1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
// Copyright 2017 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! A safe wrapper around the kernel's KVM interface.
//!
//! New code should use the `hypervisor` crate instead.
#![cfg(any(target_os = "android", target_os = "linux"))]
mod cap;
use std::cell::RefCell;
use std::cmp::min;
use std::cmp::Ordering;
use std::collections::BTreeMap;
use std::collections::BinaryHeap;
use std::ffi::CString;
use std::fs::File;
use std::mem::size_of;
use std::ops::Deref;
use std::ops::DerefMut;
use std::os::raw::*;
use std::os::unix::prelude::OsStrExt;
use std::path::Path;
use std::ptr::copy_nonoverlapping;
use std::sync::Arc;
#[allow(unused_imports)]
use base::ioctl;
#[allow(unused_imports)]
use base::ioctl_with_mut_ptr;
#[allow(unused_imports)]
use base::ioctl_with_mut_ref;
#[allow(unused_imports)]
use base::ioctl_with_ptr;
#[allow(unused_imports)]
use base::ioctl_with_ref;
#[allow(unused_imports)]
use base::ioctl_with_val;
#[allow(unused_imports)]
use base::pagesize;
#[allow(unused_imports)]
use base::signal;
use base::sys::BlockedSignal;
#[allow(unused_imports)]
use base::unblock_signal;
#[allow(unused_imports)]
use base::warn;
use base::AsRawDescriptor;
#[allow(unused_imports)]
use base::Error;
#[allow(unused_imports)]
use base::Event;
use base::FromRawDescriptor;
#[allow(unused_imports)]
use base::IoctlNr;
#[allow(unused_imports)]
use base::MappedRegion;
#[allow(unused_imports)]
use base::MemoryMapping;
#[allow(unused_imports)]
use base::MemoryMappingBuilder;
#[allow(unused_imports)]
use base::MmapError;
use base::RawDescriptor;
#[allow(unused_imports)]
use base::Result;
#[allow(unused_imports)]
use base::SIGRTMIN;
use data_model::vec_with_array_field;
#[cfg(target_arch = "x86_64")]
use data_model::FlexibleArrayWrapper;
use kvm_sys::*;
use libc::open64;
use libc::sigset_t;
use libc::EBUSY;
use libc::EINVAL;
use libc::ENOENT;
use libc::ENOSPC;
use libc::EOVERFLOW;
use libc::O_CLOEXEC;
use libc::O_RDWR;
use sync::Mutex;
use vm_memory::GuestAddress;
use vm_memory::GuestMemory;
pub use crate::cap::*;
fn errno_result<T>() -> Result<T> {
Err(Error::last())
}
unsafe fn set_user_memory_region<F: AsRawDescriptor>(
fd: &F,
slot: u32,
read_only: bool,
log_dirty_pages: bool,
guest_addr: u64,
memory_size: u64,
userspace_addr: *mut u8,
) -> Result<()> {
let mut flags = if read_only { KVM_MEM_READONLY } else { 0 };
if log_dirty_pages {
flags |= KVM_MEM_LOG_DIRTY_PAGES;
}
let region = kvm_userspace_memory_region {
slot,
flags,
guest_phys_addr: guest_addr,
memory_size,
userspace_addr: userspace_addr as u64,
};
let ret = ioctl_with_ref(fd, KVM_SET_USER_MEMORY_REGION, ®ion);
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// Helper function to determine the size in bytes of a dirty log bitmap for the given memory region
/// size.
///
/// # Arguments
///
/// * `size` - Number of bytes in the memory region being queried.
pub fn dirty_log_bitmap_size(size: usize) -> usize {
let page_size = pagesize();
(((size + page_size - 1) / page_size) + 7) / 8
}
/// A wrapper around opening and using `/dev/kvm`.
///
/// Useful for querying extensions and basic values from the KVM backend. A `Kvm` is required to
/// create a `Vm` object.
pub struct Kvm {
kvm: File,
}
impl Kvm {
/// Opens `/dev/kvm` and returns a Kvm object on success.
pub fn new() -> Result<Kvm> {
Kvm::new_with_path(Path::new("/dev/kvm"))
}
/// Opens a KVM device at `device_path` and returns a Kvm object on success.
pub fn new_with_path(device_path: &Path) -> Result<Kvm> {
let c_path = CString::new(device_path.as_os_str().as_bytes()).unwrap();
// SAFETY:
// Open calls are safe because we give a nul-terminated string and verify the result.
let ret = unsafe { open64(c_path.as_ptr(), O_RDWR | O_CLOEXEC) };
if ret < 0 {
return errno_result();
}
Ok(Kvm {
kvm: {
// SAFETY:
// Safe because we verify that ret is valid and we own the fd.
unsafe { File::from_raw_descriptor(ret) }
},
})
}
fn check_extension_int(&self, c: Cap) -> i32 {
// SAFETY:
// Safe because we know that our file is a KVM fd and that the extension is one of the ones
// defined by kernel.
unsafe { ioctl_with_val(self, KVM_CHECK_EXTENSION, c as c_ulong) }
}
/// Checks if a particular `Cap` is available.
pub fn check_extension(&self, c: Cap) -> bool {
self.check_extension_int(c) == 1
}
/// Gets the size of the mmap required to use vcpu's `kvm_run` structure.
pub fn get_vcpu_mmap_size(&self) -> Result<usize> {
// SAFETY:
// Safe because we know that our file is a KVM fd and we verify the return result.
let res = unsafe { ioctl(self, KVM_GET_VCPU_MMAP_SIZE) };
if res > 0 {
Ok(res as usize)
} else {
errno_result()
}
}
#[cfg(target_arch = "x86_64")]
fn get_cpuid(&self, kind: IoctlNr) -> Result<CpuId> {
const MAX_KVM_CPUID_ENTRIES: usize = 256;
let mut cpuid = CpuId::new(MAX_KVM_CPUID_ENTRIES);
// SAFETY:
// ioctl is unsafe. The kernel is trusted not to write beyond the bounds of the memory
// allocated for the struct. The limit is read from nent, which is set to the allocated
// size(MAX_KVM_CPUID_ENTRIES) above.
let ret = unsafe { ioctl_with_mut_ptr(self, kind, cpuid.as_mut_ptr()) };
if ret < 0 {
return errno_result();
}
Ok(cpuid)
}
/// X86 specific call to get the system supported CPUID values
#[cfg(target_arch = "x86_64")]
pub fn get_supported_cpuid(&self) -> Result<CpuId> {
self.get_cpuid(KVM_GET_SUPPORTED_CPUID)
}
/// X86 specific call to get the system emulated CPUID values
#[cfg(target_arch = "x86_64")]
pub fn get_emulated_cpuid(&self) -> Result<CpuId> {
self.get_cpuid(KVM_GET_EMULATED_CPUID)
}
/// X86 specific call to get list of supported MSRS
///
/// See the documentation for KVM_GET_MSR_INDEX_LIST.
#[cfg(target_arch = "x86_64")]
pub fn get_msr_index_list(&self) -> Result<Vec<u32>> {
const MAX_KVM_MSR_ENTRIES: usize = 256;
let mut msr_list = vec_with_array_field::<kvm_msr_list, u32>(MAX_KVM_MSR_ENTRIES);
msr_list[0].nmsrs = MAX_KVM_MSR_ENTRIES as u32;
// SAFETY:
// ioctl is unsafe. The kernel is trusted not to write beyond the bounds of the memory
// allocated for the struct. The limit is read from nmsrs, which is set to the allocated
// size (MAX_KVM_MSR_ENTRIES) above.
let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_MSR_INDEX_LIST, &mut msr_list[0]) };
if ret < 0 {
return errno_result();
}
let mut nmsrs = msr_list[0].nmsrs;
// SAFETY:
// Mapping the unsized array to a slice is unsafe because the length isn't known. Using
// the length we originally allocated with eliminates the possibility of overflow.
let indices: &[u32] = unsafe {
if nmsrs > MAX_KVM_MSR_ENTRIES as u32 {
nmsrs = MAX_KVM_MSR_ENTRIES as u32;
}
msr_list[0].indices.as_slice(nmsrs as usize)
};
Ok(indices.to_vec())
}
#[cfg(any(target_arch = "x86_64", target_arch = "riscv64"))]
// The x86 and riscv machine type is always 0
pub fn get_vm_type(&self) -> c_ulong {
0
}
#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
// Compute the machine type, which should be the IPA range for the VM
// Ideally, this would take a description of the memory map and return
// the closest machine type for this VM. Here, we just return the maximum
// the kernel support.
#[allow(clippy::useless_conversion)]
pub fn get_vm_type(&self) -> c_ulong {
// SAFETY:
// Safe because we know self is a real kvm fd
match unsafe { ioctl_with_val(self, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE.into()) } {
// Not supported? Use 0 as the machine type, which implies 40bit IPA
ret if ret < 0 => 0,
// Use the lower 8 bits representing the IPA space as the machine type
ipa => (ipa & 0xff) as c_ulong,
}
}
}
impl AsRawDescriptor for Kvm {
fn as_raw_descriptor(&self) -> RawDescriptor {
self.kvm.as_raw_descriptor()
}
}
/// An address either in programmable I/O space or in memory mapped I/O space.
#[derive(Copy, Clone, Debug)]
pub enum IoeventAddress {
Pio(u64),
Mmio(u64),
}
/// Used in `Vm::register_ioevent` to indicate a size and optionally value to match.
pub enum Datamatch {
AnyLength,
U8(Option<u8>),
U16(Option<u16>),
U32(Option<u32>),
U64(Option<u64>),
}
/// A source of IRQs in an `IrqRoute`.
pub enum IrqSource {
Irqchip { chip: u32, pin: u32 },
Msi { address: u64, data: u32 },
}
/// A single route for an IRQ.
pub struct IrqRoute {
pub gsi: u32,
pub source: IrqSource,
}
/// Interrupt controller IDs
pub enum PicId {
Primary = 0,
Secondary = 1,
}
/// Number of pins on the IOAPIC.
pub const NUM_IOAPIC_PINS: usize = 24;
// Used to invert the order when stored in a max-heap.
#[derive(Copy, Clone, Eq, PartialEq)]
struct MemSlot(u32);
impl Ord for MemSlot {
fn cmp(&self, other: &MemSlot) -> Ordering {
// Notice the order is inverted so the lowest magnitude slot has the highest priority in a
// max-heap.
other.0.cmp(&self.0)
}
}
impl PartialOrd for MemSlot {
fn partial_cmp(&self, other: &MemSlot) -> Option<Ordering> {
Some(self.cmp(other))
}
}
/// A wrapper around creating and using a VM.
pub struct Vm {
vm: File,
guest_mem: GuestMemory,
mem_regions: Arc<Mutex<BTreeMap<u32, Box<dyn MappedRegion>>>>,
mem_slot_gaps: Arc<Mutex<BinaryHeap<MemSlot>>>,
}
impl Vm {
/// Constructs a new `Vm` using the given `Kvm` instance.
pub fn new(kvm: &Kvm, guest_mem: GuestMemory) -> Result<Vm> {
// SAFETY:
// Safe because we know kvm is a real kvm fd as this module is the only one that can make
// Kvm objects.
let ret = unsafe { ioctl_with_val(kvm, KVM_CREATE_VM, kvm.get_vm_type()) };
if ret >= 0 {
// SAFETY:
// Safe because we verify the value of ret and we are the owners of the fd.
let vm_file = unsafe { File::from_raw_descriptor(ret) };
for region in guest_mem.regions() {
// SAFETY:
// Safe because the guest regions are guaranteed not to overlap.
unsafe {
set_user_memory_region(
&vm_file,
region.index as u32,
false,
false,
region.guest_addr.offset(),
region.size as u64,
region.host_addr as *mut u8,
)
}?;
}
Ok(Vm {
vm: vm_file,
guest_mem,
mem_regions: Arc::new(Mutex::new(BTreeMap::new())),
mem_slot_gaps: Arc::new(Mutex::new(BinaryHeap::new())),
})
} else {
errno_result()
}
}
/// Checks if a particular `Cap` is available.
///
/// This is distinct from the `Kvm` version of this method because the some extensions depend on
/// the particular `Vm` existence. This method is encouraged by the kernel because it more
/// accurately reflects the usable capabilities.
pub fn check_extension(&self, c: Cap) -> bool {
// SAFETY:
// Safe because we know that our file is a KVM fd and that the extension is one of the ones
// defined by kernel.
unsafe { ioctl_with_val(self, KVM_CHECK_EXTENSION, c as c_ulong) == 1 }
}
/// Inserts the given `mem` into the VM's address space at `guest_addr`.
///
/// The slot that was assigned the kvm memory mapping is returned on success. The slot can be
/// given to `Vm::remove_memory_region` to remove the memory from the VM's address space and
/// take back ownership of `mem`.
///
/// Note that memory inserted into the VM's address space must not overlap with any other memory
/// slot's region.
///
/// If `read_only` is true, the guest will be able to read the memory as normal, but attempts to
/// write will trigger a mmio VM exit, leaving the memory untouched.
///
/// If `log_dirty_pages` is true, the slot number can be used to retrieve the pages written to
/// by the guest with `get_dirty_log`.
pub fn add_memory_region(
&mut self,
guest_addr: GuestAddress,
mem: Box<dyn MappedRegion>,
read_only: bool,
log_dirty_pages: bool,
) -> Result<u32> {
let size = mem.size() as u64;
let end_addr = guest_addr
.checked_add(size)
.ok_or_else(|| Error::new(EOVERFLOW))?;
if self.guest_mem.range_overlap(guest_addr, end_addr) {
return Err(Error::new(ENOSPC));
}
let mut regions = self.mem_regions.lock();
let mut gaps = self.mem_slot_gaps.lock();
let slot = match gaps.pop() {
Some(gap) => gap.0,
None => (regions.len() + self.guest_mem.num_regions() as usize) as u32,
};
// SAFETY:
// Safe because we check that the given guest address is valid and has no overlaps. We also
// know that the pointer and size are correct because the MemoryMapping interface ensures
// this. We take ownership of the memory mapping so that it won't be unmapped until the slot
// is removed.
let res = unsafe {
set_user_memory_region(
&self.vm,
slot,
read_only,
log_dirty_pages,
guest_addr.offset(),
size,
mem.as_ptr(),
)
};
if let Err(e) = res {
gaps.push(MemSlot(slot));
return Err(e);
}
regions.insert(slot, mem);
Ok(slot)
}
/// Removes memory that was previously added at the given slot.
///
/// Ownership of the host memory mapping associated with the given slot is returned on success.
pub fn remove_memory_region(&mut self, slot: u32) -> Result<Box<dyn MappedRegion>> {
let mut regions = self.mem_regions.lock();
if !regions.contains_key(&slot) {
return Err(Error::new(ENOENT));
}
// SAFETY:
// Safe because the slot is checked against the list of memory slots.
unsafe {
set_user_memory_region(&self.vm, slot, false, false, 0, 0, std::ptr::null_mut())?;
}
self.mem_slot_gaps.lock().push(MemSlot(slot));
// This remove will always succeed because of the contains_key check above.
Ok(regions.remove(&slot).unwrap())
}
/// Gets the bitmap of dirty pages since the last call to `get_dirty_log` for the memory at
/// `slot`.
///
/// The size of `dirty_log` must be at least as many bits as there are pages in the memory
/// region `slot` represents. For example, if the size of `slot` is 16 pages, `dirty_log` must
/// be 2 bytes or greater.
pub fn get_dirty_log(&self, slot: u32, dirty_log: &mut [u8]) -> Result<()> {
match self.mem_regions.lock().get(&slot) {
Some(mem) => {
// Ensures that there are as many bytes in dirty_log as there are pages in the mmap.
if dirty_log_bitmap_size(mem.size()) > dirty_log.len() {
return Err(Error::new(EINVAL));
}
let mut dirty_log_kvm = kvm_dirty_log {
slot,
..Default::default()
};
dirty_log_kvm.__bindgen_anon_1.dirty_bitmap = dirty_log.as_ptr() as *mut c_void;
// SAFETY:
// Safe because the `dirty_bitmap` pointer assigned above is guaranteed to be valid
// (because it's from a slice) and we checked that it will be large enough to hold
// the entire log.
let ret = unsafe { ioctl_with_ref(self, KVM_GET_DIRTY_LOG, &dirty_log_kvm) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
_ => Err(Error::new(ENOENT)),
}
}
/// Gets a reference to the guest memory owned by this VM.
///
/// Note that `GuestMemory` does not include any mmio memory that may have been added after
/// this VM was constructed.
pub fn get_memory(&self) -> &GuestMemory {
&self.guest_mem
}
/// Sets the address of a one-page region in the VM's address space.
///
/// See the documentation on the KVM_SET_IDENTITY_MAP_ADDR ioctl.
#[cfg(target_arch = "x86_64")]
pub fn set_identity_map_addr(&self, addr: GuestAddress) -> Result<()> {
// SAFETY:
// Safe because we know that our file is a VM fd and we verify the return result.
let ret = unsafe { ioctl_with_ref(self, KVM_SET_IDENTITY_MAP_ADDR, &addr.offset()) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// Retrieves the current timestamp of kvmclock as seen by the current guest.
///
/// See the documentation on the KVM_GET_CLOCK ioctl.
#[cfg(target_arch = "x86_64")]
pub fn get_clock(&self) -> Result<kvm_clock_data> {
// SAFETY: trivially safe
let mut clock_data = unsafe { std::mem::zeroed() };
// SAFETY:
// Safe because we know that our file is a VM fd, we know the kernel will only write
// correct amount of memory to our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_CLOCK, &mut clock_data) };
if ret == 0 {
Ok(clock_data)
} else {
errno_result()
}
}
/// Sets the current timestamp of kvmclock to the specified value.
///
/// See the documentation on the KVM_SET_CLOCK ioctl.
#[cfg(target_arch = "x86_64")]
pub fn set_clock(&self, clock_data: &kvm_clock_data) -> Result<()> {
// SAFETY:
// Safe because we know that our file is a VM fd, we know the kernel will only read
// correct amount of memory from our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_ref(self, KVM_SET_CLOCK, clock_data) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// Crates an in kernel interrupt controller.
///
/// See the documentation on the KVM_CREATE_IRQCHIP ioctl.
#[cfg(any(target_arch = "x86_64", target_arch = "arm", target_arch = "aarch64"))]
pub fn create_irq_chip(&self) -> Result<()> {
// SAFETY:
// Safe because we know that our file is a VM fd and we verify the return result.
let ret = unsafe { ioctl(self, KVM_CREATE_IRQCHIP) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// Retrieves the state of given interrupt controller by issuing KVM_GET_IRQCHIP ioctl.
///
/// Note that this call can only succeed after a call to `Vm::create_irq_chip`.
#[cfg(target_arch = "x86_64")]
pub fn get_pic_state(&self, id: PicId) -> Result<kvm_pic_state> {
let mut irqchip_state = kvm_irqchip {
chip_id: id as u32,
..Default::default()
};
// SAFETY:
// Safe because we know our file is a VM fd, we know the kernel will only write
// correct amount of memory to our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_IRQCHIP, &mut irqchip_state) };
if ret == 0 {
Ok(
// SAFETY:
// Safe as we know that we are retrieving data related to the
// PIC (primary or secondary) and not IOAPIC.
unsafe { irqchip_state.chip.pic },
)
} else {
errno_result()
}
}
/// Sets the state of given interrupt controller by issuing KVM_SET_IRQCHIP ioctl.
///
/// Note that this call can only succeed after a call to `Vm::create_irq_chip`.
#[cfg(target_arch = "x86_64")]
pub fn set_pic_state(&self, id: PicId, state: &kvm_pic_state) -> Result<()> {
let mut irqchip_state = kvm_irqchip {
chip_id: id as u32,
..Default::default()
};
irqchip_state.chip.pic = *state;
// SAFETY:
// Safe because we know that our file is a VM fd, we know the kernel will only read
// correct amount of memory from our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_ref(self, KVM_SET_IRQCHIP, &irqchip_state) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// Retrieves the state of IOAPIC by issuing KVM_GET_IRQCHIP ioctl.
///
/// Note that this call can only succeed after a call to `Vm::create_irq_chip`.
#[cfg(target_arch = "x86_64")]
pub fn get_ioapic_state(&self) -> Result<kvm_ioapic_state> {
let mut irqchip_state = kvm_irqchip {
chip_id: 2,
..Default::default()
};
let ret =
// SAFETY:
// Safe because we know our file is a VM fd, we know the kernel will only write
// correct amount of memory to our pointer, and we verify the return result.
unsafe {
ioctl_with_mut_ref(self, KVM_GET_IRQCHIP, &mut irqchip_state)
};
if ret == 0 {
Ok(
// SAFETY:
// Safe as we know that we are retrieving data related to the
// IOAPIC and not PIC.
unsafe { irqchip_state.chip.ioapic },
)
} else {
errno_result()
}
}
/// Sets the state of IOAPIC by issuing KVM_SET_IRQCHIP ioctl.
///
/// Note that this call can only succeed after a call to `Vm::create_irq_chip`.
#[cfg(target_arch = "x86_64")]
pub fn set_ioapic_state(&self, state: &kvm_ioapic_state) -> Result<()> {
let mut irqchip_state = kvm_irqchip {
chip_id: 2,
..Default::default()
};
irqchip_state.chip.ioapic = *state;
// SAFETY:
// Safe because we know that our file is a VM fd, we know the kernel will only read
// correct amount of memory from our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_ref(self, KVM_SET_IRQCHIP, &irqchip_state) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// Sets the level on the given irq to 1 if `active` is true, and 0 otherwise.
#[cfg(any(target_arch = "x86_64", target_arch = "arm", target_arch = "aarch64"))]
pub fn set_irq_line(&self, irq: u32, active: bool) -> Result<()> {
let mut irq_level = kvm_irq_level::default();
irq_level.__bindgen_anon_1.irq = irq;
irq_level.level = active.into();
// SAFETY:
// Safe because we know that our file is a VM fd, we know the kernel will only read the
// correct amount of memory from our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_ref(self, KVM_IRQ_LINE, &irq_level) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// Creates a PIT as per the KVM_CREATE_PIT2 ioctl.
///
/// Note that this call can only succeed after a call to `Vm::create_irq_chip`.
#[cfg(target_arch = "x86_64")]
pub fn create_pit(&self) -> Result<()> {
let pit_config = kvm_pit_config::default();
// SAFETY:
// Safe because we know that our file is a VM fd, we know the kernel will only read the
// correct amount of memory from our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_ref(self, KVM_CREATE_PIT2, &pit_config) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// Retrieves the state of PIT by issuing KVM_GET_PIT2 ioctl.
///
/// Note that this call can only succeed after a call to `Vm::create_pit`.
#[cfg(target_arch = "x86_64")]
pub fn get_pit_state(&self) -> Result<kvm_pit_state2> {
// SAFETY: trivially safe
let mut pit_state = unsafe { std::mem::zeroed() };
// SAFETY:
// Safe because we know that our file is a VM fd, we know the kernel will only write
// correct amount of memory to our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_PIT2, &mut pit_state) };
if ret == 0 {
Ok(pit_state)
} else {
errno_result()
}
}
/// Sets the state of PIT by issuing KVM_SET_PIT2 ioctl.
///
/// Note that this call can only succeed after a call to `Vm::create_pit`.
#[cfg(target_arch = "x86_64")]
pub fn set_pit_state(&self, pit_state: &kvm_pit_state2) -> Result<()> {
// SAFETY:
// Safe because we know that our file is a VM fd, we know the kernel will only read
// correct amount of memory from our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_ref(self, KVM_SET_PIT2, pit_state) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// Registers an event to be signaled whenever a certain address is written to.
///
/// The `datamatch` parameter can be used to limit signaling `evt` to only the cases where the
/// value being written is equal to `datamatch`. Note that the size of `datamatch` is important
/// and must match the expected size of the guest's write.
///
/// In all cases where `evt` is signaled, the ordinary vmexit to userspace that would be
/// triggered is prevented.
pub fn register_ioevent(
&self,
evt: &Event,
addr: IoeventAddress,
datamatch: Datamatch,
) -> Result<()> {
self.ioeventfd(evt, addr, datamatch, false)
}
/// Unregisters an event previously registered with `register_ioevent`.
///
/// The `evt`, `addr`, and `datamatch` set must be the same as the ones passed into
/// `register_ioevent`.
pub fn unregister_ioevent(
&self,
evt: &Event,
addr: IoeventAddress,
datamatch: Datamatch,
) -> Result<()> {
self.ioeventfd(evt, addr, datamatch, true)
}
fn ioeventfd(
&self,
evt: &Event,
addr: IoeventAddress,
datamatch: Datamatch,
deassign: bool,
) -> Result<()> {
let (do_datamatch, datamatch_value, datamatch_len) = match datamatch {
Datamatch::AnyLength => (false, 0, 0),
Datamatch::U8(v) => match v {
Some(u) => (true, u as u64, 1),
None => (false, 0, 1),
},
Datamatch::U16(v) => match v {
Some(u) => (true, u as u64, 2),
None => (false, 0, 2),
},
Datamatch::U32(v) => match v {
Some(u) => (true, u as u64, 4),
None => (false, 0, 4),
},
Datamatch::U64(v) => match v {
Some(u) => (true, u, 8),
None => (false, 0, 8),
},
};
let mut flags = 0;
if deassign {
flags |= 1 << kvm_ioeventfd_flag_nr_deassign;
}
if do_datamatch {
flags |= 1 << kvm_ioeventfd_flag_nr_datamatch
}
if let IoeventAddress::Pio(_) = addr {
flags |= 1 << kvm_ioeventfd_flag_nr_pio;
}
let ioeventfd = kvm_ioeventfd {
datamatch: datamatch_value,
len: datamatch_len,
addr: match addr {
IoeventAddress::Pio(p) => p,
IoeventAddress::Mmio(m) => m,
},
fd: evt.as_raw_descriptor(),
flags,
..Default::default()
};
// SAFETY:
// Safe because we know that our file is a VM fd, we know the kernel will only read the
// correct amount of memory from our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_ref(self, KVM_IOEVENTFD, &ioeventfd) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// Registers an event that will, when signalled, trigger the `gsi` irq, and `resample_evt` will
/// get triggered when the irqchip is resampled.
#[cfg(any(target_arch = "x86_64", target_arch = "arm", target_arch = "aarch64"))]
pub fn register_irqfd_resample(
&self,
evt: &Event,
resample_evt: &Event,
gsi: u32,
) -> Result<()> {
let irqfd = kvm_irqfd {
flags: KVM_IRQFD_FLAG_RESAMPLE,
fd: evt.as_raw_descriptor() as u32,
resamplefd: resample_evt.as_raw_descriptor() as u32,
gsi,
..Default::default()
};
// SAFETY:
// Safe because we know that our file is a VM fd, we know the kernel will only read the
// correct amount of memory from our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_ref(self, KVM_IRQFD, &irqfd) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// Unregisters an event that was previously registered with
/// `register_irqfd`/`register_irqfd_resample`.
///
/// The `evt` and `gsi` pair must be the same as the ones passed into
/// `register_irqfd`/`register_irqfd_resample`.
#[cfg(any(target_arch = "x86_64", target_arch = "arm", target_arch = "aarch64"))]
pub fn unregister_irqfd(&self, evt: &Event, gsi: u32) -> Result<()> {
let irqfd = kvm_irqfd {
fd: evt.as_raw_descriptor() as u32,
gsi,
flags: KVM_IRQFD_FLAG_DEASSIGN,
..Default::default()
};
// SAFETY:
// Safe because we know that our file is a VM fd, we know the kernel will only read the
// correct amount of memory from our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_ref(self, KVM_IRQFD, &irqfd) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// Sets the GSI routing table, replacing any table set with previous calls to
/// `set_gsi_routing`.
#[cfg(target_arch = "x86_64")]
pub fn set_gsi_routing(&self, routes: &[IrqRoute]) -> Result<()> {
let mut irq_routing =
vec_with_array_field::<kvm_irq_routing, kvm_irq_routing_entry>(routes.len());
irq_routing[0].nr = routes.len() as u32;
// SAFETY:
// Safe because we ensured there is enough space in irq_routing to hold the number of
// route entries.
let irq_routes = unsafe { irq_routing[0].entries.as_mut_slice(routes.len()) };
for (route, irq_route) in routes.iter().zip(irq_routes.iter_mut()) {
irq_route.gsi = route.gsi;
match route.source {
IrqSource::Irqchip { chip, pin } => {
irq_route.type_ = KVM_IRQ_ROUTING_IRQCHIP;
irq_route.u.irqchip = kvm_irq_routing_irqchip { irqchip: chip, pin }
}
IrqSource::Msi { address, data } => {
irq_route.type_ = KVM_IRQ_ROUTING_MSI;
irq_route.u.msi = kvm_irq_routing_msi {
address_lo: address as u32,
address_hi: (address >> 32) as u32,
data,
..Default::default()
}
}
}
}
// TODO(b/315998194): Add safety comment
#[allow(clippy::undocumented_unsafe_blocks)]
let ret = unsafe { ioctl_with_ref(self, KVM_SET_GSI_ROUTING, &irq_routing[0]) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// Enable the specified capability.
/// See documentation for KVM_ENABLE_CAP.
/// # Safety
/// This function is marked as unsafe because `cap` may contain values which are interpreted as
/// pointers by the kernel.
pub unsafe fn kvm_enable_cap(&self, cap: &kvm_enable_cap) -> Result<()> {
// Safe because we allocated the struct and we know the kernel will read exactly the size of
// the struct.
let ret = ioctl_with_ref(self, KVM_ENABLE_CAP, cap);
if ret < 0 {
errno_result()
} else {
Ok(())
}
}
}
impl AsRawDescriptor for Vm {
fn as_raw_descriptor(&self) -> RawDescriptor {
self.vm.as_raw_descriptor()
}
}
/// A reason why a VCPU exited. One of these returns every time `Vcpu::run` is called.
#[derive(Debug)]
pub enum VcpuExit {
/// An out port instruction was run on the given port with the given data.
IoOut {
port: u16,
size: usize,
data: [u8; 8],
},
/// An in port instruction was run on the given port.
///
/// The date that the instruction receives should be set with `set_data` before `Vcpu::run` is
/// called again.
IoIn {
port: u16,
size: usize,
},
/// A read instruction was run against the given MMIO address.
///
/// The date that the instruction receives should be set with `set_data` before `Vcpu::run` is
/// called again.
MmioRead {
address: u64,
size: usize,
},
/// A write instruction was run against the given MMIO address with the given data.
MmioWrite {
address: u64,
size: usize,
data: [u8; 8],
},
IoapicEoi {
vector: u8,
},
HypervSynic {
msr: u32,
control: u64,
evt_page: u64,
msg_page: u64,
},
HypervHcall {
input: u64,
params: [u64; 2],
},
Unknown,
Exception,
Hypercall,
Debug,
Hlt,
IrqWindowOpen,
Shutdown,
FailEntry {
hardware_entry_failure_reason: u64,
},
Intr,
SetTpr,
TprAccess,
S390Sieic,
S390Reset,
Dcr,
Nmi,
InternalError,
Osi,
PaprHcall,
S390Ucontrol,
Watchdog,
S390Tsch,
Epr,
/// The cpu triggered a system level event which is specified by the type field.
/// The first field is the event type and the second field is flags.
/// The possible event types are shutdown, reset, or crash. So far there
/// are not any flags defined.
SystemEvent(u32 /* event_type */, u64 /* flags */),
}
/// A wrapper around creating and using a VCPU.
/// `Vcpu` provides all functionality except for running. To run, `to_runnable` must be called to
/// lock the vcpu to a thread. Then the returned `RunnableVcpu` can be used for running.
pub struct Vcpu {
vcpu: File,
run_mmap: MemoryMapping,
}
pub struct VcpuThread {
run: *mut kvm_run,
signal_num: Option<c_int>,
}
thread_local!(static VCPU_THREAD: RefCell<Option<VcpuThread>> = const { RefCell::new(None) });
impl Vcpu {
/// Constructs a new VCPU for `vm`.
///
/// The `id` argument is the CPU number between [0, max vcpus).
pub fn new(id: c_ulong, kvm: &Kvm, vm: &Vm) -> Result<Vcpu> {
let run_mmap_size = kvm.get_vcpu_mmap_size()?;
// SAFETY:
// Safe because we know that vm a VM fd and we verify the return result.
let vcpu_fd = unsafe { ioctl_with_val(vm, KVM_CREATE_VCPU, id) };
if vcpu_fd < 0 {
return errno_result();
}
// SAFETY:
// Wrap the vcpu now in case the following ? returns early. This is safe because we verified
// the value of the fd and we own the fd.
let vcpu = unsafe { File::from_raw_descriptor(vcpu_fd) };
let run_mmap = MemoryMappingBuilder::new(run_mmap_size)
.from_file(&vcpu)
.build()
.map_err(|_| Error::new(ENOSPC))?;
Ok(Vcpu { vcpu, run_mmap })
}
/// Consumes `self` and returns a `RunnableVcpu`. A `RunnableVcpu` is required to run the
/// guest.
/// Assigns a vcpu to the current thread and stores it in a hash map that can be used by signal
/// handlers to call set_local_immediate_exit(). An optional signal number will be temporarily
/// blocked while assigning the vcpu to the thread and later blocked when `RunnableVcpu` is
/// destroyed.
///
/// Returns an error, `EBUSY`, if the current thread already contains a Vcpu.
#[allow(clippy::cast_ptr_alignment)]
pub fn to_runnable(self, signal_num: Option<c_int>) -> Result<RunnableVcpu> {
// Block signal while we add -- if a signal fires (very unlikely,
// as this means something is trying to pause the vcpu before it has
// even started) it'll try to grab the read lock while this write
// lock is grabbed and cause a deadlock.
// Assuming that a failure to block means it's already blocked.
let _blocked_signal = signal_num.map(BlockedSignal::new);
VCPU_THREAD.with(|v| {
if v.borrow().is_none() {
*v.borrow_mut() = Some(VcpuThread {
run: self.run_mmap.as_ptr() as *mut kvm_run,
signal_num,
});
Ok(())
} else {
Err(Error::new(EBUSY))
}
})?;
Ok(RunnableVcpu {
vcpu: self,
phantom: Default::default(),
})
}
/// Sets the data received by a mmio read, ioport in, or hypercall instruction.
///
/// This function should be called after `Vcpu::run` returns an `VcpuExit::IoIn`,
/// `VcpuExit::MmioRead`, or 'VcpuExit::HypervHcall`.
#[allow(clippy::cast_ptr_alignment)]
pub fn set_data(&self, data: &[u8]) -> Result<()> {
// SAFETY:
// Safe because we know we mapped enough memory to hold the kvm_run struct because the
// kernel told us how large it was. The pointer is page aligned so casting to a different
// type is well defined, hence the clippy allow attribute.
let run = unsafe { &mut *(self.run_mmap.as_ptr() as *mut kvm_run) };
match run.exit_reason {
KVM_EXIT_IO => {
let run_start = run as *mut kvm_run as *mut u8;
// SAFETY:
// Safe because the exit_reason (which comes from the kernel) told us which
// union field to use.
let io = unsafe { run.__bindgen_anon_1.io };
if io.direction as u32 != KVM_EXIT_IO_IN {
return Err(Error::new(EINVAL));
}
let data_size = (io.count as usize) * (io.size as usize);
if data_size != data.len() {
return Err(Error::new(EINVAL));
}
// SAFETY:
// The data_offset is defined by the kernel to be some number of bytes into the
// kvm_run structure, which we have fully mmap'd.
unsafe {
let data_ptr = run_start.offset(io.data_offset as isize);
copy_nonoverlapping(data.as_ptr(), data_ptr, data_size);
}
Ok(())
}
KVM_EXIT_MMIO => {
// SAFETY:
// Safe because the exit_reason (which comes from the kernel) told us which
// union field to use.
let mmio = unsafe { &mut run.__bindgen_anon_1.mmio };
if mmio.is_write != 0 {
return Err(Error::new(EINVAL));
}
let len = mmio.len as usize;
if len != data.len() {
return Err(Error::new(EINVAL));
}
mmio.data[..len].copy_from_slice(data);
Ok(())
}
KVM_EXIT_HYPERV => {
// SAFETY:
// Safe because the exit_reason (which comes from the kernel) told us which
// union field to use.
let hyperv = unsafe { &mut run.__bindgen_anon_1.hyperv };
if hyperv.type_ != KVM_EXIT_HYPERV_HCALL {
return Err(Error::new(EINVAL));
}
// TODO(b/315998194): Add safety comment
#[allow(clippy::undocumented_unsafe_blocks)]
let hcall = unsafe { &mut hyperv.u.hcall };
match data.try_into() {
Ok(data) => {
hcall.result = u64::from_ne_bytes(data);
}
_ => return Err(Error::new(EINVAL)),
}
Ok(())
}
_ => Err(Error::new(EINVAL)),
}
}
/// Sets the bit that requests an immediate exit.
#[allow(clippy::cast_ptr_alignment)]
pub fn set_immediate_exit(&self, exit: bool) {
// SAFETY:
// Safe because we know we mapped enough memory to hold the kvm_run struct because the
// kernel told us how large it was. The pointer is page aligned so casting to a different
// type is well defined, hence the clippy allow attribute.
let run = unsafe { &mut *(self.run_mmap.as_ptr() as *mut kvm_run) };
run.immediate_exit = exit.into();
}
/// Sets/clears the bit for immediate exit for the vcpu on the current thread.
pub fn set_local_immediate_exit(exit: bool) {
VCPU_THREAD.with(|v| {
if let Some(state) = &(*v.borrow()) {
// TODO(b/315998194): Add safety comment
#[allow(clippy::undocumented_unsafe_blocks)]
unsafe {
(*state.run).immediate_exit = exit.into();
};
}
});
}
/// Gets the VCPU registers.
#[cfg(not(any(target_arch = "arm", target_arch = "aarch64")))]
pub fn get_regs(&self) -> Result<kvm_regs> {
// SAFETY: trivially safe
let mut regs = unsafe { std::mem::zeroed() };
// SAFETY:
// Safe because we know that our file is a VCPU fd, we know the kernel will only read the
// correct amount of memory from our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_REGS, &mut regs) };
if ret != 0 {
return errno_result();
}
Ok(regs)
}
/// Sets the VCPU registers.
#[cfg(not(any(target_arch = "arm", target_arch = "aarch64")))]
pub fn set_regs(&self, regs: &kvm_regs) -> Result<()> {
// SAFETY:
// Safe because we know that our file is a VCPU fd, we know the kernel will only read the
// correct amount of memory from our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_ref(self, KVM_SET_REGS, regs) };
if ret != 0 {
return errno_result();
}
Ok(())
}
/// Gets the VCPU special registers.
#[cfg(target_arch = "x86_64")]
pub fn get_sregs(&self) -> Result<kvm_sregs> {
// SAFETY: trivially safe
let mut regs = unsafe { std::mem::zeroed() };
// SAFETY:
// Safe because we know that our file is a VCPU fd, we know the kernel will only write the
// correct amount of memory to our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_SREGS, &mut regs) };
if ret != 0 {
return errno_result();
}
Ok(regs)
}
/// Sets the VCPU special registers.
#[cfg(target_arch = "x86_64")]
pub fn set_sregs(&self, sregs: &kvm_sregs) -> Result<()> {
// SAFETY:
// Safe because we know that our file is a VCPU fd, we know the kernel will only read the
// correct amount of memory from our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_ref(self, KVM_SET_SREGS, sregs) };
if ret != 0 {
return errno_result();
}
Ok(())
}
/// Gets the VCPU FPU registers.
#[cfg(target_arch = "x86_64")]
pub fn get_fpu(&self) -> Result<kvm_fpu> {
// SAFETY: trivially safe
// correct amount of memory to our pointer, and we verify the return result.
let mut regs = unsafe { std::mem::zeroed() };
// SAFETY:
// Safe because we know that our file is a VCPU fd, we know the kernel will only write the
let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_FPU, &mut regs) };
if ret != 0 {
return errno_result();
}
Ok(regs)
}
/// X86 specific call to setup the FPU
///
/// See the documentation for KVM_SET_FPU.
#[cfg(target_arch = "x86_64")]
pub fn set_fpu(&self, fpu: &kvm_fpu) -> Result<()> {
let ret = {
// SAFETY:
// Here we trust the kernel not to read past the end of the kvm_fpu struct.
unsafe { ioctl_with_ref(self, KVM_SET_FPU, fpu) }
};
if ret < 0 {
return errno_result();
}
Ok(())
}
/// Gets the VCPU debug registers.
#[cfg(target_arch = "x86_64")]
pub fn get_debugregs(&self) -> Result<kvm_debugregs> {
// SAFETY: trivially safe
let mut regs = unsafe { std::mem::zeroed() };
// SAFETY:
// Safe because we know that our file is a VCPU fd, we know the kernel will only write the
// correct amount of memory to our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_DEBUGREGS, &mut regs) };
if ret != 0 {
return errno_result();
}
Ok(regs)
}
/// Sets the VCPU debug registers
#[cfg(target_arch = "x86_64")]
pub fn set_debugregs(&self, dregs: &kvm_debugregs) -> Result<()> {
let ret = {
// SAFETY:
// Here we trust the kernel not to read past the end of the kvm_fpu struct.
unsafe { ioctl_with_ref(self, KVM_SET_DEBUGREGS, dregs) }
};
if ret < 0 {
return errno_result();
}
Ok(())
}
/// Gets the VCPU extended control registers
#[cfg(target_arch = "x86_64")]
pub fn get_xcrs(&self) -> Result<kvm_xcrs> {
// SAFETY: trivially safe
let mut regs = unsafe { std::mem::zeroed() };
// SAFETY:
// Safe because we know that our file is a VCPU fd, we know the kernel will only write the
// correct amount of memory to our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_XCRS, &mut regs) };
if ret != 0 {
return errno_result();
}
Ok(regs)
}
/// Sets the VCPU extended control registers
#[cfg(target_arch = "x86_64")]
pub fn set_xcrs(&self, xcrs: &kvm_xcrs) -> Result<()> {
let ret = {
// SAFETY:
// Here we trust the kernel not to read past the end of the kvm_xcrs struct.
unsafe { ioctl_with_ref(self, KVM_SET_XCRS, xcrs) }
};
if ret < 0 {
return errno_result();
}
Ok(())
}
/// X86 specific call to get the MSRS
///
/// See the documentation for KVM_SET_MSRS.
#[cfg(target_arch = "x86_64")]
pub fn get_msrs(&self, msr_entries: &mut Vec<kvm_msr_entry>) -> Result<()> {
let mut msrs = vec_with_array_field::<kvm_msrs, kvm_msr_entry>(msr_entries.len());
{
// SAFETY:
// Mapping the unsized array to a slice is unsafe because the length isn't known.
// Providing the length used to create the struct guarantees the entire slice is valid.
unsafe {
let entries: &mut [kvm_msr_entry] = msrs[0].entries.as_mut_slice(msr_entries.len());
entries.copy_from_slice(msr_entries);
}
}
msrs[0].nmsrs = msr_entries.len() as u32;
let ret = {
// SAFETY:
// Here we trust the kernel not to read or write past the end of the kvm_msrs struct.
unsafe { ioctl_with_mut_ref(self, KVM_GET_MSRS, &mut msrs[0]) }
};
if ret < 0 {
// KVM_SET_MSRS actually returns the number of msr entries written.
return errno_result();
}
// TODO(b/315998194): Add safety comment
#[allow(clippy::undocumented_unsafe_blocks)]
unsafe {
let count = ret as usize;
assert!(count <= msr_entries.len());
let entries: &mut [kvm_msr_entry] = msrs[0].entries.as_mut_slice(count);
msr_entries.truncate(count);
msr_entries.copy_from_slice(entries);
}
Ok(())
}
/// X86 specific call to setup the MSRS
///
/// See the documentation for KVM_SET_MSRS.
#[cfg(target_arch = "x86_64")]
pub fn set_msrs(&self, msrs: &kvm_msrs) -> Result<()> {
let ret = {
// SAFETY:
// Here we trust the kernel not to read past the end of the kvm_msrs struct.
unsafe { ioctl_with_ref(self, KVM_SET_MSRS, msrs) }
};
if ret < 0 {
// KVM_SET_MSRS actually returns the number of msr entries written.
return errno_result();
}
Ok(())
}
/// X86 specific call to setup the CPUID registers
///
/// See the documentation for KVM_SET_CPUID2.
#[cfg(target_arch = "x86_64")]
pub fn set_cpuid2(&self, cpuid: &CpuId) -> Result<()> {
let ret = {
// SAFETY:
// Here we trust the kernel not to read past the end of the kvm_msrs struct.
unsafe { ioctl_with_ptr(self, KVM_SET_CPUID2, cpuid.as_ptr()) }
};
if ret < 0 {
return errno_result();
}
Ok(())
}
/// X86 specific call to get the system emulated hyper-v CPUID values
#[cfg(target_arch = "x86_64")]
pub fn get_hyperv_cpuid(&self) -> Result<CpuId> {
const MAX_KVM_CPUID_ENTRIES: usize = 256;
let mut cpuid = CpuId::new(MAX_KVM_CPUID_ENTRIES);
let ret = {
// SAFETY:
// ioctl is unsafe. The kernel is trusted not to write beyond the bounds of the memory
// allocated for the struct. The limit is read from nent, which is set to the allocated
// size(MAX_KVM_CPUID_ENTRIES) above.
unsafe { ioctl_with_mut_ptr(self, KVM_GET_SUPPORTED_HV_CPUID, cpuid.as_mut_ptr()) }
};
if ret < 0 {
return errno_result();
}
Ok(cpuid)
}
/// X86 specific call to get the state of the "Local Advanced Programmable Interrupt
/// Controller".
///
/// See the documentation for KVM_GET_LAPIC.
#[cfg(target_arch = "x86_64")]
pub fn get_lapic(&self) -> Result<kvm_lapic_state> {
let mut klapic: kvm_lapic_state = Default::default();
let ret = {
// SAFETY:
// The ioctl is unsafe unless you trust the kernel not to write past the end of the
// local_apic struct.
unsafe { ioctl_with_mut_ref(self, KVM_GET_LAPIC, &mut klapic) }
};
if ret < 0 {
return errno_result();
}
Ok(klapic)
}
/// X86 specific call to set the state of the "Local Advanced Programmable Interrupt
/// Controller".
///
/// See the documentation for KVM_SET_LAPIC.
#[cfg(target_arch = "x86_64")]
pub fn set_lapic(&self, klapic: &kvm_lapic_state) -> Result<()> {
let ret = {
// SAFETY:
// The ioctl is safe because the kernel will only read from the klapic struct.
unsafe { ioctl_with_ref(self, KVM_SET_LAPIC, klapic) }
};
if ret < 0 {
return errno_result();
}
Ok(())
}
/// Gets the vcpu's current "multiprocessing state".
///
/// See the documentation for KVM_GET_MP_STATE. This call can only succeed after
/// a call to `Vm::create_irq_chip`.
///
/// Note that KVM defines the call for both x86 and s390 but we do not expect anyone
/// to run crosvm on s390.
#[cfg(target_arch = "x86_64")]
pub fn get_mp_state(&self) -> Result<kvm_mp_state> {
// SAFETY: trivially safe
let mut state: kvm_mp_state = unsafe { std::mem::zeroed() };
// SAFETY:
// Safe because we know that our file is a VCPU fd, we know the kernel will only
// write correct amount of memory to our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_MP_STATE, &mut state) };
if ret < 0 {
return errno_result();
}
Ok(state)
}
/// Sets the vcpu's current "multiprocessing state".
///
/// See the documentation for KVM_SET_MP_STATE. This call can only succeed after
/// a call to `Vm::create_irq_chip`.
///
/// Note that KVM defines the call for both x86 and s390 but we do not expect anyone
/// to run crosvm on s390.
#[cfg(target_arch = "x86_64")]
pub fn set_mp_state(&self, state: &kvm_mp_state) -> Result<()> {
let ret = {
// SAFETY:
// The ioctl is safe because the kernel will only read from the kvm_mp_state struct.
unsafe { ioctl_with_ref(self, KVM_SET_MP_STATE, state) }
};
if ret < 0 {
return errno_result();
}
Ok(())
}
/// Gets the vcpu's currently pending exceptions, interrupts, NMIs, etc
///
/// See the documentation for KVM_GET_VCPU_EVENTS.
#[cfg(target_arch = "x86_64")]
pub fn get_vcpu_events(&self) -> Result<kvm_vcpu_events> {
// SAFETY: trivially safe
let mut events: kvm_vcpu_events = unsafe { std::mem::zeroed() };
// SAFETY:
// Safe because we know that our file is a VCPU fd, we know the kernel
// will only write correct amount of memory to our pointer, and we
// verify the return result.
let ret = unsafe { ioctl_with_mut_ref(self, KVM_GET_VCPU_EVENTS, &mut events) };
if ret < 0 {
return errno_result();
}
Ok(events)
}
/// Sets the vcpu's currently pending exceptions, interrupts, NMIs, etc
///
/// See the documentation for KVM_SET_VCPU_EVENTS.
#[cfg(target_arch = "x86_64")]
pub fn set_vcpu_events(&self, events: &kvm_vcpu_events) -> Result<()> {
let ret = {
// SAFETY:
// The ioctl is safe because the kernel will only read from the
// kvm_vcpu_events.
unsafe { ioctl_with_ref(self, KVM_SET_VCPU_EVENTS, events) }
};
if ret < 0 {
return errno_result();
}
Ok(())
}
/// Enable the specified capability.
/// See documentation for KVM_ENABLE_CAP.
/// # Safety
/// This function is marked as unsafe because `cap` may contain values which are interpreted as
/// pointers by the kernel.
pub unsafe fn kvm_enable_cap(&self, cap: &kvm_enable_cap) -> Result<()> {
// SAFETY:
// Safe because we allocated the struct and we know the kernel will read exactly the size of
// the struct.
let ret = ioctl_with_ref(self, KVM_ENABLE_CAP, cap);
if ret < 0 {
return errno_result();
}
Ok(())
}
/// Specifies set of signals that are blocked during execution of KVM_RUN.
/// Signals that are not blocked will cause KVM_RUN to return with -EINTR.
///
/// See the documentation for KVM_SET_SIGNAL_MASK
pub fn set_signal_mask(&self, signals: &[c_int]) -> Result<()> {
let sigset = signal::create_sigset(signals)?;
let mut kvm_sigmask = vec_with_array_field::<kvm_signal_mask, sigset_t>(1);
// Rust definition of sigset_t takes 128 bytes, but the kernel only
// expects 8-bytes structure, so we can't write
// kvm_sigmask.len = size_of::<sigset_t>() as u32;
kvm_sigmask[0].len = 8;
// Ensure the length is not too big.
const _ASSERT: usize = size_of::<sigset_t>() - 8usize;
// SAFETY:
// Safe as we allocated exactly the needed space
unsafe {
copy_nonoverlapping(
&sigset as *const sigset_t as *const u8,
kvm_sigmask[0].sigset.as_mut_ptr(),
8,
);
}
let ret = {
// SAFETY:
// The ioctl is safe because the kernel will only read from the
// kvm_signal_mask structure.
unsafe { ioctl_with_ref(self, KVM_SET_SIGNAL_MASK, &kvm_sigmask[0]) }
};
if ret < 0 {
return errno_result();
}
Ok(())
}
/// Sets the value of one register on this VCPU. The id of the register is
/// encoded as specified in the kernel documentation for KVM_SET_ONE_REG.
#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
pub fn set_one_reg(&self, reg_id: u64, data: u64) -> Result<()> {
let data_ref = &data as *const u64;
let onereg = kvm_one_reg {
id: reg_id,
addr: data_ref as u64,
};
// SAFETY:
// safe because we allocated the struct and we know the kernel will read
// exactly the size of the struct
let ret = unsafe { ioctl_with_ref(self, KVM_SET_ONE_REG, &onereg) };
if ret < 0 {
return errno_result();
}
Ok(())
}
}
impl AsRawDescriptor for Vcpu {
fn as_raw_descriptor(&self) -> RawDescriptor {
self.vcpu.as_raw_descriptor()
}
}
/// A Vcpu that has a thread and can be run. Created by calling `to_runnable` on a `Vcpu`.
/// Implements `Deref` to a `Vcpu` so all `Vcpu` methods are usable, with the addition of the `run`
/// function to execute the guest.
pub struct RunnableVcpu {
vcpu: Vcpu,
// vcpus must stay on the same thread once they start.
// Add the PhantomData pointer to ensure RunnableVcpu is not `Send`.
phantom: std::marker::PhantomData<*mut u8>,
}
impl RunnableVcpu {
/// Runs the VCPU until it exits, returning the reason for the exit.
///
/// Note that the state of the VCPU and associated VM must be setup first for this to do
/// anything useful.
#[allow(clippy::cast_ptr_alignment)]
// The pointer is page aligned so casting to a different type is well defined, hence the clippy
// allow attribute.
pub fn run(&self) -> Result<VcpuExit> {
// SAFETY:
// Safe because we know that our file is a VCPU fd and we verify the return result.
let ret = unsafe { ioctl(self, KVM_RUN) };
if ret == 0 {
// SAFETY:
// Safe because we know we mapped enough memory to hold the kvm_run struct because the
// kernel told us how large it was.
let run = unsafe { &*(self.run_mmap.as_ptr() as *const kvm_run) };
match run.exit_reason {
KVM_EXIT_IO => {
// SAFETY:
// Safe because the exit_reason (which comes from the kernel) told us which
// union field to use.
let io = unsafe { run.__bindgen_anon_1.io };
let port = io.port;
let size = (io.count as usize) * (io.size as usize);
match io.direction as u32 {
KVM_EXIT_IO_IN => Ok(VcpuExit::IoIn { port, size }),
KVM_EXIT_IO_OUT => {
let mut data = [0; 8];
let run_start = run as *const kvm_run as *const u8;
// SAFETY:
// The data_offset is defined by the kernel to be some number of bytes
// into the kvm_run structure, which we have fully mmap'd.
unsafe {
let data_ptr = run_start.offset(io.data_offset as isize);
copy_nonoverlapping(
data_ptr,
data.as_mut_ptr(),
min(size, data.len()),
);
}
Ok(VcpuExit::IoOut { port, size, data })
}
_ => Err(Error::new(EINVAL)),
}
}
KVM_EXIT_MMIO => {
// SAFETY:
// Safe because the exit_reason (which comes from the kernel) told us which
// union field to use.
let mmio = unsafe { &run.__bindgen_anon_1.mmio };
let address = mmio.phys_addr;
let size = min(mmio.len as usize, mmio.data.len());
if mmio.is_write != 0 {
Ok(VcpuExit::MmioWrite {
address,
size,
data: mmio.data,
})
} else {
Ok(VcpuExit::MmioRead { address, size })
}
}
KVM_EXIT_IOAPIC_EOI => {
// SAFETY:
// Safe because the exit_reason (which comes from the kernel) told us which
// union field to use.
let vector = unsafe { run.__bindgen_anon_1.eoi.vector };
Ok(VcpuExit::IoapicEoi { vector })
}
KVM_EXIT_HYPERV => {
// SAFETY:
// Safe because the exit_reason (which comes from the kernel) told us which
// union field to use.
let hyperv = unsafe { &run.__bindgen_anon_1.hyperv };
match hyperv.type_ {
KVM_EXIT_HYPERV_SYNIC => {
// TODO(b/315998194): Add safety comment
#[allow(clippy::undocumented_unsafe_blocks)]
let synic = unsafe { &hyperv.u.synic };
Ok(VcpuExit::HypervSynic {
msr: synic.msr,
control: synic.control,
evt_page: synic.evt_page,
msg_page: synic.msg_page,
})
}
KVM_EXIT_HYPERV_HCALL => {
// TODO(b/315998194): Add safety comment
#[allow(clippy::undocumented_unsafe_blocks)]
let hcall = unsafe { &hyperv.u.hcall };
Ok(VcpuExit::HypervHcall {
input: hcall.input,
params: hcall.params,
})
}
_ => Err(Error::new(EINVAL)),
}
}
KVM_EXIT_UNKNOWN => Ok(VcpuExit::Unknown),
KVM_EXIT_EXCEPTION => Ok(VcpuExit::Exception),
KVM_EXIT_HYPERCALL => Ok(VcpuExit::Hypercall),
KVM_EXIT_DEBUG => Ok(VcpuExit::Debug),
KVM_EXIT_HLT => Ok(VcpuExit::Hlt),
KVM_EXIT_IRQ_WINDOW_OPEN => Ok(VcpuExit::IrqWindowOpen),
KVM_EXIT_SHUTDOWN => Ok(VcpuExit::Shutdown),
KVM_EXIT_FAIL_ENTRY => {
// SAFETY:
// Safe because the exit_reason (which comes from the kernel) told us which
// union field to use.
let hardware_entry_failure_reason = unsafe {
run.__bindgen_anon_1
.fail_entry
.hardware_entry_failure_reason
};
Ok(VcpuExit::FailEntry {
hardware_entry_failure_reason,
})
}
KVM_EXIT_INTR => Ok(VcpuExit::Intr),
KVM_EXIT_SET_TPR => Ok(VcpuExit::SetTpr),
KVM_EXIT_TPR_ACCESS => Ok(VcpuExit::TprAccess),
KVM_EXIT_S390_SIEIC => Ok(VcpuExit::S390Sieic),
KVM_EXIT_S390_RESET => Ok(VcpuExit::S390Reset),
KVM_EXIT_DCR => Ok(VcpuExit::Dcr),
KVM_EXIT_NMI => Ok(VcpuExit::Nmi),
KVM_EXIT_INTERNAL_ERROR => Ok(VcpuExit::InternalError),
KVM_EXIT_OSI => Ok(VcpuExit::Osi),
KVM_EXIT_PAPR_HCALL => Ok(VcpuExit::PaprHcall),
KVM_EXIT_S390_UCONTROL => Ok(VcpuExit::S390Ucontrol),
KVM_EXIT_WATCHDOG => Ok(VcpuExit::Watchdog),
KVM_EXIT_S390_TSCH => Ok(VcpuExit::S390Tsch),
KVM_EXIT_EPR => Ok(VcpuExit::Epr),
KVM_EXIT_SYSTEM_EVENT => {
let event_type = {
// SAFETY:
// Safe because we know the exit reason told us this union
// field is valid
unsafe { run.__bindgen_anon_1.system_event.type_ }
};
// TODO(b/315998194): Add safety comment
#[allow(clippy::undocumented_unsafe_blocks)]
let event_flags =
unsafe { run.__bindgen_anon_1.system_event.__bindgen_anon_1.flags };
Ok(VcpuExit::SystemEvent(event_type, event_flags))
}
r => panic!("unknown kvm exit reason: {}", r),
}
} else {
errno_result()
}
}
}
impl Deref for RunnableVcpu {
type Target = Vcpu;
fn deref(&self) -> &Self::Target {
&self.vcpu
}
}
impl DerefMut for RunnableVcpu {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.vcpu
}
}
impl AsRawDescriptor for RunnableVcpu {
fn as_raw_descriptor(&self) -> RawDescriptor {
self.vcpu.as_raw_descriptor()
}
}
impl Drop for RunnableVcpu {
fn drop(&mut self) {
VCPU_THREAD.with(|v| {
// This assumes that a failure in `BlockedSignal::new` means the signal is already
// blocked and there it should not be unblocked on exit.
let _blocked_signal = &(*v.borrow())
.as_ref()
.and_then(|state| state.signal_num)
.map(BlockedSignal::new);
*v.borrow_mut() = None;
});
}
}
/// Wrapper for kvm_cpuid2 which has a zero length array at the end.
/// Hides the zero length array behind a bounds check.
#[cfg(target_arch = "x86_64")]
pub type CpuId = FlexibleArrayWrapper<kvm_cpuid2, kvm_cpuid_entry2>;