1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
// Copyright 2017 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use std::arch::x86_64::CpuidResult;
use std::arch::x86_64::__cpuid;
use std::arch::x86_64::__cpuid_count;
use std::cmp;
use std::result;
use devices::Apic;
use devices::IrqChipCap;
use devices::IrqChipX86_64;
use hypervisor::CpuConfigX86_64;
use hypervisor::CpuHybridType;
use hypervisor::CpuIdEntry;
use hypervisor::HypervisorCap;
use hypervisor::HypervisorX86_64;
use hypervisor::VcpuX86_64;
use remain::sorted;
use thiserror::Error;
use crate::CpuManufacturer;
#[sorted]
#[derive(Error, Debug, PartialEq, Eq)]
pub enum Error {
#[error("GetSupportedCpus ioctl failed: {0}")]
GetSupportedCpusFailed(base::Error),
#[error("SetSupportedCpus ioctl failed: {0}")]
SetSupportedCpusFailed(base::Error),
}
pub type Result<T> = result::Result<T, Error>;
// CPUID bits in ebx, ecx, and edx.
pub const EBX_CLFLUSH_CACHELINE: u32 = 8; // Flush a cache line size.
pub const EBX_CLFLUSH_SIZE_SHIFT: u32 = 8; // Bytes flushed when executing CLFLUSH.
pub const EBX_CPU_COUNT_SHIFT: u32 = 16; // Index of this CPU.
pub const EBX_CPUID_SHIFT: u32 = 24; // Index of this CPU.
pub const ECX_EPB_SHIFT: u32 = 3; // "Energy Performance Bias" bit.
pub const ECX_X2APIC_SHIFT: u32 = 21; // APIC supports extended xAPIC (x2APIC) standard.
pub const ECX_TSC_DEADLINE_TIMER_SHIFT: u32 = 24; // TSC deadline mode of APIC timer.
pub const ECX_HYPERVISOR_SHIFT: u32 = 31; // Flag to be set when the cpu is running on a hypervisor.
pub const EDX_HTT_SHIFT: u32 = 28; // Hyper Threading Enabled.
pub const ECX_TOPO_TYPE_SHIFT: u32 = 8; // Topology Level type.
pub const ECX_TOPO_SMT_TYPE: u32 = 1; // SMT type.
pub const ECX_TOPO_CORE_TYPE: u32 = 2; // CORE type.
pub const ECX_HCFC_PERF_SHIFT: u32 = 0; // Presence of IA32_MPERF and IA32_APERF.
pub const EAX_CPU_CORES_SHIFT: u32 = 26; // Index of cpu cores in the same physical package.
pub const EDX_HYBRID_CPU_SHIFT: u32 = 15; // Hybrid. The processor is identified as a hybrid part.
pub const EAX_HWP_SHIFT: u32 = 7; // Intel Hardware P-states.
pub const EAX_HWP_NOTIFICATION_SHIFT: u32 = 8; // IA32_HWP_INTERRUPT MSR is supported
pub const EAX_HWP_EPP_SHIFT: u32 = 10; // HWP Energy Perf. Preference.
pub const EAX_ITMT_SHIFT: u32 = 14; // Intel Turbo Boost Max Technology 3.0 available.
pub const EAX_CORE_TEMP: u32 = 0; // Core Temperature
pub const EAX_PKG_TEMP: u32 = 6; // Package Temperature
pub const EAX_CORE_TYPE_SHIFT: u32 = 24; // Hybrid information. Hybrid core type.
const EAX_CORE_TYPE_ATOM: u32 = 0x20; // Hybrid Atom CPU.
const EAX_CORE_TYPE_CORE: u32 = 0x40; // Hybrid Core CPU.
/// All of the context required to emulate the CPUID instruction.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct CpuIdContext {
/// Id of the Vcpu associated with this context.
vcpu_id: usize,
/// The total number of vcpus on this VM.
cpu_count: usize,
/// Whether or not the IrqChip's APICs support X2APIC.
x2apic: bool,
/// Whether or not the IrqChip's APICs support a TSC deadline timer.
tsc_deadline_timer: bool,
/// The frequency at which the IrqChip's APICs run.
apic_frequency: u32,
/// The TSC frequency in Hz, if it could be determined.
tsc_frequency: Option<u64>,
/// CPU feature configurations.
cpu_config: CpuConfigX86_64,
/// __cpuid_count or a fake function for test.
cpuid_count: unsafe fn(u32, u32) -> CpuidResult,
/// __cpuid or a fake function for test.
cpuid: unsafe fn(u32) -> CpuidResult,
}
impl CpuIdContext {
pub fn new(
vcpu_id: usize,
cpu_count: usize,
irq_chip: Option<&dyn IrqChipX86_64>,
cpu_config: CpuConfigX86_64,
calibrated_tsc_leaf_required: bool,
cpuid_count: unsafe fn(u32, u32) -> CpuidResult,
cpuid: unsafe fn(u32) -> CpuidResult,
) -> CpuIdContext {
CpuIdContext {
vcpu_id,
cpu_count,
x2apic: irq_chip.map_or(false, |chip| chip.check_capability(IrqChipCap::X2Apic)),
tsc_deadline_timer: irq_chip.map_or(false, |chip| {
chip.check_capability(IrqChipCap::TscDeadlineTimer)
}),
apic_frequency: irq_chip.map_or(Apic::frequency(), |chip| chip.lapic_frequency()),
tsc_frequency: if calibrated_tsc_leaf_required || cpu_config.force_calibrated_tsc_leaf {
devices::tsc::tsc_frequency().ok()
} else {
None
},
cpu_config,
cpuid_count,
cpuid,
}
}
}
/// Adjust a CPUID instruction result to return values that work with crosvm.
///
/// Given an input CpuIdEntry `entry`, which represents what the Hypervisor would normally return
/// for a given CPUID instruction result, adjust that result to reflect the capabilities of crosvm.
/// The `ctx` argument contains all of the Vm-specific and Vcpu-specific information required to
/// return the appropriate results.
pub fn adjust_cpuid(entry: &mut CpuIdEntry, ctx: &CpuIdContext) {
match entry.function {
0 => {
if ctx.tsc_frequency.is_some() {
// We add leaf 0x15 for the TSC frequency if it is available.
entry.cpuid.eax = cmp::max(0x15, entry.cpuid.eax);
}
}
1 => {
// X86 hypervisor feature
if entry.index == 0 {
entry.cpuid.ecx |= 1 << ECX_HYPERVISOR_SHIFT;
}
if ctx.x2apic {
entry.cpuid.ecx |= 1 << ECX_X2APIC_SHIFT;
} else {
entry.cpuid.ecx &= !(1 << ECX_X2APIC_SHIFT);
}
if ctx.tsc_deadline_timer {
entry.cpuid.ecx |= 1 << ECX_TSC_DEADLINE_TIMER_SHIFT;
}
if ctx.cpu_config.host_cpu_topology {
entry.cpuid.ebx |= EBX_CLFLUSH_CACHELINE << EBX_CLFLUSH_SIZE_SHIFT;
// Expose HT flag to Guest.
// SAFETY: trivially safe
let result = unsafe { (ctx.cpuid)(entry.function) };
entry.cpuid.edx |= result.edx & (1 << EDX_HTT_SHIFT);
return;
}
entry.cpuid.ebx = (ctx.vcpu_id << EBX_CPUID_SHIFT) as u32
| (EBX_CLFLUSH_CACHELINE << EBX_CLFLUSH_SIZE_SHIFT);
if ctx.cpu_count > 1 {
// This field is only valid if CPUID.1.EDX.HTT[bit 28]= 1.
entry.cpuid.ebx |= (ctx.cpu_count as u32) << EBX_CPU_COUNT_SHIFT;
// A value of 0 for HTT indicates there is only a single logical
// processor in the package and software should assume only a
// single APIC ID is reserved.
entry.cpuid.edx |= 1 << EDX_HTT_SHIFT;
}
}
2 | // Cache and TLB Descriptor information
0x80000002 | 0x80000003 | 0x80000004 | // Processor Brand String
0x80000005 | 0x80000006 // L1 and L2 cache information
=> entry.cpuid = {
// SAFETY: trivially safe
unsafe { (ctx.cpuid)(entry.function) }},
4 => {
entry.cpuid = {
// SAFETY: trivially safe
unsafe { (ctx.cpuid_count)(entry.function, entry.index) }};
if ctx.cpu_config.host_cpu_topology {
return;
}
entry.cpuid.eax &= !0xFC000000;
if ctx.cpu_count > 1 {
let cpu_cores = if ctx.cpu_config.no_smt {
ctx.cpu_count as u32
} else if ctx.cpu_count % 2 == 0 {
(ctx.cpu_count >> 1) as u32
} else {
1
};
entry.cpuid.eax |= (cpu_cores - 1) << EAX_CPU_CORES_SHIFT;
}
}
6 => {
let result = {
// SAFETY:
// Safe because we pass 6 for this call and the host
// supports the `cpuid` instruction
unsafe { (ctx.cpuid)(entry.function) }};
if ctx.cpu_config.enable_hwp {
entry.cpuid.eax |= result.eax & (1 << EAX_HWP_SHIFT);
entry.cpuid.eax |= result.eax & (1 << EAX_HWP_NOTIFICATION_SHIFT);
entry.cpuid.eax |= result.eax & (1 << EAX_HWP_EPP_SHIFT);
entry.cpuid.ecx |= result.ecx & (1 << ECX_EPB_SHIFT);
if ctx.cpu_config.itmt {
entry.cpuid.eax |= result.eax & (1 << EAX_ITMT_SHIFT);
}
}
}
7 => {
if ctx.cpu_config.host_cpu_topology && entry.index == 0 {
// SAFETY:
// Safe because we pass 7 and 0 for this call and the host supports the
// `cpuid` instruction
let result = unsafe { (ctx.cpuid_count)(entry.function, entry.index) };
entry.cpuid.edx |= result.edx & (1 << EDX_HYBRID_CPU_SHIFT);
}
if ctx.cpu_config.hybrid_type.is_some() && entry.index == 0 {
entry.cpuid.edx |= 1 << EDX_HYBRID_CPU_SHIFT;
}
}
0x15 => {
if let Some(tsc_freq) = ctx.tsc_frequency {
// A calibrated TSC is required by the hypervisor or was forced by the user.
entry.cpuid = devices::tsc::fake_tsc_frequency_cpuid(tsc_freq, ctx.apic_frequency);
}
}
0x1A => {
// Hybrid information leaf.
if ctx.cpu_config.host_cpu_topology {
// SAFETY:
// Safe because we pass 0x1A for this call and the host supports the
// `cpuid` instruction
entry.cpuid = unsafe { (ctx.cpuid)(entry.function) };
}
if let Some(hybrid) = &ctx.cpu_config.hybrid_type {
match hybrid {
CpuHybridType::Atom => {
entry.cpuid.eax |= EAX_CORE_TYPE_ATOM << EAX_CORE_TYPE_SHIFT;
}
CpuHybridType::Core => {
entry.cpuid.eax |= EAX_CORE_TYPE_CORE << EAX_CORE_TYPE_SHIFT;
}
}
}
}
0xB | 0x1F => {
if ctx.cpu_config.host_cpu_topology {
return;
}
// Extended topology enumeration / V2 Extended topology enumeration
// NOTE: these will need to be split if any of the fields that differ between
// the two versions are to be set.
// On AMD, these leaves are not used, so it is currently safe to leave in.
entry.cpuid.edx = ctx.vcpu_id as u32; // x2APIC ID
if entry.index == 0 {
if ctx.cpu_config.no_smt || (ctx.cpu_count == 1) {
// Make it so that all VCPUs appear as different,
// non-hyperthreaded cores on the same package.
entry.cpuid.eax = 0; // Shift to get id of next level
entry.cpuid.ebx = 1; // Number of logical cpus at this level
} else if ctx.cpu_count % 2 == 0 {
// Each core has 2 hyperthreads
entry.cpuid.eax = 1; // Shift to get id of next level
entry.cpuid.ebx = 2; // Number of logical cpus at this level
} else {
// One core contain all the cpu_count hyperthreads
let cpu_bits: u32 = 32 - ((ctx.cpu_count - 1) as u32).leading_zeros();
entry.cpuid.eax = cpu_bits; // Shift to get id of next level
entry.cpuid.ebx = ctx.cpu_count as u32; // Number of logical cpus at this level
}
entry.cpuid.ecx = (ECX_TOPO_SMT_TYPE << ECX_TOPO_TYPE_SHIFT) | entry.index;
} else if entry.index == 1 {
let cpu_bits: u32 = 32 - ((ctx.cpu_count - 1) as u32).leading_zeros();
entry.cpuid.eax = cpu_bits;
// Number of logical cpus at this level
entry.cpuid.ebx = (ctx.cpu_count as u32) & 0xffff;
entry.cpuid.ecx = (ECX_TOPO_CORE_TYPE << ECX_TOPO_TYPE_SHIFT) | entry.index;
} else {
entry.cpuid.eax = 0;
entry.cpuid.ebx = 0;
entry.cpuid.ecx = 0;
}
}
_ => (),
}
}
/// Adjust all the entries in `cpuid` based on crosvm's cpuid logic and `ctx`. Calls `adjust_cpuid`
/// on each entry in `cpuid`, and adds any entries that should exist and are missing from `cpuid`.
pub fn filter_cpuid(cpuid: &mut hypervisor::CpuId, ctx: &CpuIdContext) {
// Add an empty leaf 0x15 if we have a tsc_frequency and it's not in the current set of leaves.
// It will be filled with the appropriate frequency information by `adjust_cpuid`.
if ctx.tsc_frequency.is_some()
&& !cpuid
.cpu_id_entries
.iter()
.any(|entry| entry.function == 0x15)
{
cpuid.cpu_id_entries.push(CpuIdEntry {
function: 0x15,
index: 0,
flags: 0,
cpuid: CpuidResult {
eax: 0,
ebx: 0,
ecx: 0,
edx: 0,
},
})
}
let entries = &mut cpuid.cpu_id_entries;
for entry in entries.iter_mut() {
adjust_cpuid(entry, ctx);
}
}
/// Sets up the cpuid entries for the given vcpu. Can fail if there are too many CPUs specified or
/// if an ioctl returns an error.
///
/// # Arguments
///
/// * `hypervisor` - `HypervisorX86_64` impl for getting supported CPU IDs.
/// * `irq_chip` - `IrqChipX86_64` for adjusting appropriate IrqChip CPUID bits.
/// * `vcpu` - `VcpuX86_64` for setting CPU ID.
/// * `vcpu_id` - The vcpu index of `vcpu`.
/// * `cpu_config` - CPU feature configurations.
pub fn setup_cpuid(
hypervisor: &dyn HypervisorX86_64,
irq_chip: &dyn IrqChipX86_64,
vcpu: &dyn VcpuX86_64,
vcpu_id: usize,
nrcpus: usize,
cpu_config: CpuConfigX86_64,
) -> Result<()> {
let mut cpuid = hypervisor
.get_supported_cpuid()
.map_err(Error::GetSupportedCpusFailed)?;
filter_cpuid(
&mut cpuid,
&CpuIdContext::new(
vcpu_id,
nrcpus,
Some(irq_chip),
cpu_config,
hypervisor.check_capability(HypervisorCap::CalibratedTscLeafRequired),
__cpuid_count,
__cpuid,
),
);
vcpu.set_cpuid(&cpuid)
.map_err(Error::SetSupportedCpusFailed)
}
const MANUFACTURER_ID_FUNCTION: u32 = 0x00000000;
const AMD_EBX: u32 = u32::from_le_bytes([b'A', b'u', b't', b'h']);
const AMD_EDX: u32 = u32::from_le_bytes([b'e', b'n', b't', b'i']);
const AMD_ECX: u32 = u32::from_le_bytes([b'c', b'A', b'M', b'D']);
const INTEL_EBX: u32 = u32::from_le_bytes([b'G', b'e', b'n', b'u']);
const INTEL_EDX: u32 = u32::from_le_bytes([b'i', b'n', b'e', b'I']);
const INTEL_ECX: u32 = u32::from_le_bytes([b'n', b't', b'e', b'l']);
pub fn cpu_manufacturer() -> CpuManufacturer {
// SAFETY:
// safe because MANUFACTURER_ID_FUNCTION is a well known cpuid function,
// and we own the result value afterwards.
let result = unsafe { __cpuid(MANUFACTURER_ID_FUNCTION) };
if result.ebx == AMD_EBX && result.edx == AMD_EDX && result.ecx == AMD_ECX {
return CpuManufacturer::Amd;
} else if result.ebx == INTEL_EBX && result.edx == INTEL_EDX && result.ecx == INTEL_ECX {
return CpuManufacturer::Intel;
}
CpuManufacturer::Unknown
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn cpu_manufacturer_test() {
// this should be amd or intel. We don't support other processors for virtualization.
let manufacturer = cpu_manufacturer();
assert_ne!(manufacturer, CpuManufacturer::Unknown);
}
#[test]
fn cpuid_copies_register() {
let fake_cpuid_count = |_function: u32, _index: u32| CpuidResult {
eax: 27,
ebx: 18,
ecx: 28,
edx: 18,
};
let fake_cpuid = |_function: u32| CpuidResult {
eax: 0,
ebx: 0,
ecx: 0,
edx: 0,
};
let cpu_config = CpuConfigX86_64 {
force_calibrated_tsc_leaf: false,
host_cpu_topology: true,
enable_hwp: false,
no_smt: false,
itmt: false,
hybrid_type: None,
};
let ctx = CpuIdContext {
vcpu_id: 0,
cpu_count: 0,
x2apic: false,
tsc_deadline_timer: false,
apic_frequency: 0,
tsc_frequency: None,
cpu_config,
cpuid_count: fake_cpuid_count,
cpuid: fake_cpuid,
};
let mut cpu_id_entry = CpuIdEntry {
function: 0x4,
index: 0,
flags: 0,
cpuid: CpuidResult {
eax: 31,
ebx: 41,
ecx: 59,
edx: 26,
},
};
adjust_cpuid(&mut cpu_id_entry, &ctx);
assert_eq!(cpu_id_entry.cpuid.eax, 27)
}
}