1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
// Copyright 2020 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
mod aarch64;
#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
pub use aarch64::*;
mod cap;
pub use cap::KvmCap;
#[cfg(target_arch = "riscv64")]
mod riscv64;
#[cfg(target_arch = "x86_64")]
mod x86_64;
use std::cmp::min;
use std::cmp::Reverse;
use std::collections::BTreeMap;
use std::collections::BinaryHeap;
use std::convert::TryFrom;
use std::ffi::CString;
use std::fs::File;
use std::os::raw::c_ulong;
use std::os::raw::c_void;
use std::os::unix::prelude::OsStrExt;
use std::path::Path;
use std::ptr::copy_nonoverlapping;
use std::sync::Arc;
use base::errno_result;
use base::error;
use base::ioctl;
use base::ioctl_with_mut_ref;
use base::ioctl_with_ref;
use base::ioctl_with_val;
use base::pagesize;
use base::AsRawDescriptor;
use base::Error;
use base::Event;
use base::FromRawDescriptor;
use base::MappedRegion;
use base::MemoryMapping;
use base::MemoryMappingBuilder;
use base::MmapError;
use base::Protection;
use base::RawDescriptor;
use base::Result;
use base::SafeDescriptor;
use data_model::vec_with_array_field;
use kvm_sys::*;
use libc::open64;
use libc::EFAULT;
use libc::EINVAL;
use libc::EIO;
use libc::ENOENT;
use libc::ENOSPC;
use libc::ENOSYS;
use libc::EOVERFLOW;
use libc::O_CLOEXEC;
use libc::O_RDWR;
#[cfg(target_arch = "riscv64")]
use riscv64::*;
use sync::Mutex;
use vm_memory::GuestAddress;
use vm_memory::GuestMemory;
#[cfg(target_arch = "x86_64")]
pub use x86_64::*;
use crate::BalloonEvent;
use crate::ClockState;
use crate::Config;
use crate::Datamatch;
use crate::DeviceKind;
use crate::Hypervisor;
use crate::HypervisorCap;
use crate::IoEventAddress;
use crate::IoOperation;
use crate::IoParams;
use crate::IrqRoute;
use crate::IrqSource;
use crate::MPState;
use crate::MemCacheType;
use crate::MemSlot;
use crate::Vcpu;
use crate::VcpuExit;
use crate::VcpuSignalHandle;
use crate::VcpuSignalHandleInner;
use crate::Vm;
use crate::VmCap;
// Wrapper around KVM_SET_USER_MEMORY_REGION ioctl, which creates, modifies, or deletes a mapping
// from guest physical to host user pages.
//
// SAFETY:
// Safe when the guest regions are guaranteed not to overlap.
unsafe fn set_user_memory_region(
descriptor: &SafeDescriptor,
slot: MemSlot,
read_only: bool,
log_dirty_pages: bool,
cache: MemCacheType,
guest_addr: u64,
memory_size: u64,
userspace_addr: *mut u8,
) -> Result<()> {
let mut flags = if read_only { KVM_MEM_READONLY } else { 0 };
if log_dirty_pages {
flags |= KVM_MEM_LOG_DIRTY_PAGES;
}
if cache == MemCacheType::CacheNonCoherent {
flags |= KVM_MEM_NON_COHERENT_DMA;
}
let region = kvm_userspace_memory_region {
slot,
flags,
guest_phys_addr: guest_addr,
memory_size,
userspace_addr: userspace_addr as u64,
};
let ret = ioctl_with_ref(descriptor, KVM_SET_USER_MEMORY_REGION, ®ion);
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// Helper function to determine the size in bytes of a dirty log bitmap for the given memory region
/// size.
///
/// # Arguments
///
/// * `size` - Number of bytes in the memory region being queried.
pub fn dirty_log_bitmap_size(size: usize) -> usize {
let page_size = pagesize();
(((size + page_size - 1) / page_size) + 7) / 8
}
pub struct Kvm {
kvm: SafeDescriptor,
vcpu_mmap_size: usize,
}
impl Kvm {
pub fn new_with_path(device_path: &Path) -> Result<Kvm> {
let c_path = CString::new(device_path.as_os_str().as_bytes()).unwrap();
// SAFETY:
// Open calls are safe because we give a nul-terminated string and verify the result.
let ret = unsafe { open64(c_path.as_ptr(), O_RDWR | O_CLOEXEC) };
if ret < 0 {
return errno_result();
}
// SAFETY:
// Safe because we verify that ret is valid and we own the fd.
let kvm = unsafe { SafeDescriptor::from_raw_descriptor(ret) };
// SAFETY:
// Safe because we know that the descriptor is valid and we verify the return result.
let version = unsafe { ioctl(&kvm, KVM_GET_API_VERSION) };
if version < 0 {
return errno_result();
}
// Per the kernel KVM API documentation: "Applications should refuse to run if
// KVM_GET_API_VERSION returns a value other than 12."
if version as u32 != KVM_API_VERSION {
error!(
"KVM_GET_API_VERSION: expected {}, got {}",
KVM_API_VERSION, version,
);
return Err(Error::new(ENOSYS));
}
// SAFETY:
// Safe because we know that our file is a KVM fd and we verify the return result.
let res = unsafe { ioctl(&kvm, KVM_GET_VCPU_MMAP_SIZE) };
if res <= 0 {
return errno_result();
}
let vcpu_mmap_size = res as usize;
Ok(Kvm {
kvm,
vcpu_mmap_size,
})
}
/// Opens `/dev/kvm` and returns a Kvm object on success.
pub fn new() -> Result<Kvm> {
Kvm::new_with_path(Path::new("/dev/kvm"))
}
}
impl AsRawDescriptor for Kvm {
fn as_raw_descriptor(&self) -> RawDescriptor {
self.kvm.as_raw_descriptor()
}
}
impl Hypervisor for Kvm {
fn try_clone(&self) -> Result<Self> {
Ok(Kvm {
kvm: self.kvm.try_clone()?,
vcpu_mmap_size: self.vcpu_mmap_size,
})
}
fn check_capability(&self, cap: HypervisorCap) -> bool {
if let Ok(kvm_cap) = KvmCap::try_from(cap) {
// SAFETY:
// this ioctl is safe because we know this kvm descriptor is valid,
// and we are copying over the kvm capability (u32) as a c_ulong value.
unsafe { ioctl_with_val(self, KVM_CHECK_EXTENSION, kvm_cap as c_ulong) == 1 }
} else {
// this capability cannot be converted on this platform, so return false
false
}
}
}
/// A wrapper around creating and using a KVM VM.
pub struct KvmVm {
kvm: Kvm,
vm: SafeDescriptor,
guest_mem: GuestMemory,
mem_regions: Arc<Mutex<BTreeMap<MemSlot, Box<dyn MappedRegion>>>>,
/// A min heap of MemSlot numbers that were used and then removed and can now be re-used
mem_slot_gaps: Arc<Mutex<BinaryHeap<Reverse<MemSlot>>>>,
cap_kvmclock_ctrl: bool,
}
impl KvmVm {
/// Constructs a new `KvmVm` using the given `Kvm` instance.
pub fn new(kvm: &Kvm, guest_mem: GuestMemory, cfg: Config) -> Result<KvmVm> {
// SAFETY:
// Safe because we know kvm is a real kvm fd as this module is the only one that can make
// Kvm objects.
let ret = unsafe {
ioctl_with_val(
kvm,
KVM_CREATE_VM,
kvm.get_vm_type(cfg.protection_type)? as c_ulong,
)
};
if ret < 0 {
return errno_result();
}
// SAFETY:
// Safe because we verify that ret is valid and we own the fd.
let vm_descriptor = unsafe { SafeDescriptor::from_raw_descriptor(ret) };
for region in guest_mem.regions() {
// SAFETY:
// Safe because the guest regions are guaranteed not to overlap.
unsafe {
set_user_memory_region(
&vm_descriptor,
region.index as MemSlot,
false,
false,
MemCacheType::CacheCoherent,
region.guest_addr.offset(),
region.size as u64,
region.host_addr as *mut u8,
)
}?;
}
let mut vm = KvmVm {
kvm: kvm.try_clone()?,
vm: vm_descriptor,
guest_mem,
mem_regions: Arc::new(Mutex::new(BTreeMap::new())),
mem_slot_gaps: Arc::new(Mutex::new(BinaryHeap::new())),
cap_kvmclock_ctrl: false,
};
vm.cap_kvmclock_ctrl = vm.check_raw_capability(KvmCap::KvmclockCtrl);
vm.init_arch(&cfg)?;
Ok(vm)
}
pub fn create_kvm_vcpu(&self, id: usize) -> Result<KvmVcpu> {
// SAFETY:
// Safe because we know that our file is a VM fd and we verify the return result.
let fd = unsafe { ioctl_with_val(self, KVM_CREATE_VCPU, c_ulong::try_from(id).unwrap()) };
if fd < 0 {
return errno_result();
}
// SAFETY:
// Wrap the vcpu now in case the following ? returns early. This is safe because we verified
// the value of the fd and we own the fd.
let vcpu = unsafe { File::from_raw_descriptor(fd) };
// The VCPU mapping is held by an `Arc` inside `KvmVcpu`, and it can also be cloned by
// `signal_handle()` for use in `KvmVcpuSignalHandle`. The mapping will not be destroyed
// until all references are dropped, so it is safe to reference `kvm_run` fields via the
// `as_ptr()` function during either type's lifetime.
let run_mmap = MemoryMappingBuilder::new(self.kvm.vcpu_mmap_size)
.from_file(&vcpu)
.build()
.map_err(|_| Error::new(ENOSPC))?;
Ok(KvmVcpu {
kvm: self.kvm.try_clone()?,
vm: self.vm.try_clone()?,
vcpu,
id,
cap_kvmclock_ctrl: self.cap_kvmclock_ctrl,
run_mmap: Arc::new(run_mmap),
})
}
/// Creates an in kernel interrupt controller.
///
/// See the documentation on the KVM_CREATE_IRQCHIP ioctl.
pub fn create_irq_chip(&self) -> Result<()> {
// SAFETY:
// Safe because we know that our file is a VM fd and we verify the return result.
let ret = unsafe { ioctl(self, KVM_CREATE_IRQCHIP) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// Sets the level on the given irq to 1 if `active` is true, and 0 otherwise.
pub fn set_irq_line(&self, irq: u32, active: bool) -> Result<()> {
let mut irq_level = kvm_irq_level::default();
irq_level.__bindgen_anon_1.irq = irq;
irq_level.level = active.into();
// SAFETY:
// Safe because we know that our file is a VM fd, we know the kernel will only read the
// correct amount of memory from our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_ref(self, KVM_IRQ_LINE, &irq_level) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// Registers an event that will, when signalled, trigger the `gsi` irq, and `resample_evt`
/// ( when not None ) will be triggered when the irqchip is resampled.
pub fn register_irqfd(
&self,
gsi: u32,
evt: &Event,
resample_evt: Option<&Event>,
) -> Result<()> {
let mut irqfd = kvm_irqfd {
fd: evt.as_raw_descriptor() as u32,
gsi,
..Default::default()
};
if let Some(r_evt) = resample_evt {
irqfd.flags = KVM_IRQFD_FLAG_RESAMPLE;
irqfd.resamplefd = r_evt.as_raw_descriptor() as u32;
}
// SAFETY:
// Safe because we know that our file is a VM fd, we know the kernel will only read the
// correct amount of memory from our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_ref(self, KVM_IRQFD, &irqfd) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// Unregisters an event that was previously registered with
/// `register_irqfd`.
///
/// The `evt` and `gsi` pair must be the same as the ones passed into
/// `register_irqfd`.
pub fn unregister_irqfd(&self, gsi: u32, evt: &Event) -> Result<()> {
let irqfd = kvm_irqfd {
fd: evt.as_raw_descriptor() as u32,
gsi,
flags: KVM_IRQFD_FLAG_DEASSIGN,
..Default::default()
};
// SAFETY:
// Safe because we know that our file is a VM fd, we know the kernel will only read the
// correct amount of memory from our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_ref(self, KVM_IRQFD, &irqfd) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// Sets the GSI routing table, replacing any table set with previous calls to
/// `set_gsi_routing`.
pub fn set_gsi_routing(&self, routes: &[IrqRoute]) -> Result<()> {
let mut irq_routing =
vec_with_array_field::<kvm_irq_routing, kvm_irq_routing_entry>(routes.len());
irq_routing[0].nr = routes.len() as u32;
// SAFETY:
// Safe because we ensured there is enough space in irq_routing to hold the number of
// route entries.
let irq_routes = unsafe { irq_routing[0].entries.as_mut_slice(routes.len()) };
for (route, irq_route) in routes.iter().zip(irq_routes.iter_mut()) {
*irq_route = kvm_irq_routing_entry::from(route);
}
// TODO(b/315998194): Add safety comment
#[allow(clippy::undocumented_unsafe_blocks)]
let ret = unsafe { ioctl_with_ref(self, KVM_SET_GSI_ROUTING, &irq_routing[0]) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
fn ioeventfd(
&self,
evt: &Event,
addr: IoEventAddress,
datamatch: Datamatch,
deassign: bool,
) -> Result<()> {
let (do_datamatch, datamatch_value, datamatch_len) = match datamatch {
Datamatch::AnyLength => (false, 0, 0),
Datamatch::U8(v) => match v {
Some(u) => (true, u as u64, 1),
None => (false, 0, 1),
},
Datamatch::U16(v) => match v {
Some(u) => (true, u as u64, 2),
None => (false, 0, 2),
},
Datamatch::U32(v) => match v {
Some(u) => (true, u as u64, 4),
None => (false, 0, 4),
},
Datamatch::U64(v) => match v {
Some(u) => (true, u, 8),
None => (false, 0, 8),
},
};
let mut flags = 0;
if deassign {
flags |= 1 << kvm_ioeventfd_flag_nr_deassign;
}
if do_datamatch {
flags |= 1 << kvm_ioeventfd_flag_nr_datamatch
}
if let IoEventAddress::Pio(_) = addr {
flags |= 1 << kvm_ioeventfd_flag_nr_pio;
}
let ioeventfd = kvm_ioeventfd {
datamatch: datamatch_value,
len: datamatch_len,
addr: match addr {
IoEventAddress::Pio(p) => p,
IoEventAddress::Mmio(m) => m,
},
fd: evt.as_raw_descriptor(),
flags,
..Default::default()
};
// SAFETY:
// Safe because we know that our file is a VM fd, we know the kernel will only read the
// correct amount of memory from our pointer, and we verify the return result.
let ret = unsafe { ioctl_with_ref(self, KVM_IOEVENTFD, &ioeventfd) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
/// Checks whether a particular KVM-specific capability is available for this VM.
pub fn check_raw_capability(&self, capability: KvmCap) -> bool {
// SAFETY:
// Safe because we know that our file is a KVM fd, and if the cap is invalid KVM assumes
// it's an unavailable extension and returns 0.
let ret = unsafe { ioctl_with_val(self, KVM_CHECK_EXTENSION, capability as c_ulong) };
match capability {
#[cfg(target_arch = "x86_64")]
KvmCap::BusLockDetect => {
if ret > 0 {
ret as u32 & KVM_BUS_LOCK_DETECTION_EXIT == KVM_BUS_LOCK_DETECTION_EXIT
} else {
false
}
}
_ => ret == 1,
}
}
// Currently only used on aarch64, but works on any architecture.
#[allow(dead_code)]
/// Enables a KVM-specific capability for this VM, with the given arguments.
///
/// # Safety
/// This function is marked as unsafe because `args` may be interpreted as pointers for some
/// capabilities. The caller must ensure that any pointers passed in the `args` array are
/// allocated as the kernel expects, and that mutable pointers are owned.
unsafe fn enable_raw_capability(
&self,
capability: KvmCap,
flags: u32,
args: &[u64; 4],
) -> Result<()> {
let kvm_cap = kvm_enable_cap {
cap: capability as u32,
args: *args,
flags,
..Default::default()
};
// SAFETY:
// Safe because we allocated the struct and we know the kernel will read exactly the size of
// the struct, and because we assume the caller has allocated the args appropriately.
let ret = ioctl_with_ref(self, KVM_ENABLE_CAP, &kvm_cap);
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
fn handle_inflate(&mut self, guest_address: GuestAddress, size: u64) -> Result<()> {
match self.guest_mem.remove_range(guest_address, size) {
Ok(_) => Ok(()),
Err(vm_memory::Error::MemoryAccess(_, MmapError::SystemCallFailed(e))) => Err(e),
Err(_) => Err(Error::new(EIO)),
}
}
fn handle_deflate(&mut self, _guest_address: GuestAddress, _size: u64) -> Result<()> {
// No-op, when the guest attempts to access the pages again, Linux/KVM will provide them.
Ok(())
}
}
impl Vm for KvmVm {
fn try_clone(&self) -> Result<Self> {
Ok(KvmVm {
kvm: self.kvm.try_clone()?,
vm: self.vm.try_clone()?,
guest_mem: self.guest_mem.clone(),
mem_regions: self.mem_regions.clone(),
mem_slot_gaps: self.mem_slot_gaps.clone(),
cap_kvmclock_ctrl: self.cap_kvmclock_ctrl,
})
}
fn check_capability(&self, c: VmCap) -> bool {
if let Some(val) = self.check_capability_arch(c) {
return val;
}
match c {
VmCap::DirtyLog => true,
VmCap::PvClock => false,
VmCap::Protected => self.check_raw_capability(KvmCap::ArmProtectedVm),
VmCap::EarlyInitCpuid => false,
#[cfg(target_arch = "x86_64")]
VmCap::BusLockDetect => self.check_raw_capability(KvmCap::BusLockDetect),
// When pKVM is the hypervisor, read-only memslots aren't supported, even for
// non-protected VMs.
VmCap::ReadOnlyMemoryRegion => !self.is_pkvm(),
VmCap::MemNoncoherentDma => {
cfg!(feature = "noncoherent-dma")
&& self.check_raw_capability(KvmCap::MemNoncoherentDma)
}
}
}
fn enable_capability(&self, c: VmCap, _flags: u32) -> Result<bool> {
match c {
#[cfg(target_arch = "x86_64")]
VmCap::BusLockDetect => {
let args = [KVM_BUS_LOCK_DETECTION_EXIT as u64, 0, 0, 0];
Ok(
// TODO(b/315998194): Add safety comment
#[allow(clippy::undocumented_unsafe_blocks)]
unsafe {
self.enable_raw_capability(KvmCap::BusLockDetect, _flags, &args) == Ok(())
},
)
}
_ => Ok(false),
}
}
fn get_guest_phys_addr_bits(&self) -> u8 {
self.kvm.get_guest_phys_addr_bits()
}
fn get_memory(&self) -> &GuestMemory {
&self.guest_mem
}
fn add_memory_region(
&mut self,
guest_addr: GuestAddress,
mem: Box<dyn MappedRegion>,
read_only: bool,
log_dirty_pages: bool,
cache: MemCacheType,
) -> Result<MemSlot> {
let pgsz = pagesize() as u64;
// KVM require to set the user memory region with page size aligned size. Safe to extend
// the mem.size() to be page size aligned because the mmap will round up the size to be
// page size aligned if it is not.
let size = (mem.size() as u64 + pgsz - 1) / pgsz * pgsz;
let end_addr = guest_addr
.checked_add(size)
.ok_or_else(|| Error::new(EOVERFLOW))?;
if self.guest_mem.range_overlap(guest_addr, end_addr) {
return Err(Error::new(ENOSPC));
}
let mut regions = self.mem_regions.lock();
let mut gaps = self.mem_slot_gaps.lock();
let slot = match gaps.pop() {
Some(gap) => gap.0,
None => (regions.len() + self.guest_mem.num_regions() as usize) as MemSlot,
};
let cache_type = if self.check_capability(VmCap::MemNoncoherentDma) {
cache
} else {
MemCacheType::CacheCoherent
};
// SAFETY:
// Safe because we check that the given guest address is valid and has no overlaps. We also
// know that the pointer and size are correct because the MemoryMapping interface ensures
// this. We take ownership of the memory mapping so that it won't be unmapped until the slot
// is removed.
let res = unsafe {
set_user_memory_region(
&self.vm,
slot,
read_only,
log_dirty_pages,
cache_type,
guest_addr.offset(),
size,
mem.as_ptr(),
)
};
if let Err(e) = res {
gaps.push(Reverse(slot));
return Err(e);
}
regions.insert(slot, mem);
Ok(slot)
}
fn msync_memory_region(&mut self, slot: MemSlot, offset: usize, size: usize) -> Result<()> {
let mut regions = self.mem_regions.lock();
let mem = regions.get_mut(&slot).ok_or_else(|| Error::new(ENOENT))?;
mem.msync(offset, size).map_err(|err| match err {
MmapError::InvalidAddress => Error::new(EFAULT),
MmapError::NotPageAligned => Error::new(EINVAL),
MmapError::SystemCallFailed(e) => e,
_ => Error::new(EIO),
})
}
fn madvise_pageout_memory_region(
&mut self,
slot: MemSlot,
offset: usize,
size: usize,
) -> Result<()> {
let mut regions = self.mem_regions.lock();
let mem = regions.get_mut(&slot).ok_or_else(|| Error::new(ENOENT))?;
mem.madvise(offset, size, libc::MADV_PAGEOUT)
.map_err(|err| match err {
MmapError::InvalidAddress => Error::new(EFAULT),
MmapError::NotPageAligned => Error::new(EINVAL),
MmapError::SystemCallFailed(e) => e,
_ => Error::new(EIO),
})
}
fn madvise_remove_memory_region(
&mut self,
slot: MemSlot,
offset: usize,
size: usize,
) -> Result<()> {
let mut regions = self.mem_regions.lock();
let mem = regions.get_mut(&slot).ok_or_else(|| Error::new(ENOENT))?;
mem.madvise(offset, size, libc::MADV_REMOVE)
.map_err(|err| match err {
MmapError::InvalidAddress => Error::new(EFAULT),
MmapError::NotPageAligned => Error::new(EINVAL),
MmapError::SystemCallFailed(e) => e,
_ => Error::new(EIO),
})
}
fn remove_memory_region(&mut self, slot: MemSlot) -> Result<Box<dyn MappedRegion>> {
let mut regions = self.mem_regions.lock();
if !regions.contains_key(&slot) {
return Err(Error::new(ENOENT));
}
// SAFETY:
// Safe because the slot is checked against the list of memory slots.
unsafe {
set_user_memory_region(
&self.vm,
slot,
false,
false,
MemCacheType::CacheCoherent,
0,
0,
std::ptr::null_mut(),
)?;
}
self.mem_slot_gaps.lock().push(Reverse(slot));
// This remove will always succeed because of the contains_key check above.
Ok(regions.remove(&slot).unwrap())
}
fn create_device(&self, kind: DeviceKind) -> Result<SafeDescriptor> {
let mut device = if let Some(dev) = self.get_device_params_arch(kind) {
dev
} else {
match kind {
DeviceKind::Vfio => kvm_create_device {
type_: kvm_device_type_KVM_DEV_TYPE_VFIO,
fd: 0,
flags: 0,
},
// ARM and risc-v have additional DeviceKinds, so it needs the catch-all pattern
#[cfg(any(target_arch = "arm", target_arch = "aarch64", target_arch = "riscv64"))]
_ => return Err(Error::new(libc::ENXIO)),
}
};
// SAFETY:
// Safe because we know that our file is a VM fd, we know the kernel will only write correct
// amount of memory to our pointer, and we verify the return result.
let ret = unsafe { base::ioctl_with_mut_ref(self, KVM_CREATE_DEVICE, &mut device) };
if ret == 0 {
Ok(
// SAFETY:
// Safe because we verify that ret is valid and we own the fd.
unsafe { SafeDescriptor::from_raw_descriptor(device.fd as i32) },
)
} else {
errno_result()
}
}
fn get_dirty_log(&self, slot: MemSlot, dirty_log: &mut [u8]) -> Result<()> {
let regions = self.mem_regions.lock();
let mmap = regions.get(&slot).ok_or_else(|| Error::new(ENOENT))?;
// Ensures that there are as many bytes in dirty_log as there are pages in the mmap.
if dirty_log_bitmap_size(mmap.size()) > dirty_log.len() {
return Err(Error::new(EINVAL));
}
let mut dirty_log_kvm = kvm_dirty_log {
slot,
..Default::default()
};
dirty_log_kvm.__bindgen_anon_1.dirty_bitmap = dirty_log.as_ptr() as *mut c_void;
// SAFETY:
// Safe because the `dirty_bitmap` pointer assigned above is guaranteed to be valid (because
// it's from a slice) and we checked that it will be large enough to hold the entire log.
let ret = unsafe { ioctl_with_ref(self, KVM_GET_DIRTY_LOG, &dirty_log_kvm) };
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
fn register_ioevent(
&mut self,
evt: &Event,
addr: IoEventAddress,
datamatch: Datamatch,
) -> Result<()> {
self.ioeventfd(evt, addr, datamatch, false)
}
fn unregister_ioevent(
&mut self,
evt: &Event,
addr: IoEventAddress,
datamatch: Datamatch,
) -> Result<()> {
self.ioeventfd(evt, addr, datamatch, true)
}
fn handle_io_events(&self, _addr: IoEventAddress, _data: &[u8]) -> Result<()> {
// KVM delivers IO events in-kernel with ioeventfds, so this is a no-op
Ok(())
}
fn get_pvclock(&self) -> Result<ClockState> {
self.get_pvclock_arch()
}
fn set_pvclock(&self, state: &ClockState) -> Result<()> {
self.set_pvclock_arch(state)
}
fn add_fd_mapping(
&mut self,
slot: u32,
offset: usize,
size: usize,
fd: &dyn AsRawDescriptor,
fd_offset: u64,
prot: Protection,
) -> Result<()> {
let mut regions = self.mem_regions.lock();
let region = regions.get_mut(&slot).ok_or_else(|| Error::new(EINVAL))?;
match region.add_fd_mapping(offset, size, fd, fd_offset, prot) {
Ok(()) => Ok(()),
Err(MmapError::SystemCallFailed(e)) => Err(e),
Err(_) => Err(Error::new(EIO)),
}
}
fn remove_mapping(&mut self, slot: u32, offset: usize, size: usize) -> Result<()> {
let mut regions = self.mem_regions.lock();
let region = regions.get_mut(&slot).ok_or_else(|| Error::new(EINVAL))?;
match region.remove_mapping(offset, size) {
Ok(()) => Ok(()),
Err(MmapError::SystemCallFailed(e)) => Err(e),
Err(_) => Err(Error::new(EIO)),
}
}
fn handle_balloon_event(&mut self, event: BalloonEvent) -> Result<()> {
match event {
BalloonEvent::Inflate(m) => self.handle_inflate(m.guest_address, m.size),
BalloonEvent::Deflate(m) => self.handle_deflate(m.guest_address, m.size),
BalloonEvent::BalloonTargetReached(_) => Ok(()),
}
}
}
impl AsRawDescriptor for KvmVm {
fn as_raw_descriptor(&self) -> RawDescriptor {
self.vm.as_raw_descriptor()
}
}
struct KvmVcpuSignalHandle {
run_mmap: Arc<MemoryMapping>,
}
impl VcpuSignalHandleInner for KvmVcpuSignalHandle {
fn signal_immediate_exit(&self) {
// SAFETY: we ensure `run_mmap` is a valid mapping of `kvm_run` at creation time, and the
// `Arc` ensures the mapping still exists while we hold a reference to it.
unsafe {
let run = self.run_mmap.as_ptr() as *mut kvm_run;
(*run).immediate_exit = 1;
}
}
}
/// A wrapper around using a KVM Vcpu.
pub struct KvmVcpu {
kvm: Kvm,
vm: SafeDescriptor,
vcpu: File,
id: usize,
cap_kvmclock_ctrl: bool,
run_mmap: Arc<MemoryMapping>,
}
impl Vcpu for KvmVcpu {
fn try_clone(&self) -> Result<Self> {
let vm = self.vm.try_clone()?;
let vcpu = self.vcpu.try_clone()?;
Ok(KvmVcpu {
kvm: self.kvm.try_clone()?,
vm,
vcpu,
cap_kvmclock_ctrl: self.cap_kvmclock_ctrl,
id: self.id,
run_mmap: self.run_mmap.clone(),
})
}
fn as_vcpu(&self) -> &dyn Vcpu {
self
}
fn id(&self) -> usize {
self.id
}
#[allow(clippy::cast_ptr_alignment)]
fn set_immediate_exit(&self, exit: bool) {
// SAFETY:
// Safe because we know we mapped enough memory to hold the kvm_run struct because the
// kernel told us how large it was. The pointer is page aligned so casting to a different
// type is well defined, hence the clippy allow attribute.
let run = unsafe { &mut *(self.run_mmap.as_ptr() as *mut kvm_run) };
run.immediate_exit = exit.into();
}
fn signal_handle(&self) -> VcpuSignalHandle {
VcpuSignalHandle {
inner: Box::new(KvmVcpuSignalHandle {
run_mmap: self.run_mmap.clone(),
}),
}
}
fn on_suspend(&self) -> Result<()> {
// On KVM implementations that use a paravirtualized clock (e.g. x86), a flag must be set to
// indicate to the guest kernel that a vCPU was suspended. The guest kernel will use this
// flag to prevent the soft lockup detection from triggering when this vCPU resumes, which
// could happen days later in realtime.
if self.cap_kvmclock_ctrl {
// SAFETY:
// The ioctl is safe because it does not read or write memory in this process.
if unsafe { ioctl(self, KVM_KVMCLOCK_CTRL) } != 0 {
// Even if the host kernel supports the capability, it may not be configured by
// the guest - for example, when the guest kernel offlines a CPU.
if Error::last().errno() != libc::EINVAL {
return errno_result();
}
}
}
Ok(())
}
unsafe fn enable_raw_capability(&self, cap: u32, args: &[u64; 4]) -> Result<()> {
let kvm_cap = kvm_enable_cap {
cap,
args: *args,
..Default::default()
};
// SAFETY:
// Safe because we allocated the struct and we know the kernel will read exactly the size of
// the struct, and because we assume the caller has allocated the args appropriately.
let ret = ioctl_with_ref(self, KVM_ENABLE_CAP, &kvm_cap);
if ret == 0 {
Ok(())
} else {
errno_result()
}
}
#[allow(clippy::cast_ptr_alignment)]
// The pointer is page aligned so casting to a different type is well defined, hence the clippy
// allow attribute.
fn run(&mut self) -> Result<VcpuExit> {
// SAFETY:
// Safe because we know that our file is a VCPU fd and we verify the return result.
let ret = unsafe { ioctl(self, KVM_RUN) };
if ret != 0 {
return errno_result();
}
// SAFETY:
// Safe because we know we mapped enough memory to hold the kvm_run struct because the
// kernel told us how large it was.
let run = unsafe { &mut *(self.run_mmap.as_ptr() as *mut kvm_run) };
// Check for architecture-specific VM exit reasons first in case the architecture wants to
// override the default handling.
if let Some(vcpu_exit) = self.handle_vm_exit_arch(run) {
return Ok(vcpu_exit);
}
match run.exit_reason {
KVM_EXIT_MMIO => Ok(VcpuExit::Mmio),
KVM_EXIT_EXCEPTION => Ok(VcpuExit::Exception),
KVM_EXIT_HYPERCALL => Ok(VcpuExit::Hypercall),
KVM_EXIT_DEBUG => Ok(VcpuExit::Debug),
KVM_EXIT_IRQ_WINDOW_OPEN => Ok(VcpuExit::IrqWindowOpen),
KVM_EXIT_SHUTDOWN => Ok(VcpuExit::Shutdown(Ok(()))),
KVM_EXIT_FAIL_ENTRY => {
// SAFETY:
// Safe because the exit_reason (which comes from the kernel) told us which
// union field to use.
let hardware_entry_failure_reason = unsafe {
run.__bindgen_anon_1
.fail_entry
.hardware_entry_failure_reason
};
Ok(VcpuExit::FailEntry {
hardware_entry_failure_reason,
})
}
KVM_EXIT_INTR => Ok(VcpuExit::Intr),
KVM_EXIT_INTERNAL_ERROR => Ok(VcpuExit::InternalError),
KVM_EXIT_SYSTEM_EVENT => {
// SAFETY:
// Safe because we know the exit reason told us this union
// field is valid
let event_type = unsafe { run.__bindgen_anon_1.system_event.type_ };
let event_flags =
// SAFETY:
// Safe because we know the exit reason told us this union
// field is valid
unsafe { run.__bindgen_anon_1.system_event.__bindgen_anon_1.flags };
match event_type {
KVM_SYSTEM_EVENT_SHUTDOWN => Ok(VcpuExit::SystemEventShutdown),
KVM_SYSTEM_EVENT_RESET => self.system_event_reset(event_flags),
KVM_SYSTEM_EVENT_CRASH => Ok(VcpuExit::SystemEventCrash),
_ => {
error!(
"Unknown KVM system event {} with flags {}",
event_type, event_flags
);
Err(Error::new(EINVAL))
}
}
}
r => panic!("unknown kvm exit reason: {}", r),
}
}
fn handle_mmio(
&self,
handle_fn: &mut dyn FnMut(IoParams) -> Result<Option<[u8; 8]>>,
) -> Result<()> {
// SAFETY:
// Safe because we know we mapped enough memory to hold the kvm_run struct because the
// kernel told us how large it was. The pointer is page aligned so casting to a different
// type is well defined, hence the clippy allow attribute.
let run = unsafe { &mut *(self.run_mmap.as_ptr() as *mut kvm_run) };
// Verify that the handler is called in the right context.
assert!(run.exit_reason == KVM_EXIT_MMIO);
// SAFETY:
// Safe because the exit_reason (which comes from the kernel) told us which
// union field to use.
let mmio = unsafe { &mut run.__bindgen_anon_1.mmio };
let address = mmio.phys_addr;
let size = min(mmio.len as usize, mmio.data.len());
if mmio.is_write != 0 {
handle_fn(IoParams {
address,
size,
operation: IoOperation::Write { data: mmio.data },
})?;
Ok(())
} else if let Some(data) = handle_fn(IoParams {
address,
size,
operation: IoOperation::Read,
})? {
mmio.data[..size].copy_from_slice(&data[..size]);
Ok(())
} else {
Err(Error::new(EINVAL))
}
}
fn handle_io(&self, handle_fn: &mut dyn FnMut(IoParams) -> Option<[u8; 8]>) -> Result<()> {
// SAFETY:
// Safe because we know we mapped enough memory to hold the kvm_run struct because the
// kernel told us how large it was. The pointer is page aligned so casting to a different
// type is well defined, hence the clippy allow attribute.
let run = unsafe { &mut *(self.run_mmap.as_ptr() as *mut kvm_run) };
// Verify that the handler is called in the right context.
assert!(run.exit_reason == KVM_EXIT_IO);
// SAFETY:
// Safe because the exit_reason (which comes from the kernel) told us which
// union field to use.
let io = unsafe { run.__bindgen_anon_1.io };
let size = usize::from(io.size);
// SAFETY:
// The data_offset is defined by the kernel to be some number of bytes into the kvm_run
// structure, which we have fully mmap'd.
let mut data_ptr = unsafe { (run as *mut kvm_run as *mut u8).add(io.data_offset as usize) };
match io.direction as u32 {
KVM_EXIT_IO_IN => {
for _ in 0..io.count {
if let Some(data) = handle_fn(IoParams {
address: io.port.into(),
size,
operation: IoOperation::Read,
}) {
// TODO(b/315998194): Add safety comment
#[allow(clippy::undocumented_unsafe_blocks)]
unsafe {
copy_nonoverlapping(data.as_ptr(), data_ptr, size);
data_ptr = data_ptr.add(size);
}
} else {
return Err(Error::new(EINVAL));
}
}
Ok(())
}
KVM_EXIT_IO_OUT => {
for _ in 0..io.count {
let mut data = [0; 8];
// TODO(b/315998194): Add safety comment
#[allow(clippy::undocumented_unsafe_blocks)]
unsafe {
copy_nonoverlapping(data_ptr, data.as_mut_ptr(), min(size, data.len()));
data_ptr = data_ptr.add(size);
}
handle_fn(IoParams {
address: io.port.into(),
size,
operation: IoOperation::Write { data },
});
}
Ok(())
}
_ => Err(Error::new(EINVAL)),
}
}
}
impl KvmVcpu {
/// Gets the vcpu's current "multiprocessing state".
///
/// See the documentation for KVM_GET_MP_STATE. This call can only succeed after
/// a call to `Vm::create_irq_chip`.
///
/// Note that KVM defines the call for both x86 and s390 but we do not expect anyone
/// to run crosvm on s390.
pub fn get_mp_state(&self) -> Result<kvm_mp_state> {
// SAFETY: trivially safe
let mut state: kvm_mp_state = unsafe { std::mem::zeroed() };
let ret = {
// SAFETY:
// Safe because we know that our file is a VCPU fd, we know the kernel will only write
// the correct amount of memory to our pointer, and we verify the return
// result.
unsafe { ioctl_with_mut_ref(self, KVM_GET_MP_STATE, &mut state) }
};
if ret < 0 {
return errno_result();
}
Ok(state)
}
/// Sets the vcpu's current "multiprocessing state".
///
/// See the documentation for KVM_SET_MP_STATE. This call can only succeed after
/// a call to `Vm::create_irq_chip`.
///
/// Note that KVM defines the call for both x86 and s390 but we do not expect anyone
/// to run crosvm on s390.
pub fn set_mp_state(&self, state: &kvm_mp_state) -> Result<()> {
let ret = {
// SAFETY:
// The ioctl is safe because the kernel will only read from the kvm_mp_state struct.
unsafe { ioctl_with_ref(self, KVM_SET_MP_STATE, state) }
};
if ret < 0 {
return errno_result();
}
Ok(())
}
}
impl AsRawDescriptor for KvmVcpu {
fn as_raw_descriptor(&self) -> RawDescriptor {
self.vcpu.as_raw_descriptor()
}
}
impl TryFrom<HypervisorCap> for KvmCap {
type Error = Error;
fn try_from(cap: HypervisorCap) -> Result<KvmCap> {
match cap {
HypervisorCap::ArmPmuV3 => Ok(KvmCap::ArmPmuV3),
HypervisorCap::ImmediateExit => Ok(KvmCap::ImmediateExit),
HypervisorCap::S390UserSigp => Ok(KvmCap::S390UserSigp),
HypervisorCap::TscDeadlineTimer => Ok(KvmCap::TscDeadlineTimer),
HypervisorCap::UserMemory => Ok(KvmCap::UserMemory),
#[cfg(target_arch = "x86_64")]
HypervisorCap::Xcrs => Ok(KvmCap::Xcrs),
#[cfg(target_arch = "x86_64")]
HypervisorCap::CalibratedTscLeafRequired => Err(Error::new(libc::EINVAL)),
HypervisorCap::StaticSwiotlbAllocationRequired => Err(Error::new(libc::EINVAL)),
HypervisorCap::HypervisorInitializedBootContext => Err(Error::new(libc::EINVAL)),
}
}
}
impl From<&IrqRoute> for kvm_irq_routing_entry {
fn from(item: &IrqRoute) -> Self {
match &item.source {
IrqSource::Irqchip { chip, pin } => kvm_irq_routing_entry {
gsi: item.gsi,
type_: KVM_IRQ_ROUTING_IRQCHIP,
u: kvm_irq_routing_entry__bindgen_ty_1 {
irqchip: kvm_irq_routing_irqchip {
irqchip: chip_to_kvm_chip(*chip),
pin: *pin,
},
},
..Default::default()
},
IrqSource::Msi { address, data } => kvm_irq_routing_entry {
gsi: item.gsi,
type_: KVM_IRQ_ROUTING_MSI,
u: kvm_irq_routing_entry__bindgen_ty_1 {
msi: kvm_irq_routing_msi {
address_lo: *address as u32,
address_hi: (*address >> 32) as u32,
data: *data,
..Default::default()
},
},
..Default::default()
},
}
}
}
impl From<&kvm_mp_state> for MPState {
fn from(item: &kvm_mp_state) -> Self {
match item.mp_state {
KVM_MP_STATE_RUNNABLE => MPState::Runnable,
KVM_MP_STATE_UNINITIALIZED => MPState::Uninitialized,
KVM_MP_STATE_INIT_RECEIVED => MPState::InitReceived,
KVM_MP_STATE_HALTED => MPState::Halted,
KVM_MP_STATE_SIPI_RECEIVED => MPState::SipiReceived,
KVM_MP_STATE_STOPPED => MPState::Stopped,
state => {
error!(
"unrecognized kvm_mp_state {}, setting to KVM_MP_STATE_RUNNABLE",
state
);
MPState::Runnable
}
}
}
}
impl From<&MPState> for kvm_mp_state {
fn from(item: &MPState) -> Self {
kvm_mp_state {
mp_state: match item {
MPState::Runnable => KVM_MP_STATE_RUNNABLE,
MPState::Uninitialized => KVM_MP_STATE_UNINITIALIZED,
MPState::InitReceived => KVM_MP_STATE_INIT_RECEIVED,
MPState::Halted => KVM_MP_STATE_HALTED,
MPState::SipiReceived => KVM_MP_STATE_SIPI_RECEIVED,
MPState::Stopped => KVM_MP_STATE_STOPPED,
},
}
}
}