1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
// Copyright 2017 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use std::cell::RefCell;
use std::fs::File;
use std::io::prelude::*;
use std::process;
use std::sync::mpsc;
use std::sync::Arc;
use std::sync::Barrier;
use std::thread;
use std::thread::JoinHandle;
#[cfg(target_arch = "x86_64")]
use std::time::Duration;
#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
use aarch64::AArch64 as Arch;
use anyhow::Context;
use anyhow::Result;
use arch::CpuConfigArch;
use arch::CpuSet;
use arch::IrqChipArch;
use arch::LinuxArch;
use arch::VcpuArch;
use arch::VcpuInitArch;
use arch::VmArch;
use base::gettid;
use base::sched_attr;
use base::sched_setattr;
use base::signal::clear_signal_handler;
use base::signal::BlockedSignal;
use base::*;
use devices::Bus;
use devices::IrqChip;
use devices::VcpuRunState;
use hypervisor::IoOperation;
use hypervisor::IoParams;
use hypervisor::VcpuExit;
use hypervisor::VcpuSignalHandle;
use libc::c_int;
use metrics_events::MetricEventType;
#[cfg(target_arch = "riscv64")]
use riscv64::Riscv64 as Arch;
use serde::Deserialize;
use serde::Serialize;
#[cfg(target_arch = "x86_64")]
use sync::Mutex;
use vm_control::*;
#[cfg(feature = "gdb")]
use vm_memory::GuestMemory;
#[cfg(target_arch = "x86_64")]
use x86_64::X8664arch as Arch;
use super::ExitState;
#[cfg(target_arch = "x86_64")]
use crate::crosvm::ratelimit::Ratelimit;
// TODO(davidai): Import libc constant when updated
const SCHED_FLAG_RESET_ON_FORK: u64 = 0x1;
const SCHED_FLAG_KEEP_POLICY: u64 = 0x08;
const SCHED_FLAG_KEEP_PARAMS: u64 = 0x10;
const SCHED_FLAG_UTIL_CLAMP_MIN: u64 = 0x20;
const SCHED_SCALE_CAPACITY: u32 = 1024;
const SCHED_FLAG_KEEP_ALL: u64 = SCHED_FLAG_KEEP_POLICY | SCHED_FLAG_KEEP_PARAMS;
/// Set the VCPU thread affinity and other per-thread scheduler properties.
/// This function will be called from each VCPU thread at startup.
#[allow(clippy::unnecessary_cast)]
pub fn set_vcpu_thread_scheduling(
vcpu_affinity: CpuSet,
core_scheduling: bool,
enable_per_vm_core_scheduling: bool,
vcpu_cgroup_tasks_file: Option<File>,
run_rt: bool,
boost_uclamp: bool,
) -> anyhow::Result<()> {
if boost_uclamp {
let mut sched_attr = sched_attr {
sched_flags: SCHED_FLAG_KEEP_ALL as u64
| SCHED_FLAG_UTIL_CLAMP_MIN
| SCHED_FLAG_RESET_ON_FORK as u64,
sched_util_min: SCHED_SCALE_CAPACITY,
..Default::default()
};
if let Err(e) = sched_setattr(0, &mut sched_attr, 0) {
warn!("Failed to boost vcpu util: {}", e);
}
}
if core_scheduling && !enable_per_vm_core_scheduling {
// Do per-vCPU core scheduling by setting a unique cookie to each vCPU.
if let Err(e) = enable_core_scheduling() {
error!("Failed to enable core scheduling: {}", e);
}
}
// Move vcpu thread to cgroup
if let Some(mut f) = vcpu_cgroup_tasks_file {
f.write_all(base::gettid().to_string().as_bytes())
.context("failed to write vcpu tid to cgroup tasks")?;
}
// vcpu_affinity needs to be set after moving to cgroup
// or it will be overriden by cgroup settings, vcpu_affinity
// here is bounded by the cpuset specified in the cgroup
if !vcpu_affinity.is_empty() {
if let Err(e) = set_cpu_affinity(vcpu_affinity) {
error!("Failed to set CPU affinity: {}", e);
}
}
if run_rt {
const DEFAULT_VCPU_RT_LEVEL: u16 = 6;
if let Err(e) = set_rt_prio_limit(u64::from(DEFAULT_VCPU_RT_LEVEL))
.and_then(|_| set_rt_round_robin(i32::from(DEFAULT_VCPU_RT_LEVEL)))
{
warn!("Failed to set vcpu to real time: {}", e);
}
}
Ok(())
}
// Sets up a vcpu and converts it into a runnable vcpu.
pub fn runnable_vcpu<V>(
cpu_id: usize,
vcpu_id: usize,
vcpu: Option<V>,
vcpu_init: VcpuInitArch,
vm: impl VmArch,
irq_chip: &mut dyn IrqChipArch,
vcpu_count: usize,
cpu_config: Option<CpuConfigArch>,
) -> Result<V>
where
V: VcpuArch,
{
let mut vcpu = match vcpu {
Some(v) => v,
None => {
// If vcpu is None, it means this arch/hypervisor requires create_vcpu to be called from
// the vcpu thread.
match vm
.create_vcpu(vcpu_id)
.context("failed to create vcpu")?
.downcast::<V>()
{
Ok(v) => *v,
Err(_) => panic!("VM created wrong type of VCPU"),
}
}
};
irq_chip
.add_vcpu(cpu_id, &vcpu)
.context("failed to add vcpu to irq chip")?;
Arch::configure_vcpu(
&vm,
vm.get_hypervisor(),
irq_chip,
&mut vcpu,
vcpu_init,
cpu_id,
vcpu_count,
cpu_config,
)
.context("failed to configure vcpu")?;
Ok(vcpu)
}
thread_local!(static VCPU_THREAD: RefCell<Option<VcpuSignalHandle>> = const { RefCell::new(None) });
fn set_vcpu_thread_local(vcpu: Option<&dyn VcpuArch>, signal_num: c_int) {
// Block signal while we add -- if a signal fires (very unlikely,
// as this means something is trying to pause the vcpu before it has
// even started) it'll try to grab the read lock while this write
// lock is grabbed and cause a deadlock.
// Assuming that a failure to block means it's already blocked.
let _blocked_signal = BlockedSignal::new(signal_num);
VCPU_THREAD.with(|v| {
let mut vcpu_thread = v.borrow_mut();
if let Some(vcpu) = vcpu {
assert!(vcpu_thread.is_none());
*vcpu_thread = Some(vcpu.signal_handle());
} else {
*vcpu_thread = None;
}
});
}
pub fn setup_vcpu_signal_handler() -> Result<()> {
// SAFETY: trivially safe as we check return value.
unsafe {
extern "C" fn handle_signal(_: c_int) {
// Use LocalKey::try_with() so we don't panic if a signal happens while the destructor
// is running, and ignore any errors (the assumption being that the thread is exiting
// anyway in that case).
let _result = VCPU_THREAD.try_with(|v| {
if let Some(vcpu_signal_handle) = &(*v.borrow()) {
vcpu_signal_handle.signal_immediate_exit();
}
});
}
register_rt_signal_handler(SIGRTMIN() + 0, handle_signal)
.context("error registering signal handler")?;
}
Ok(())
}
pub fn remove_vcpu_signal_handler() -> Result<()> {
clear_signal_handler(SIGRTMIN() + 0).context("error unregistering signal handler")
}
fn vcpu_loop<V>(
mut run_mode: VmRunMode,
cpu_id: usize,
mut vcpu: V,
irq_chip: Box<dyn IrqChipArch + 'static>,
run_rt: bool,
delay_rt: bool,
io_bus: Bus,
mmio_bus: Bus,
from_main_tube: mpsc::Receiver<VcpuControl>,
#[cfg(feature = "gdb")] to_gdb_tube: Option<mpsc::Sender<VcpuDebugStatusMessage>>,
#[cfg(feature = "gdb")] guest_mem: GuestMemory,
#[cfg(target_arch = "x86_64")] bus_lock_ratelimit_ctrl: Arc<Mutex<Ratelimit>>,
) -> ExitState
where
V: VcpuArch,
{
let mut interrupted_by_signal = false;
loop {
// Start by checking for messages to process and the run state of the CPU.
// An extra check here for Running so there isn't a need to call recv unless a
// message is likely to be ready because a signal was sent.
if interrupted_by_signal || run_mode != VmRunMode::Running {
'state_loop: loop {
// Tries to get a pending message without blocking first.
let msg = match from_main_tube.try_recv() {
Ok(m) => m,
Err(mpsc::TryRecvError::Empty) if run_mode == VmRunMode::Running => {
// If the VM is running and no message is pending, the state won't
// change.
break 'state_loop;
}
Err(mpsc::TryRecvError::Empty) => {
// If the VM is not running, wait until a message is ready.
match from_main_tube.recv() {
Ok(m) => m,
Err(mpsc::RecvError) => {
error!("Failed to read from main tube in vcpu");
return ExitState::Crash;
}
}
}
Err(mpsc::TryRecvError::Disconnected) => {
error!("Failed to read from main tube in vcpu");
return ExitState::Crash;
}
};
// Collect all pending messages.
let mut messages = vec![msg];
messages.append(&mut from_main_tube.try_iter().collect());
for msg in messages {
match msg {
VcpuControl::RunState(new_mode) => {
run_mode = new_mode;
match run_mode {
VmRunMode::Running => {}
VmRunMode::Suspending => {
if let Err(e) = vcpu.on_suspend() {
error!(
"failed to tell hypervisor vcpu {} is suspending: {}",
cpu_id, e
);
}
}
VmRunMode::Breakpoint => {}
VmRunMode::Exiting => return ExitState::Stop,
}
}
#[cfg(feature = "gdb")]
VcpuControl::Debug(d) => {
if let Err(e) = crate::crosvm::gdb::vcpu_control_debug(
cpu_id,
&vcpu,
&guest_mem,
d,
to_gdb_tube.as_ref(),
) {
error!("Failed to handle VcpuControl::Debug message: {:#}", e);
}
}
VcpuControl::MakeRT => {
if run_rt && delay_rt {
info!("Making vcpu {} RT\n", cpu_id);
const DEFAULT_VCPU_RT_LEVEL: u16 = 6;
if let Err(e) = set_rt_prio_limit(u64::from(DEFAULT_VCPU_RT_LEVEL))
.and_then(|_| {
set_rt_round_robin(i32::from(DEFAULT_VCPU_RT_LEVEL))
})
{
warn!("Failed to set vcpu to real time: {}", e);
}
}
}
VcpuControl::GetStates(response_chan) => {
if let Err(e) = response_chan.send(run_mode) {
error!("Failed to send GetState: {}", e);
};
}
VcpuControl::Snapshot(snapshot_writer, response_chan) => {
let resp = vcpu
.snapshot()
.and_then(|s| {
snapshot_writer
.write_fragment(&format!("vcpu{}", vcpu.id()), &s)
})
.with_context(|| format!("Failed to snapshot Vcpu #{}", vcpu.id()));
if let Err(e) = response_chan.send(resp) {
error!("Failed to send snapshot response: {}", e);
}
}
VcpuControl::Restore(req) => {
let resp = req
.snapshot_reader
.read_fragment(&format!("vcpu{}", vcpu.id()))
.and_then(|s| {
vcpu.restore(
&s,
#[cfg(target_arch = "x86_64")]
req.host_tsc_reference_moment,
)
})
.with_context(|| format!("Failed to restore Vcpu #{}", vcpu.id()));
if let Err(e) = req.result_sender.send(resp) {
error!("Failed to send restore response: {}", e);
}
}
VcpuControl::Throttle(target_us) => {
let start_time = std::time::Instant::now();
while start_time.elapsed().as_micros() < target_us.into() {
// TODO: Investigate replacing this with std::hint::spin_loop()
// to hint to the pCPU to potentially save some power. Also revisit
// this when scheduler updates are available on newer kernel
// versions.
}
}
}
}
if run_mode == VmRunMode::Running {
break 'state_loop;
}
}
}
interrupted_by_signal = false;
// Vcpus may have run a HLT instruction, which puts them into a state other than
// VcpuRunState::Runnable. In that case, this call to wait_until_runnable blocks
// until either the irqchip receives an interrupt for this vcpu, or until the main
// thread kicks this vcpu as a result of some VmControl operation. In most IrqChip
// implementations HLT instructions do not make it to crosvm, and thus this is a
// no-op that always returns VcpuRunState::Runnable.
match irq_chip.wait_until_runnable(vcpu.as_vcpu()) {
Ok(VcpuRunState::Runnable) => {}
Ok(VcpuRunState::Interrupted) => interrupted_by_signal = true,
Err(e) => error!(
"error waiting for vcpu {} to become runnable: {}",
cpu_id, e
),
}
if !interrupted_by_signal {
match vcpu.run() {
Ok(VcpuExit::Io) => {
if let Err(e) =
vcpu.handle_io(&mut |IoParams { address, operation }| match operation {
IoOperation::Read(data) => {
io_bus.read(address, data);
}
IoOperation::Write(data) => {
io_bus.write(address, data);
}
})
{
error!("failed to handle io: {}", e)
}
}
Ok(VcpuExit::Mmio) => {
if let Err(e) =
vcpu.handle_mmio(&mut |IoParams { address, operation }| match operation {
IoOperation::Read(data) => {
mmio_bus.read(address, data);
Ok(())
}
IoOperation::Write(data) => {
mmio_bus.write(address, data);
Ok(())
}
})
{
error!("failed to handle mmio: {}", e);
}
}
Ok(VcpuExit::IoapicEoi { vector }) => {
if let Err(e) = irq_chip.broadcast_eoi(vector) {
error!(
"failed to broadcast eoi {} on vcpu {}: {}",
vector, cpu_id, e
);
}
}
Ok(VcpuExit::IrqWindowOpen) => {}
Ok(VcpuExit::Hlt) => irq_chip.halted(cpu_id),
Ok(VcpuExit::Shutdown(reason)) => {
if let Err(e) = reason {
metrics::log_descriptor(
MetricEventType::VcpuShutdownError,
e.get_raw_error_code() as i64,
);
}
return ExitState::Stop;
}
Ok(VcpuExit::FailEntry {
hardware_entry_failure_reason,
}) => {
error!("vcpu hw run failure: {:#x}", hardware_entry_failure_reason);
return ExitState::Crash;
}
Ok(VcpuExit::SystemEventShutdown) => {
info!("system shutdown event on vcpu {}", cpu_id);
return ExitState::Stop;
}
Ok(VcpuExit::SystemEventReset) => {
info!("system reset event");
return ExitState::Reset;
}
Ok(VcpuExit::SystemEventCrash) => {
info!("system crash event on vcpu {}", cpu_id);
return ExitState::Stop;
}
Ok(VcpuExit::Debug) => {
#[cfg(feature = "gdb")]
if let Err(e) =
crate::crosvm::gdb::vcpu_exit_debug(cpu_id, to_gdb_tube.as_ref())
{
error!("Failed to handle VcpuExit::Debug: {:#}", e);
return ExitState::Crash;
}
run_mode = VmRunMode::Breakpoint;
}
#[cfg(target_arch = "x86_64")]
Ok(VcpuExit::BusLock) => {
let delay_ns: u64 = bus_lock_ratelimit_ctrl.lock().ratelimit_calculate_delay(1);
thread::sleep(Duration::from_nanos(delay_ns));
}
Ok(VcpuExit::Sbi {
extension_id: _,
function_id: _,
args: _,
}) => {
unimplemented!("Sbi exits not yet supported");
}
Ok(VcpuExit::RiscvCsr {
csr_num,
new_value,
write_mask,
ret_value: _,
}) => {
unimplemented!(
"csr exit! {:#x} to {:#x} mask {:#x}",
csr_num,
new_value,
write_mask
);
}
Ok(r) => warn!("unexpected vcpu exit: {:?}", r),
Err(e) => match e.errno() {
libc::EINTR => interrupted_by_signal = true,
libc::EAGAIN => {}
_ => {
error!("vcpu hit unknown error: {}", e);
return ExitState::Crash;
}
},
}
}
if interrupted_by_signal {
vcpu.set_immediate_exit(false);
}
if let Err(e) = irq_chip.inject_interrupts(vcpu.as_vcpu()) {
error!("failed to inject interrupts for vcpu {}: {}", cpu_id, e);
}
}
}
#[derive(Serialize, Deserialize)]
pub struct VcpuPidTid {
pub vcpu_id: usize,
pub process_id: u32,
pub thread_id: u32,
}
pub fn run_vcpu<V>(
cpu_id: usize,
vcpu_id: usize,
vcpu: Option<V>,
vcpu_init: VcpuInitArch,
vm: impl VmArch + 'static,
mut irq_chip: Box<dyn IrqChipArch + 'static>,
vcpu_count: usize,
run_rt: bool,
vcpu_affinity: CpuSet,
delay_rt: bool,
start_barrier: Arc<Barrier>,
mut io_bus: Bus,
mut mmio_bus: Bus,
vm_evt_wrtube: SendTube,
from_main_tube: mpsc::Receiver<VcpuControl>,
#[cfg(feature = "gdb")] to_gdb_tube: Option<mpsc::Sender<VcpuDebugStatusMessage>>,
enable_core_scheduling: bool,
enable_per_vm_core_scheduling: bool,
cpu_config: Option<CpuConfigArch>,
vcpu_cgroup_tasks_file: Option<File>,
#[cfg(target_arch = "x86_64")] bus_lock_ratelimit_ctrl: Arc<Mutex<Ratelimit>>,
run_mode: VmRunMode,
boost_uclamp: bool,
vcpu_pid_tid_tube: mpsc::Sender<VcpuPidTid>,
) -> Result<JoinHandle<()>>
where
V: VcpuArch + 'static,
{
thread::Builder::new()
.name(format!("crosvm_vcpu{}", cpu_id))
.spawn(move || {
// Having a closure returning ExitState guarentees that we
// send a VmEventType on all code paths after the closure
// returns.
let vcpu_fn = || -> ExitState {
if let Err(e) = set_vcpu_thread_scheduling(
vcpu_affinity,
enable_core_scheduling,
enable_per_vm_core_scheduling,
vcpu_cgroup_tasks_file,
run_rt && !delay_rt,
boost_uclamp,
) {
error!("vcpu thread setup failed: {:#}", e);
return ExitState::Stop;
}
if let Err(e) = vcpu_pid_tid_tube.send(VcpuPidTid {
vcpu_id: cpu_id,
process_id: process::id(),
thread_id: gettid() as u32,
}) {
error!("Failed to send vcpu process/thread id: {:#}", e);
return ExitState::Crash;
}
#[cfg(feature = "gdb")]
let guest_mem = vm.get_memory().clone();
let runnable_vcpu = runnable_vcpu(
cpu_id,
vcpu_id,
vcpu,
vcpu_init,
vm,
irq_chip.as_mut(),
vcpu_count,
cpu_config,
);
start_barrier.wait();
let vcpu = match runnable_vcpu {
Ok(v) => v,
Err(e) => {
error!("failed to start vcpu {}: {:#}", cpu_id, e);
return ExitState::Stop;
}
};
set_vcpu_thread_local(Some(&vcpu), SIGRTMIN() + 0);
mmio_bus.set_access_id(cpu_id);
io_bus.set_access_id(cpu_id);
let vcpu_exit_state = vcpu_loop(
run_mode,
cpu_id,
vcpu,
irq_chip,
run_rt,
delay_rt,
io_bus,
mmio_bus,
from_main_tube,
#[cfg(feature = "gdb")]
to_gdb_tube,
#[cfg(feature = "gdb")]
guest_mem,
#[cfg(target_arch = "x86_64")]
bus_lock_ratelimit_ctrl,
);
// We don't want any more VCPU signals from now until the thread exits.
let _ = block_signal(SIGRTMIN() + 0);
set_vcpu_thread_local(None, SIGRTMIN() + 0);
vcpu_exit_state
};
let final_event_data = match vcpu_fn() {
ExitState::Stop => VmEventType::Exit,
ExitState::Reset => VmEventType::Reset,
ExitState::Crash => VmEventType::Crash,
// vcpu_loop doesn't exit with GuestPanic.
ExitState::GuestPanic => unreachable!(),
ExitState::WatchdogReset => VmEventType::WatchdogReset,
};
if let Err(e) = vm_evt_wrtube.send::<VmEventType>(&final_event_data) {
error!(
"failed to send final event {:?} on vcpu {}: {}",
final_event_data, cpu_id, e
)
}
})
.context("failed to spawn VCPU thread")
}
/// Signals all running VCPUs to vmexit, sends VcpuControl message to each VCPU tube, and tells
/// `irq_chip` to stop blocking halted VCPUs. The channel message is set first because both the
/// signal and the irq_chip kick could cause the VCPU thread to continue through the VCPU run
/// loop.
pub fn kick_all_vcpus(
vcpu_handles: &[(JoinHandle<()>, mpsc::Sender<vm_control::VcpuControl>)],
irq_chip: &dyn IrqChip,
message: VcpuControl,
) {
for (handle, tube) in vcpu_handles {
if let Err(e) = tube.send(message.clone()) {
error!("failed to send VcpuControl: {}", e);
}
let _ = handle.kill(SIGRTMIN() + 0);
}
irq_chip.kick_halted_vcpus();
}
/// Signals specific running VCPUs to vmexit, sends VcpuControl message to the VCPU tube, and tells
/// `irq_chip` to stop blocking halted VCPUs. The channel message is set first because both the
/// signal and the irq_chip kick could cause the VCPU thread to continue through the VCPU run
/// loop.
pub fn kick_vcpu(
vcpu_handle: &Option<&(JoinHandle<()>, mpsc::Sender<vm_control::VcpuControl>)>,
irq_chip: &dyn IrqChip,
message: VcpuControl,
) {
if let Some((handle, tube)) = vcpu_handle {
if let Err(e) = tube.send(message) {
error!("failed to send VcpuControl: {}", e);
}
let _ = handle.kill(SIGRTMIN() + 0);
}
irq_chip.kick_halted_vcpus();
}