1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
// Copyright 2019 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use std::borrow::Borrow;
use std::collections::BTreeMap;
/// A BTreeMap that supports 2 types of keys per value. All the usual restrictions and warnings for
/// `std::collections::BTreeMap` also apply to this struct. Additionally, there is a 1:1
/// relationship between the 2 key types. In other words, for each `K1` in the map, there is exactly
/// one `K2` in the map and vice versa.
pub struct MultikeyBTreeMap<K1, K2, V> {
// We need to keep a copy of the second key in the main map so that we can remove entries using
// just the main key. Otherwise we would require the caller to provide both keys when calling
// `remove`.
main: BTreeMap<K1, (K2, V)>,
alt: BTreeMap<K2, K1>,
}
impl<K1, K2, V> MultikeyBTreeMap<K1, K2, V>
where
K1: Clone + Ord,
K2: Clone + Ord,
{
/// Create a new empty MultikeyBTreeMap.
pub fn new() -> Self {
MultikeyBTreeMap {
main: BTreeMap::default(),
alt: BTreeMap::default(),
}
}
/// Returns a reference to the value corresponding to the key.
///
/// The key may be any borrowed form of `K1``, but the ordering on the borrowed form must match
/// the ordering on `K1`.
pub fn get<Q>(&self, key: &Q) -> Option<&V>
where
K1: Borrow<Q>,
Q: Ord + ?Sized,
{
self.main.get(key).map(|(_, v)| v)
}
/// Returns a reference to the value corresponding to the alternate key.
///
/// The key may be any borrowed form of the `K2``, but the ordering on the borrowed form must
/// match the ordering on `K2`.
///
/// Note that this method performs 2 lookups: one to get the main key and another to get the
/// value associated with that key. For best performance callers should prefer the `get` method
/// over this method whenever possible as `get` only needs to perform one lookup.
pub fn get_alt<Q2>(&self, key: &Q2) -> Option<&V>
where
K2: Borrow<Q2>,
Q2: Ord + ?Sized,
{
if let Some(k) = self.alt.get(key) {
self.get(k)
} else {
None
}
}
/// Inserts a new entry into the map with the given keys and value.
///
/// Returns `None` if the map did not have an entry with `k1` or `k2` present. If exactly one
/// key was present, then the value associated with that key is updated, the other key is
/// removed, and the old value is returned. If **both** keys were present then the value
/// associated with the main key is updated, the value associated with the alternate key is
/// removed, and the old value associated with the main key is returned.
pub fn insert(&mut self, k1: K1, k2: K2, v: V) -> Option<V> {
let oldval = if let Some(oldkey) = self.alt.insert(k2.clone(), k1.clone()) {
self.main.remove(&oldkey)
} else {
None
};
self.main
.insert(k1, (k2.clone(), v))
.or(oldval)
.map(|(oldk2, v)| {
if oldk2 != k2 {
self.alt.remove(&oldk2);
}
v
})
}
/// Remove a key from the map, returning the value associated with that key if it was previously
/// in the map.
///
/// The key may be any borrowed form of `K1``, but the ordering on the borrowed form must match
/// the ordering on `K1`.
pub fn remove<Q>(&mut self, key: &Q) -> Option<V>
where
K1: Borrow<Q>,
Q: Ord + ?Sized,
{
self.main.remove(key).map(|(k2, v)| {
self.alt.remove(&k2);
v
})
}
/// Clears the map, removing all values.
pub fn clear(&mut self) {
self.alt.clear();
self.main.clear()
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn get() {
let mut m = MultikeyBTreeMap::<u64, i64, u32>::new();
let k1 = 0xc6c8_f5e0_b13e_ed40;
let k2 = 0x1a04_ce4b_8329_14fe;
let val = 0xf4e3_c360;
assert!(m.insert(k1, k2, val).is_none());
assert_eq!(*m.get(&k1).expect("failed to look up main key"), val);
assert_eq!(*m.get_alt(&k2).expect("failed to look up alt key"), val);
}
#[test]
fn update_main_key() {
let mut m = MultikeyBTreeMap::<u64, i64, u32>::new();
let k1 = 0xc6c8_f5e0_b13e_ed40;
let k2 = 0x1a04_ce4b_8329_14fe;
let val = 0xf4e3_c360;
assert!(m.insert(k1, k2, val).is_none());
let new_k1 = 0x3add_f8f8_c7c5_df5e;
let val2 = 0x7389_f8a7;
assert_eq!(
m.insert(new_k1, k2, val2)
.expect("failed to update main key"),
val
);
assert!(m.get(&k1).is_none());
assert_eq!(*m.get(&new_k1).expect("failed to look up main key"), val2);
assert_eq!(*m.get_alt(&k2).expect("failed to look up alt key"), val2);
}
#[test]
fn update_alt_key() {
let mut m = MultikeyBTreeMap::<u64, i64, u32>::new();
let k1 = 0xc6c8_f5e0_b13e_ed40;
let k2 = 0x1a04_ce4b_8329_14fe;
let val = 0xf4e3_c360;
assert!(m.insert(k1, k2, val).is_none());
let new_k2 = 0x6825_a60b_61ac_b333;
let val2 = 0xbb14_8f2c;
assert_eq!(
m.insert(k1, new_k2, val2)
.expect("failed to update alt key"),
val
);
assert!(m.get_alt(&k2).is_none());
assert_eq!(*m.get(&k1).expect("failed to look up main key"), val2);
assert_eq!(
*m.get_alt(&new_k2).expect("failed to look up alt key"),
val2
);
}
#[test]
fn update_value() {
let mut m = MultikeyBTreeMap::<u64, i64, u32>::new();
let k1 = 0xc6c8_f5e0_b13e_ed40;
let k2 = 0x1a04_ce4b_8329_14fe;
let val = 0xf4e3_c360;
assert!(m.insert(k1, k2, val).is_none());
let val2 = 0xe42d_79ba;
assert_eq!(
m.insert(k1, k2, val2).expect("failed to update alt key"),
val
);
assert_eq!(*m.get(&k1).expect("failed to look up main key"), val2);
assert_eq!(*m.get_alt(&k2).expect("failed to look up alt key"), val2);
}
#[test]
fn update_both_keys_main() {
let mut m = MultikeyBTreeMap::<u64, i64, u32>::new();
let k1 = 0xc6c8_f5e0_b13e_ed40;
let k2 = 0x1a04_ce4b_8329_14fe;
let val = 0xf4e3_c360;
assert!(m.insert(k1, k2, val).is_none());
let new_k1 = 0xc980_587a_24b3_ae30;
let new_k2 = 0x2773_c5ee_8239_45a2;
let val2 = 0x31f4_33f9;
assert!(m.insert(new_k1, new_k2, val2).is_none());
let val3 = 0x8da1_9cf7;
assert_eq!(
m.insert(k1, new_k2, val3)
.expect("failed to update main key"),
val
);
// Both new_k1 and k2 should now be gone from the map.
assert!(m.get(&new_k1).is_none());
assert!(m.get_alt(&k2).is_none());
assert_eq!(*m.get(&k1).expect("failed to look up main key"), val3);
assert_eq!(
*m.get_alt(&new_k2).expect("failed to look up alt key"),
val3
);
}
#[test]
fn update_both_keys_alt() {
let mut m = MultikeyBTreeMap::<u64, i64, u32>::new();
let k1 = 0xc6c8_f5e0_b13e_ed40;
let k2 = 0x1a04_ce4b_8329_14fe;
let val = 0xf4e3_c360;
assert!(m.insert(k1, k2, val).is_none());
let new_k1 = 0xc980_587a_24b3_ae30;
let new_k2 = 0x2773_c5ee_8239_45a2;
let val2 = 0x31f4_33f9;
assert!(m.insert(new_k1, new_k2, val2).is_none());
let val3 = 0x8da1_9cf7;
assert_eq!(
m.insert(new_k1, k2, val3)
.expect("failed to update main key"),
val2
);
// Both k1 and new_k2 should now be gone from the map.
assert!(m.get(&k1).is_none());
assert!(m.get_alt(&new_k2).is_none());
assert_eq!(*m.get(&new_k1).expect("failed to look up main key"), val3);
assert_eq!(*m.get_alt(&k2).expect("failed to look up alt key"), val3);
}
#[test]
fn remove() {
let mut m = MultikeyBTreeMap::<u64, i64, u32>::new();
let k1 = 0xc6c8_f5e0_b13e_ed40;
let k2 = 0x1a04_ce4b_8329_14fe;
let val = 0xf4e3_c360;
assert!(m.insert(k1, k2, val).is_none());
assert_eq!(m.remove(&k1).expect("failed to remove entry"), val);
assert!(m.get(&k1).is_none());
assert!(m.get_alt(&k2).is_none());
}
}