1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
// Copyright 2022 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use std::cmp::Ordering;
use std::cmp::Reverse;
use std::ops::Sub;
use std::time::Duration;
use anyhow::anyhow;
use anyhow::bail;
use anyhow::Result;
use base::warn;
fn abs_diff<T: Sub<Output = T> + Ord>(x: T, y: T) -> T {
if x < y {
y - x
} else {
x - y
}
}
#[derive(Default, Debug, Clone, Copy, Eq, PartialEq)]
pub struct CoreOffset {
pub core: usize,
pub offset: i128,
}
impl Ord for CoreOffset {
// CoreOffsets are ordered by offset ascending, then by their core number ascending
fn cmp(&self, other: &Self) -> Ordering {
(self.offset, self.core).cmp(&(other.offset, other.core))
}
}
impl PartialOrd for CoreOffset {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
#[derive(Default, Debug, Clone, Eq, PartialEq)]
pub struct CoreGroup {
pub cores: Vec<CoreOffset>,
}
impl CoreGroup {
fn size(&self) -> usize {
self.cores.len()
}
fn add(&self, core: CoreOffset, limit: u128) -> Result<Self> {
let diff_from_min = abs_diff(self.cores.iter().min().unwrap().offset, core.offset) as u128;
let diff_from_max = abs_diff(self.cores.iter().max().unwrap().offset, core.offset) as u128;
let can_add = diff_from_min < limit && diff_from_max < limit;
if can_add {
let mut new = self.clone();
new.cores.push(core);
Ok(new)
} else {
Err(anyhow!(
"offset {} not within {} of all members of core group",
core.offset,
limit
))
}
}
}
#[derive(Default, Debug, Clone, Eq, PartialEq)]
pub struct CoreGrouping {
groups: Vec<CoreGroup>,
}
impl Ord for CoreGrouping {
fn cmp(&self, other: &Self) -> Ordering {
// Ordered by largest group size descending, then by number of groups ascending
(Reverse(self.largest_group().size()), self.groups.len())
.cmp(&(Reverse(other.largest_group().size()), other.groups.len()))
}
}
impl PartialOrd for CoreGrouping {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl CoreGrouping {
pub(super) fn new(groups: Vec<CoreGroup>) -> Result<Self> {
// Other functions in this type rely on the fact that there is at least one CoreGroup.
if groups.is_empty() {
return Err(anyhow!("Cannot create an empty CoreGrouping."));
}
Ok(CoreGrouping { groups })
}
pub fn size(&self) -> usize {
self.groups.len()
}
pub fn largest_group_index(&self) -> usize {
// Sort by Reverse(size) then group index, and take the min.
// We could sort by size then Reverse(index), but then getting the index out is hard.
self.groups
.iter()
.enumerate()
.map(|(i, g)| (Reverse(g.size()), i))
.min()
.unwrap_or((Reverse(0), 0))
.1
}
pub fn largest_group(&self) -> &CoreGroup {
&self.groups[self.largest_group_index()]
}
pub fn core_grouping_bitmask(&self) -> u64 {
// If there's only one group, then all cores are in sync
if self.size() == 0 {
return 0;
}
let mut bitmask = 0u64;
let largest_group_index = self.largest_group_index();
for (i, group) in self.groups.iter().enumerate() {
// The largest group is considered the in-sync group
if i == largest_group_index {
continue;
}
// Set the bitmask to 1 for all cores in all other groups
for core in &group.cores {
if core.core > 63 {
warn!("Core grouping bitmask cannot contain core {}", core.core);
continue;
}
bitmask |= 1 << core.core;
}
}
bitmask
}
fn add_group(&mut self, group: CoreGroup) {
self.groups.push(group)
}
fn add_core_to_last_group(&self, core: CoreOffset, in_sync_threshold: u128) -> Option<Self> {
let last_group = self.groups.len() - 1;
self.groups[last_group]
.add(core, in_sync_threshold)
.map(|new_group| {
let mut new_grouping = self.clone();
new_grouping.groups[last_group] = new_group;
new_grouping
})
.ok()
}
}
/// Group cores by their offsets that are within `in_sync_threshold` of each other.
///
/// This uses a generic integer grouping algorithm. Because we're grouping within a threshold,
/// there are potentially multiple ways we can group the integers, and we want to find the "best"
/// grouping. Our definition of best grouping is:
/// 1. The grouping who's largest group is the largest.
/// 2. If there are multiple groupings with the same size largest group, take the one with the
/// fewest groups.
///
/// We could naively generate all possible groupings by iterating through the sorted integers and,
/// for each grouping, either adding that integer as it's own group or adding it to the last group
/// of that grouping. This could generate 2^N groupings, where N is the number of integers. Instead,
/// we still iterate through the sorted integers and, for each grouping, we add it to the last
/// group of that grouping. But we only add the integer as it's own group to the current best
/// grouping. This optimization avoids creating groupings that we know will not be the "best"
/// grouping, because adding the integer as it's own group means that all subsequent integers
/// cannot be grouped with the existing groups, and thus we only care about the optimal existing
/// groups.
pub(super) fn group_core_offsets(
offsets: &[(usize, i128)],
in_sync_threshold: Duration,
tsc_frequency: u64,
) -> Result<CoreGrouping> {
if offsets.is_empty() {
bail!("Per-core offsets cannot be empty");
}
// Convert threshold to TSC ticks
let in_sync_threshold_ticks =
in_sync_threshold.as_nanos() * tsc_frequency as u128 / 1_000_000_000u128;
let mut cores: Vec<CoreOffset> = offsets
.iter()
.map(|(i, offset)| CoreOffset {
core: *i,
offset: *offset,
})
.collect();
// Cores are sorted by their ascending by their offset then ascending by their core #. See the
// Ord implementation for CoreOffset.
cores.sort();
let mut grouping_options: Vec<CoreGrouping> = vec![CoreGrouping::new(vec![CoreGroup {
cores: vec![cores[0]],
}])?];
for core in &cores[1..] {
let mut best = grouping_options[0].clone();
best.add_group(CoreGroup { cores: vec![*core] });
let mut next_grouping_options = vec![best];
for grouping_option in &grouping_options {
if let Some(new_grouping) =
grouping_option.add_core_to_last_group(*core, in_sync_threshold_ticks)
{
next_grouping_options.push(new_grouping);
}
}
next_grouping_options.sort();
grouping_options = next_grouping_options;
}
Ok(grouping_options[0].clone())
}
#[cfg(test)]
mod tests {
use super::super::TscState;
use super::*;
#[test]
fn test_simple_offset_grouping() {
let offsets = vec![(0, 10), (1, 10), (2, 10), (3, 1000)];
let state = TscState::new(1_000_000_000, offsets, Duration::from_nanos(1))
.expect("TscState::new should not fail for this test");
let group0 = CoreGroup {
cores: vec![
CoreOffset {
core: 0,
offset: 10,
},
CoreOffset {
core: 1,
offset: 10,
},
CoreOffset {
core: 2,
offset: 10,
},
],
};
let group1 = CoreGroup {
cores: vec![CoreOffset {
core: 3,
offset: 1000,
}],
};
assert_eq!(
state.core_grouping,
CoreGrouping::new(vec![group0.clone(), group1])
.expect("CoreGrouping::new should not fail here")
);
assert_eq!(state.core_grouping.largest_group().clone(), group0);
assert_eq!(state.core_grouping.core_grouping_bitmask(), 0b1000u64);
}
#[test]
fn test_ambiguous_offset_grouping() {
// Could be grouped in several ways:
// - [10, 20] [30, 40] [50] <--- we like to have core0 be in a larger group
// - [10] [20, 30] [40, 50]
// - [10, 20] [30] [40, 50]
let offsets = vec![(0, 10), (1, 20), (2, 30), (3, 40), (4, 50)];
let state = TscState::new(1_000_000_000, offsets, Duration::from_nanos(20))
.expect("TscState::new should not fail for this test");
let group0 = CoreGroup {
cores: vec![
CoreOffset {
core: 0,
offset: 10,
},
CoreOffset {
core: 1,
offset: 20,
},
],
};
let group1 = CoreGroup {
cores: vec![
CoreOffset {
core: 2,
offset: 30,
},
CoreOffset {
core: 3,
offset: 40,
},
],
};
let group2 = CoreGroup {
cores: vec![CoreOffset {
core: 4,
offset: 50,
}],
};
assert_eq!(
state.core_grouping,
CoreGrouping::new(vec![group0.clone(), group1, group2])
.expect("CoreGrouping::new should not fail here")
);
// largest_group should return the first group over other equally large groups
assert_eq!(state.core_grouping.largest_group().clone(), group0);
assert_eq!(state.core_grouping.core_grouping_bitmask(), 0b11100u64);
}
#[test]
fn test_worst_case_grouping() {
// Worst case for the grouping algorithm, where if your algorithm isn't smart you can
// generate 2^129 groupings, which would be too large for a Vec to hold. This test just
// verifies that we don't crash or run out of memory.
let offsets = (0..129).map(|i| (i, 0)).collect();
TscState::new(1_000_000_000, offsets, Duration::from_nanos(1))
.expect("TscState::new should not fail for this test");
}
}