm_ioeventfd_flag_nr_deassign;
        }
        if do_datamatch {
            flags |= 1 << kvm_ioeventfd_flag_nr_datamatch
        }
        if let IoeventAddress::Pio(_) = addr {
            flags |= 1 << kvm_ioeventfd_flag_nr_pio;
        }
        let ioeventfd = kvm_ioeventfd {
            datamatch: datamatch_value,
            len: datamatch_len,
            addr: match addr {
                IoeventAddress::Pio(p) => p,
                IoeventAddress::Mmio(m) => m,
            },
            fd: evt.as_raw_descriptor(),
            flags,
            ..Default::default()
        };
        // SAFETY:
        // Safe because we know that our file is a VM fd, we know the kernel will only read the
        // correct amount of memory from our pointer, and we verify the return result.
        let ret = unsafe { ioctl_with_ref(self, KVM_IOEVENTFD, &ioeventfd) };
        if ret == 0 {
            Ok(())
        } else {
            errno_result()
        }
    }

    /// Registers an event that will, when signalled, trigger the `gsi` irq, and `resample_evt` will
    /// get triggered when the irqchip is resampled.
    #[cfg(any(target_arch = "x86_64", target_arch = "arm", target_arch = "aarch64"))]
    pub fn register_irqfd_resample(
        &self,
        evt: &Event,
        resample_evt: &Event,
        gsi: u32,
    ) -> Result<()> {
        let irqfd = kvm_irqfd {
            flags: KVM_IRQFD_FLAG_RESAMPLE,
            fd: evt.as_raw_descriptor() as u32,
            resamplefd: resample_evt.as_raw_descriptor() as u32,
            gsi,
            ..Default::default()
        };
        // SAFETY:
        // Safe because we know that our file is a VM fd, we know the kernel will only read the
        // correct amount of memory from our pointer, and we verify the return result.
        let ret = unsafe { ioctl_with_ref(self, KVM_IRQFD, &irqfd) };
        if ret == 0 {
            Ok(())
        } else {
            errno_result()
        }
    }

    /// Unregisters an event that was previously registered with
    /// `register_irqfd`/`register_irqfd_resample`.
    ///
    /// The `evt` and `gsi` pair must be the same as the ones passed into
    /// `register_irqfd`/`register_irqfd_resample`.
    #[cfg(any(target_arch = "x86_64", target_arch = "arm", target_arch = "aarch64"))]
    pub fn unregister_irqfd(&self, evt: &Event, gsi: u32) -> Result<()> {
        let irqfd = kvm_irqfd {
            fd: evt.as_raw_descriptor() as u32,
            gsi,
            flags: KVM_IRQFD_FLAG_DEASSIGN,
            ..Default::default()
        };
        // SAFETY:
        // Safe because we know that our file is a VM fd, we know the kernel will only read the
        // correct amount of memory from our pointer, and we verify the return result.
        let ret = unsafe { ioctl_with_ref(self, KVM_IRQFD, &irqfd) };
        if ret == 0 {
            Ok(())
        } else {
            errno_result()
        }
    }

    /// Sets the GSI routing table, replacing any table set with previous calls to
    /// `set_gsi_routing`.
    #[cfg(target_arch = "x86_64")]
    pub fn set_gsi_routing(&self, routes: &[IrqRoute]) -> Result<()> {
        let mut irq_routing =
            vec_with_array_field::<kvm_irq_routing, kvm_irq_routing_entry>(routes.len());
        irq_routing[0].nr = routes.len() as u32;

        // SAFETY:
        // Safe because we ensured there is enough space in irq_routing to hold the number of
        // route entries.
        let irq_routes = unsafe { irq_routing[0].entries.as_mut_slice(routes.len()) };
        for (route, irq_route) in routes.iter().zip(irq_routes.iter_mut()) {
            irq_route.gsi = route.gsi;
            match route.source {
                IrqSource::Irqchip { chip, pin } => {
                    irq_route.type_ = KVM_IRQ_ROUTING_IRQCHIP;
                    irq_route.u.irqchip = kvm_irq_routing_irqchip { irqchip: chip, pin }
                }
                IrqSource::Msi { address, data } => {
                    irq_route.type_ = KVM_IRQ_ROUTING_MSI;
                    irq_route.u.msi = kvm_irq_routing_msi {
                        address_lo: address as u32,
                        address_hi: (address >> 32) as u32,
                        data,
                        ..Default::default()
                    }
                }
            }
        }

        // TODO(b/315998194): Add safety comment
        #[allow(clippy::undocumented_unsafe_blocks)]
        let ret = unsafe { ioctl_with_ref(self, KVM_SET_GSI_ROUTING, &irq_routing[0]) };
        if ret == 0 {
            Ok(())
        } else {
            errno_result()
        }
    }

    /// Enable the specified capability.
    /// See documentation for KVM_ENABLE_CAP.
    /// # Safety
    /// This function is marked as unsafe because `cap` may contain values which are interpreted as
    /// pointers by the kernel.
    pub unsafe fn kvm_enable_cap(&self, cap: &kvm_enable_cap) -> Result<()> {
        // Safe because we allocated the struct and we know the kernel will read exactly the size of
        // the struct.
        let ret = ioctl_with_ref(self, KVM_ENABLE_CAP, cap);
        if ret < 0 {
            errno_result()
        } else {
            Ok(())
        }
    }
}

impl AsRawDescriptor for Vm {
    fn as_raw_descriptor(&self) -> RawDescriptor {
        self.vm.as_raw_descriptor()
    }
}

/// A reason why a VCPU exited. One of these returns every time `Vcpu::run` is called.
#[derive(Debug)]
pub enum VcpuExit {
    /// An out port instruction was run on the given port with the given data.
    IoOut {
        port: u16,
        size: usize,
        data: [u8; 8],
    },
    /// An in port instruction was run on the given port.
    ///
    /// The date that the instruction receives should be set with `set_data` before `Vcpu::run` is
    /// called again.
    IoIn {
        port: u16,
        size: usize,
    },
    /// A read instruction was run against the given MMIO address.
    ///
    /// The date that the instruction receives should be set with `set_data` before `Vcpu::run` is
    /// called again.
    MmioRead {
        address: u64,
        size: usize,
    },
    /// A write instruction was run against the given MMIO address with the given data.
    MmioWrite {
        address: u64,
        size: usize,
        data: [u8; 8],
    },
    IoapicEoi {
        vector: u8,
    },
    HypervSynic {
        msr: u32,
        control: u64,
        evt_page: u64,
        msg_page: u64,
    },
    HypervHcall {
        input: u64,
        params: [u64; 2],
    },
    Unknown,
    Exception,
    Hypercall,
    Debug,
    Hlt,
    IrqWindowOpen,
    Shutdown,
    FailEntry {
        hardware_entry_failure_reason: u64,
    },
    Intr,
    SetTpr,
    TprAccess,
    S390Sieic,
    S390Reset,
    Dcr,
    Nmi,
    InternalError,
    Osi,
    PaprHcall,
    S390Ucontrol,
    Watchdog,
    S390Tsch,
    Epr,
    /// The cpu triggered a system level event which is specified by the type field.
    /// The first field is the event type and the second field is flags.
    /// The possible event types are shutdown, reset, or crash.  So far there
    /// are not any flags defined.
    SystemEvent(u32 /* event_type */, u64 /* flags */),
}

/// A wrapper around creating and using a VCPU.
/// `Vcpu` provides all functionality except for running. To run, `to_runnable` must be called to
/// lock the vcpu to a thread. Then the returned `RunnableVcpu` can be used for running.
pub struct Vcpu {
    vcpu: File,
    run_mmap: MemoryMapping,
}

pub struct VcpuThread {
    run: *mut kvm_run,
    signal_num: Option<c_int>,
}

thread_local!(static VCPU_THREAD: RefCell<Option<VcpuThread>> = const { RefCell::new(None) });

impl Vcpu {
    /// Constructs a new VCPU for `vm`.
    ///
    /// The `id` argument is the CPU number between [0, max vcpus).
    pub fn new(id: c_ulong, kvm: &Kvm, vm: &Vm) -> Result<Vcpu> {
        let run_mmap_size = kvm.get_vcpu_mmap_size()?;

        // SAFETY:
        // Safe because we know that vm a VM fd and we verify the return result.
        let vcpu_fd = unsafe { ioctl_with_val(vm, KVM_CREATE_VCPU, id) };
        if vcpu_fd < 0 {
            return errno_result();
        }

        // SAFETY:
        // Wrap the vcpu now in case the following ? returns early. This is safe because we verified
        // the value of the fd and we own the fd.
        let vcpu = unsafe { File::from_raw_descriptor(vcpu_fd) };

        let run_mmap = MemoryMappingBuilder::new(run_mmap_size)
            .from_file(&vcpu)
            .build()
            .map_err(|_| Error::new(ENOSPC))?;

        Ok(Vcpu { vcpu, run_mmap })
    }

    /// Consumes `self` and returns a `RunnableVcpu`. A `RunnableVcpu` is required to run the
    /// guest.
    /// Assigns a vcpu to the current thread and stores it in a hash map that can be used by signal
    /// handlers to call set_local_immediate_exit(). An optional signal number will be temporarily
    /// blocked while assigning the vcpu to the thread and later blocked when `RunnableVcpu` is
    /// destroyed.
    ///
    /// Returns an error, `EBUSY`, if the current thread already contains a Vcpu.
    #[allow(clippy::cast_ptr_alignment)]
    pub fn to_runnable(self, signal_num: Option<c_int>) -> Result<RunnableVcpu> {
        // Block signal while we add -- if a signal fires (very unlikely,
        // as this means something is trying to pause the vcpu before it has
        // even started) it'll try to grab the read lock while this write
        // lock is grabbed and cause a deadlock.
        // Assuming that a failure to block means it's already blocked.
        let _blocked_signal = signal_num.map(BlockedSignal::new);

        VCPU_THREAD.with(|v| {
            if v.borrow().is_none() {
                *v.borrow_mut() = Some(VcpuThread {
                    run: self.run_mmap.as_ptr() as *mut kvm_run,
                    signal_num,
                });
                Ok(())
            } else {
                Err(Error::new(EBUSY))
            }
        })?;

        Ok(RunnableVcpu {
            vcpu: self,
            phantom: Default::default(),
        })
    }

    /// Sets the data received by a mmio read, ioport in, or hypercall instruction.
    ///
    /// This function should be called after `Vcpu::run` returns an `VcpuExit::IoIn`,
    /// `VcpuExit::MmioRead`, or 'VcpuExit::HypervHcall`.
    #[allow(clippy::cast_ptr_alignment)]
    pub fn set_data(&self, data: &[u8]) -> Result<()> {
        // SAFETY:
        // Safe because we know we mapped enough memory to hold the kvm_run struct because the
        // kernel told us how large it was. The pointer is page aligned so casting to a different
        // type is well defined, hence the clippy allow attribute.
        let run = unsafe { &mut *(self.run_mmap.as_ptr() as *mut kvm_run) };
        match run.exit_reason {
            KVM_EXIT_IO => {
                let run_start = run as *mut kvm_run as *mut u8;
                // SAFETY:
                // Safe because the exit_reason (which comes from the kernel) told us which
                // union field to use.
                let io = unsafe { run.__bindgen_anon_1.io };
                if io.direction as u32 != KVM_EXIT_IO_IN {
                    return Err(Error::new(EINVAL));
                }
                let data_size = (io.count as usize) * (io.size as usize);
                if data_size != data.len() {
                    return Err(Error::new(EINVAL));
                }
                // SAFETY:
                // The data_offset is defined by the kernel to be some number of bytes into the
                // kvm_run structure, which we have fully mmap'd.
                unsafe {
                    let data_ptr = run_start.offset(io.data_offset as isize);
                    copy_nonoverlapping(data.as_ptr(), data_ptr, data_size);
                }
                Ok(())
            }
            KVM_EXIT_MMIO => {
                // SAFETY:
                // Safe because the exit_reason (which comes from the kernel) told us which
                // union field to use.
                let mmio = unsafe { &mut run.__bindgen_anon_1.mmio };
                if mmio.is_write != 0 {
                    return Err(Error::new(EINVAL));
                }
                let len = mmio.len as usize;
                if len != data.len() {
                    return Err(Error::new(EINVAL));
                }
                mmio.data[..len].copy_from_slice(data);
                Ok(())
            }
            KVM_EXIT_HYPERV => {
                // SAFETY:
                // Safe because the exit_reason (which comes from the kernel) told us which
                // union field to use.
                let hyperv = unsafe { &mut run.__bindgen_anon_1.hyperv };
                if hyperv.type_ != KVM_EXIT_HYPERV_HCALL {
                    return Err(Error::new(EINVAL));
                }
                // TODO(b/315998194): Add safety comment
                #[allow(clippy::undocumented_unsafe_blocks)]
                let hcall = unsafe { &mut hyperv.u.hcall };
                match data.try_into() {
                    Ok(data) => {
                        hcall.result = u64::from_ne_bytes(data);
                    }
                    _ => return Err(Error::new(EINVAL)),
                }
                Ok(())
            }
            _ => Err(Error::new(EINVAL)),
        }
    }

    /// Sets the bit that requests an immediate exit.
    #[allow(clippy::cast_ptr_alignment)]
    pub fn set_immediate_exit(&self, exit: bool) {
        // SAFETY:
        // Safe because we know we mapped enough memory to hold the kvm_run struct because the
        // kernel told us how large it was. The pointer is page aligned so casting to a different
        // type is well defined, hence the clippy allow attribute.
        let run = unsafe { &mut *(self.run_mmap.as_ptr() as *mut kvm_run) };
        run.immediate_exit = exit.into();
    }

    /// Sets/clears the bit for immediate exit for the vcpu on the current thread.
    pub fn set_local_immediate_exit(exit: bool) {
        VCPU_THREAD.with(|v| {
            if let Some(state) = &(*v.borrow()) {
                // TODO(b/315998194): Add safety comment
                #[allow(clippy::undocumented_unsafe_blocks)]
                unsafe {
                    (*state.run).immediate_exit = exit.into();
                };
            }
        });
    }

    /// Gets the VCPU registers.
    #[cfg(not(any(target_arch = "arm", target_arch = "aarch64")))]
    pub fn get_regs(&self) -> Result<kvm_regs> {
        // SAFETY: trivially safe
        let mut regs = unsafe { std::mem::zeroed() };
        // SAFETY:
        // Safe because we know that our file is a VCPU fd, we know the kernel will only read the
        // correct amount of memory from our pointer, and we verify the return result.
        let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_REGS, &mut regs) };
        if ret != 0 {
            return errno_result();
        }
        Ok(regs)
    }

    /// Sets the VCPU registers.
    #[cfg(not(any(target_arch = "arm", target_arch = "aarch64")))]
    pub fn set_regs(&self, regs: &kvm_regs) -> Result<()> {
        // SAFETY:
        // Safe because we know that our file is a VCPU fd, we know the kernel will only read the
        // correct amount of memory from our pointer, and we verify the return result.
        let ret = unsafe { ioctl_with_ref(self, KVM_SET_REGS, regs) };
        if ret != 0 {
            return errno_result();
        }
        Ok(())
    }

    /// Gets the VCPU special registers.
    #[cfg(target_arch = "x86_64")]
    pub fn get_sregs(&self) -> Result<kvm_sregs> {
        // SAFETY: trivially safe
        let mut regs = unsafe { std::mem::zeroed() };
        // SAFETY:
        // Safe because we know that our file is a VCPU fd, we know the kernel will only write the
        // correct amount of memory to our pointer, and we verify the return result.
        let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_SREGS, &mut regs) };
        if ret != 0 {
            return errno_result();
        }
        Ok(regs)
    }

    /// Sets the VCPU special registers.
    #[cfg(target_arch = "x86_64")]
    pub fn set_sregs(&self, sregs: &kvm_sregs) -> Result<()> {
        // SAFETY:
        // Safe because we know that our file is a VCPU fd, we know the kernel will only read the
        // correct amount of memory from our pointer, and we verify the return result.
        let ret = unsafe { ioctl_with_ref(self, KVM_SET_SREGS, sregs) };
        if ret != 0 {
            return errno_result();
        }
        Ok(())
    }

    /// Gets the VCPU FPU registers.
    #[cfg(target_arch = "x86_64")]
    pub fn get_fpu(&self) -> Result<kvm_fpu> {
        // SAFETY: trivially safe
        // correct amount of memory to our pointer, and we verify the return result.
        let mut regs = unsafe { std::mem::zeroed() };
        // SAFETY:
        // Safe because we know that our file is a VCPU fd, we know the kernel will only write the
        let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_FPU, &mut regs) };
        if ret != 0 {
            return errno_result();
        }
        Ok(regs)
    }

    /// X86 specific call to setup the FPU
    ///
    /// See the documentation for KVM_SET_FPU.
    #[cfg(target_arch = "x86_64")]
    pub fn set_fpu(&self, fpu: &kvm_fpu) -> Result<()> {
        let ret = {
            // SAFETY:
            // Here we trust the kernel not to read past the end of the kvm_fpu struct.
            unsafe { ioctl_with_ref(self, KVM_SET_FPU, fpu) }
        };
        if ret < 0 {
            return errno_result();
        }
        Ok(())
    }

    /// Gets the VCPU debug registers.
    #[cfg(target_arch = "x86_64")]
    pub fn get_debugregs(&self) -> Result<kvm_debugregs> {
        // SAFETY: trivially safe
        let mut regs = unsafe { std::mem::zeroed() };
        // SAFETY:
        // Safe because we know that our file is a VCPU fd, we know the kernel will only write the
        // correct amount of memory to our pointer, and we verify the return result.
        let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_DEBUGREGS, &mut regs) };
        if ret != 0 {
            return errno_result();
        }
        Ok(regs)
    }

    /// Sets the VCPU debug registers
    #[cfg(target_arch = "x86_64")]
    pub fn set_debugregs(&self, dregs: &kvm_debugregs) -> Result<()> {
        let ret = {
            // SAFETY:
            // Here we trust the kernel not to read past the end of the kvm_fpu struct.
            unsafe { ioctl_with_ref(self, KVM_SET_DEBUGREGS, dregs) }
        };
        if ret < 0 {
            return errno_result();
        }
        Ok(())
    }

    /// Gets the VCPU extended control registers
    #[cfg(target_arch = "x86_64")]
    pub fn get_xcrs(&self) -> Result<kvm_xcrs> {
        // SAFETY: trivially safe
        let mut regs = unsafe { std::mem::zeroed() };
        // SAFETY:
        // Safe because we know that our file is a VCPU fd, we know the kernel will only write the
        // correct amount of memory to our pointer, and we verify the return result.
        let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_XCRS, &mut regs) };
        if ret != 0 {
            return errno_result();
        }
        Ok(regs)
    }

    /// Sets the VCPU extended control registers
    #[cfg(target_arch = "x86_64")]
    pub fn set_xcrs(&self, xcrs: &kvm_xcrs) -> Result<()> {
        let ret = {
            // SAFETY:
            // Here we trust the kernel not to read past the end of the kvm_xcrs struct.
            unsafe { ioctl_with_ref(self, KVM_SET_XCRS, xcrs) }
        };
        if ret < 0 {
            return errno_result();
        }
        Ok(())
    }

    /// X86 specific call to get the MSRS
    ///
    /// See the documentation for KVM_SET_MSRS.
    #[cfg(target_arch = "x86_64")]
    pub fn get_msrs(&self, msr_entries: &mut Vec<kvm_msr_entry>) -> Result<()> {
        let mut msrs = vec_with_array_field::<kvm_msrs, kvm_msr_entry>(msr_entries.len());
        {
            // SAFETY:
            // Mapping the unsized array to a slice is unsafe because the length isn't known.
            // Providing the length used to create the struct guarantees the entire slice is valid.
            unsafe {
                let entries: &mut [kvm_msr_entry] = msrs[0].entries.as_mut_slice(msr_entries.len());
                entries.copy_from_slice(msr_entries);
            }
        }
        msrs[0].nmsrs = msr_entries.len() as u32;
        let ret = {
            // SAFETY:
            // Here we trust the kernel not to read or write past the end of the kvm_msrs struct.
            unsafe { ioctl_with_mut_ref(self, KVM_GET_MSRS, &mut msrs[0]) }
        };
        if ret < 0 {
            // KVM_SET_MSRS actually returns the number of msr entries written.
            return errno_result();
        }
        // TODO(b/315998194): Add safety comment
        #[allow(clippy::undocumented_unsafe_blocks)]
        unsafe {
            let count = ret as usize;
            assert!(count <= msr_entries.len());
            let entries: &mut [kvm_msr_entry] = msrs[0].entries.as_mut_slice(count);
            msr_entries.truncate(count);
            msr_entries.copy_from_slice(entries);
        }
        Ok(())
    }

    /// X86 specific call to setup the MSRS
    ///
    /// See the documentation for KVM_SET_MSRS.
    #[cfg(target_arch = "x86_64")]
    pub fn set_msrs(&self, msrs: &kvm_msrs) -> Result<()> {
        let ret = {
            // SAFETY:
            // Here we trust the kernel not to read past the end of the kvm_msrs struct.
            unsafe { ioctl_with_ref(self, KVM_SET_MSRS, msrs) }
        };
        if ret < 0 {
            // KVM_SET_MSRS actually returns the number of msr entries written.
            return errno_result();
        }
        Ok(())
    }

    /// X86 specific call to setup the CPUID registers
    ///
    /// See the documentation for KVM_SET_CPUID2.
    #[cfg(target_arch = "x86_64")]
    pub fn set_cpuid2(&self, cpuid: &CpuId) -> Result<()> {
        let ret = {
            // SAFETY:
            // Here we trust the kernel not to read past the end of the kvm_msrs struct.
            unsafe { ioctl_with_ptr(self, KVM_SET_CPUID2, cpuid.as_ptr()) }
        };
        if ret < 0 {
            return errno_result();
        }
        Ok(())
    }

    /// X86 specific call to get the system emulated hyper-v CPUID values
    #[cfg(target_arch = "x86_64")]
    pub fn get_hyperv_cpuid(&self) -> Result<CpuId> {
        const MAX_KVM_CPUID_ENTRIES: usize = 256;
        let mut cpuid = CpuId::new(MAX_KVM_CPUID_ENTRIES);

        let ret = {
            // SAFETY:
            // ioctl is unsafe. The kernel is trusted not to write beyond the bounds of the memory
            // allocated for the struct. The limit is read from nent, which is set to the allocated
            // size(MAX_KVM_CPUID_ENTRIES) above.
            unsafe { ioctl_with_mut_ptr(self, KVM_GET_SUPPORTED_HV_CPUID, cpuid.as_mut_ptr()) }
        };
        if ret < 0 {
            return errno_result();
        }
        Ok(cpuid)
    }

    /// X86 specific call to get the state of the "Local Advanced Programmable Interrupt
    /// Controller".
    ///
    /// See the documentation for KVM_GET_LAPIC.
    #[cfg(target_arch = "x86_64")]
    pub fn get_lapic(&self) -> Result<kvm_lapic_state> {
        let mut klapic: kvm_lapic_state = Default::default();

        let ret = {
            // SAFETY:
            // The ioctl is unsafe unless you trust the kernel not to write past the end of the
            // local_apic struct.
            unsafe { ioctl_with_mut_ref(self, KVM_GET_LAPIC, &mut klapic) }
        };
        if ret < 0 {
            return errno_result();
        }
        Ok(klapic)
    }

    /// X86 specific call to set the state of the "Local Advanced Programmable Interrupt
    /// Controller".
    ///
    /// See the documentation for KVM_SET_LAPIC.
    #[cfg(target_arch = "x86_64")]
    pub fn set_lapic(&self, klapic: &kvm_lapic_state) -> Result<()> {
        let ret = {
            // SAFETY:
            // The ioctl is safe because the kernel will only read from the klapic struct.
            unsafe { ioctl_with_ref(self, KVM_SET_LAPIC, klapic) }
        };
        if ret < 0 {
            return errno_result();
        }
        Ok(())
    }

    /// Gets the vcpu's current "multiprocessing state".
    ///
    /// See the documentation for KVM_GET_MP_STATE. This call can only succeed after
    /// a call to `Vm::create_irq_chip`.
    ///
    /// Note that KVM defines the call for both x86 and s390 but we do not expect anyone
    /// to run crosvm on s390.
    #[cfg(target_arch = "x86_64")]
    pub fn get_mp_state(&self) -> Result<kvm_mp_state> {
        // SAFETY: trivially safe
        let mut state: kvm_mp_state = unsafe { std::mem::zeroed() };
        // SAFETY:
        // Safe because we know that our file is a VCPU fd, we know the kernel will only
        // write correct amount of memory to our pointer, and we verify the return result.
        let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_MP_STATE, &mut state) };
        if ret < 0 {
            return errno_result();
        }
        Ok(state)
    }

    /// Sets the vcpu's current "multiprocessing state".
    ///
    /// See the documentation for KVM_SET_MP_STATE. This call can only succeed after
    /// a call to `Vm::create_irq_chip`.
    ///
    /// Note that KVM defines the call for both x86 and s390 but we do not expect anyone
    /// to run crosvm on s390.
    #[cfg(target_arch = "x86_64")]
    pub fn set_mp_state(&self, state: &kvm_mp_state) -> Result<()> {
        let ret = {
            // SAFETY:
            // The ioctl is safe because the kernel will only read from the kvm_mp_state struct.
            unsafe { ioctl_with_ref(self, KVM_SET_MP_STATE, state) }
        };
        if ret < 0 {
            return errno_result();
        }
        Ok(())
    }

    /// Gets the vcpu's currently pending exceptions, interrupts, NMIs, etc
    ///
    /// See the documentation for KVM_GET_VCPU_EVENTS.
    #[cfg(target_arch = "x86_64")]
    pub fn get_vcpu_events(&self) -> Result<kvm_vcpu_events> {
        // SAFETY: trivially safe
        let mut events: kvm_vcpu_events = unsafe { std::mem::zeroed() };
        // SAFETY:
        // Safe because we know that our file is a VCPU fd, we know the kernel
        // will only write correct amount of memory to our pointer, and we
        // verify the return result.
        let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_VCPU_EVENTS, &mut events) };
        if ret < 0 {
            return errno_result();
        }
        Ok(events)
    }

    /// Sets the vcpu's currently pending exceptions, interrupts, NMIs, etc
    ///
    /// See the documentation for KVM_SET_VCPU_EVENTS.
    #[cfg(target_arch = "x86_64")]
    pub fn set_vcpu_events(&self, events: &kvm_vcpu_events) -> Result<()> {
        let ret = {
            // SAFETY:
            // The ioctl is safe because the kernel will only read from the
            // kvm_vcpu_events.
            unsafe { ioctl_with_ref(self, KVM_SET_VCPU_EVENTS, events) }
        };
        if ret < 0 {
            return errno_result();
        }
        Ok(())
    }

    /// Enable the specified capability.
    /// See documentation for KVM_ENABLE_CAP.
    /// # Safety
    /// This function is marked as unsafe because `cap` may contain values which are interpreted as
    /// pointers by the kernel.
    pub unsafe fn kvm_enable_cap(&self, cap: &kvm_enable_cap) -> Result<()> {
        // SAFETY:
        // Safe because we allocated the struct and we know the kernel will read exactly the size of
        // the struct.
        let ret = ioctl_with_ref(self, KVM_ENABLE_CAP, cap);
        if ret < 0 {
            return errno_result();
        }
        Ok(())
    }

    /// Specifies set of signals that are blocked during execution of KVM_RUN.
    /// Signals that are not blocked will cause KVM_RUN to return with -EINTR.
    ///
    /// See the documentation for KVM_SET_SIGNAL_MASK
    pub fn set_signal_mask(&self, signals: &[c_int]) -> Result<()> {
        let sigset = signal::create_sigset(signals)?;

        let mut kvm_sigmask = vec_with_array_field::<kvm_signal_mask, sigset_t>(1);
        // Rust definition of sigset_t takes 128 bytes, but the kernel only
        // expects 8-bytes structure, so we can't write
        // kvm_sigmask.len  = size_of::<sigset_t>() as u32;
        kvm_sigmask[0].len = 8;
        // Ensure the length is not too big.
        const _ASSERT: usize = size_of::<sigset_t>() - 8usize;

        // SAFETY:
        // Safe as we allocated exactly the needed space
        unsafe {
            copy_nonoverlapping(
                &sigset as *const sigset_t as *const u8,
                kvm_sigmask[0].sigset.as_mut_ptr(),
                8,
            );
        }

        let ret = {
            // SAFETY:
            // The ioctl is safe because the kernel will only read from the
            // kvm_signal_mask structure.
            unsafe { ioctl_with_ref(self, KVM_SET_SIGNAL_MASK, &kvm_sigmask[0]) }
        };
        if ret < 0 {
            return errno_result();
        }
        Ok(())
    }

    /// Sets the value of one register on this VCPU.  The id of the register is
    /// encoded as specified in the kernel documentation for KVM_SET_ONE_REG.
    #[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
    pub fn set_one_reg(&self, reg_id: u64, data: u64) -> Result<()> {
        let data_ref = &data as *const u64;
        let onereg = kvm_one_reg {
            id: reg_id,
            addr: data_ref as u64,
        };
        // SAFETY:
        // safe because we allocated the struct and we know the kernel will read
        // exactly the size of the struct
        let ret = unsafe { ioctl_with_ref(self, KVM_SET_ONE_REG, &onereg) };
        if ret < 0 {
            return errno_result();
        }
        Ok(())
    }
}

impl AsRawDescriptor for Vcpu {
    fn as_raw_descriptor(&self) -> RawDescriptor {
        self.vcpu.as_raw_descriptor()
    }
}

/// A Vcpu that has a thread and can be run. Created by calling `to_runnable` on a `Vcpu`.
/// Implements `Deref` to a `Vcpu` so all `Vcpu` methods are usable, with the addition of the `run`
/// function to execute the guest.
pub struct RunnableVcpu {
    vcpu: Vcpu,
    // vcpus must stay on the same thread once they start.
    // Add the PhantomData pointer to ensure RunnableVcpu is not `Send`.
    phantom: std::marker::PhantomData<*mut u8>,
}

impl RunnableVcpu {
    /// Runs the VCPU until it exits, returning the reason for the exit.
    ///
    /// Note that the state of the VCPU and associated VM must be setup first for this to do
    /// anything useful.
    #[allow(clippy::cast_ptr_alignment)]
    // The pointer is page aligned so casting to a different type is well defined, hence the clippy
    // allow attribute.
    pub fn run(&self) -> Result<VcpuExit> {
        // SAFETY:
        // Safe because we know that our file is a VCPU fd and we verify the return result.
        let ret = unsafe { ioctl(self, KVM_RUN) };
        if ret == 0 {
            // SAFETY:
            // Safe because we know we mapped enough memory to hold the kvm_run struct because the
            // kernel told us how large it was.
            let run = unsafe { &*(self.run_mmap.as_ptr() as *const kvm_run) };
            match run.exit_reason {
                KVM_EXIT_IO => {
                    // SAFETY:
                    // Safe because the exit_reason (which comes from the kernel) told us which
                    // union field to use.
                    let io = unsafe { run.__bindgen_anon_1.io };
                    let port = io.port;
                    let size = (io.count as usize) * (io.size as usize);
                    match io.direction as u32 {
                        KVM_EXIT_IO_IN => Ok(VcpuExit::IoIn { port, size }),
                        KVM_EXIT_IO_OUT => {
                            let mut data = [0; 8];
                            let run_start = run as *const kvm_run as *const u8;
                            // SAFETY:
                            // The data_offset is defined by the kernel to be some number of bytes
                            // into the kvm_run structure, which we have fully mmap'd.
                            unsafe {
                                let data_ptr = run_start.offset(io.data_offset as isize);
                                copy_nonoverlapping(
                                    data_ptr,
                                    data.as_mut_ptr(),
                                    min(size, data.len()),
                                );
                            }
                            Ok(VcpuExit::IoOut { port, size, data })
                        }
                        _ => Err(Error::new(EINVAL)),
                    }
                }
                KVM_EXIT_MMIO => {
                    // SAFETY:
                    // Safe because the exit_reason (which comes from the kernel) told us which
                    // union field to use.
                    let mmio = unsafe { &run.__bindgen_anon_1.mmio };
                    let address = mmio.phys_addr;
                    let size = min(mmio.len as usize, mmio.data.len());
                    if mmio.is_write != 0 {
                        Ok(VcpuExit::MmioWrite {
                            address,
                            size,
                            data: mmio.data,
                        })
                    } else {
                        Ok(VcpuExit::MmioRead { address, size })
                    }
                }
                KVM_EXIT_IOAPIC_EOI => {
                    // SAFETY:
                    // Safe because the exit_reason (which comes from the kernel) told us which
                    // union field to use.
                    let vector = unsafe { run.__bindgen_anon_1.eoi.vector };
                    Ok(VcpuExit::IoapicEoi { vector })
                }
                KVM_EXIT_HYPERV => {
                    // SAFETY:
                    // Safe because the exit_reason (which comes from the kernel) told us which
                    // union field to use.
                    let hyperv = unsafe { &run.__bindgen_anon_1.hyperv };
                    match hyperv.type_ {
                        KVM_EXIT_HYPERV_SYNIC => {
                            // TODO(b/315998194): Add safety comment
                            #[allow(clippy::undocumented_unsafe_blocks)]
                            let synic = unsafe { &hyperv.u.synic };
                            Ok(VcpuExit::HypervSynic {
                                msr: synic.msr,
                                control: synic.control,
                                evt_page: synic.evt_page,
                                msg_page: synic.msg_page,
                            })
                        }
                        KVM_EXIT_HYPERV_HCALL => {
                            // TODO(b/315998194): Add safety comment
                            #[allow(clippy::undocumented_unsafe_blocks)]
                            let hcall = unsafe { &hyperv.u.hcall };
                            Ok(VcpuExit::HypervHcall {
                                input: hcall.input,
                                params: hcall.params,
                            })
                        }
                        _ => Err(Error::new(EINVAL)),
                    }
                }
                KVM_EXIT_UNKNOWN => Ok(VcpuExit::Unknown),
                KVM_EXIT_EXCEPTION => Ok(VcpuExit::Exception),
                KVM_EXIT_HYPERCALL => Ok(VcpuExit::Hypercall),
                KVM_EXIT_DEBUG => Ok(VcpuExit::Debug),
                KVM_EXIT_HLT => Ok(VcpuExit::Hlt),
                KVM_EXIT_IRQ_WINDOW_OPEN => Ok(VcpuExit::IrqWindowOpen),
                KVM_EXIT_SHUTDOWN => Ok(VcpuExit::Shutdown),
                KVM_EXIT_FAIL_ENTRY => {
                    // SAFETY:
                    // Safe because the exit_reason (which comes from the kernel) told us which
                    // union field to use.
                    let hardware_entry_failure_reason = unsafe {
                        run.__bindgen_anon_1
                            .fail_entry
                            .hardware_entry_failure_reason
                    };
                    Ok(VcpuExit::FailEntry {
                        hardware_entry_failure_reason,
                    })
                }
                KVM_EXIT_INTR => Ok(VcpuExit::Intr),
                KVM_EXIT_SET_TPR => Ok(VcpuExit::SetTpr),
                KVM_EXIT_TPR_ACCESS => Ok(VcpuExit::TprAccess),
                KVM_EXIT_S390_SIEIC => Ok(VcpuExit::S390Sieic),
                KVM_EXIT_S390_RESET => Ok(VcpuExit::S390Reset),
                KVM_EXIT_DCR => Ok(VcpuExit::Dcr),
                KVM_EXIT_NMI => Ok(VcpuExit::Nmi),
                KVM_EXIT_INTERNAL_ERROR => Ok(VcpuExit::InternalError),
                KVM_EXIT_OSI => Ok(VcpuExit::Osi),
                KVM_EXIT_PAPR_HCALL => Ok(VcpuExit::PaprHcall),
                KVM_EXIT_S390_UCONTROL => Ok(VcpuExit::S390Ucontrol),
                KVM_EXIT_WATCHDOG => Ok(VcpuExit::Watchdog),
                KVM_EXIT_S390_TSCH => Ok(VcpuExit::S390Tsch),
                KVM_EXIT_EPR => Ok(VcpuExit::Epr),
                KVM_EXIT_SYSTEM_EVENT => {
                    let event_type = {
                        // SAFETY:
                        // Safe because we know the exit reason told us this union
                        // field is valid
                        unsafe { run.__bindgen_anon_1.system_event.type_ }
                    };
                    // TODO(b/315998194): Add safety comment
                    #[allow(clippy::undocumented_unsafe_blocks)]
                    let event_flags =
                        unsafe { run.__bindgen_anon_1.system_event.__bindgen_anon_1.flags };
                    Ok(VcpuExit::SystemEvent(event_type, event_flags))
                }
                r => panic!("unknown kvm exit reason: {}", r),
            }
        } else {
            errno_result()
        }
    }
}

impl Deref for RunnableVcpu {
    type Target = Vcpu;
    fn deref(&self) -> &Self::Target {
        &self.vcpu
    }
}

impl DerefMut for RunnableVcpu {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.vcpu
    }
}

impl AsRawDescriptor for RunnableVcpu {
    fn as_raw_descriptor(&self) -> RawDescriptor {
        self.vcpu.as_raw_descriptor()
    }
}

impl Drop for RunnableVcpu {
    fn drop(&mut self) {
        VCPU_THREAD.with(|v| {
            // This assumes that a failure in `BlockedSignal::new` means the signal is already
            // blocked and there it should not be unblocked on exit.
            let _blocked_signal = &(*v.borrow())
                .as_ref()
                .and_then(|state| state.signal_num)
                .map(BlockedSignal::new);

            *v.borrow_mut() = None;
        });
    }
}

/// Wrapper for kvm_cpuid2 which has a zero length array at the end.
/// Hides the zero length array behind a bounds check.
#[cfg(target_arch = "x86_64")]
pub type CpuId = FlexibleArrayWrapper<kvm_cpuid2, kvm_cpuid_entry2>;