1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
// Copyright 2020 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use std::arch::x86_64::CpuidResult;
#[cfg(any(unix, feature = "haxm", feature = "whpx"))]
use std::arch::x86_64::__cpuid;
use std::arch::x86_64::_rdtsc;
use std::collections::BTreeMap;
use std::collections::HashSet;

use anyhow::Context;
use base::custom_serde::deserialize_seq_to_arr;
use base::custom_serde::serialize_arr;
use base::error;
use base::warn;
use base::Result;
use bit_field::*;
use downcast_rs::impl_downcast;
use libc::c_void;
use serde::Deserialize;
use serde::Serialize;
use vm_memory::GuestAddress;

use crate::Hypervisor;
use crate::IrqRoute;
use crate::IrqSource;
use crate::IrqSourceChip;
use crate::Vcpu;
use crate::Vm;

const MSR_F15H_PERF_CTL0: u32 = 0xc0010200;
const MSR_F15H_PERF_CTL1: u32 = 0xc0010202;
const MSR_F15H_PERF_CTL2: u32 = 0xc0010204;
const MSR_F15H_PERF_CTL3: u32 = 0xc0010206;
const MSR_F15H_PERF_CTL4: u32 = 0xc0010208;
const MSR_F15H_PERF_CTL5: u32 = 0xc001020a;
const MSR_F15H_PERF_CTR0: u32 = 0xc0010201;
const MSR_F15H_PERF_CTR1: u32 = 0xc0010203;
const MSR_F15H_PERF_CTR2: u32 = 0xc0010205;
const MSR_F15H_PERF_CTR3: u32 = 0xc0010207;
const MSR_F15H_PERF_CTR4: u32 = 0xc0010209;
const MSR_F15H_PERF_CTR5: u32 = 0xc001020b;
const MSR_IA32_PERF_CAPABILITIES: u32 = 0x00000345;

/// A trait for managing cpuids for an x86_64 hypervisor and for checking its capabilities.
pub trait HypervisorX86_64: Hypervisor {
    /// Get the system supported CPUID values.
    fn get_supported_cpuid(&self) -> Result<CpuId>;

    /// Gets the list of supported MSRs.
    fn get_msr_index_list(&self) -> Result<Vec<u32>>;
}

/// A wrapper for using a VM on x86_64 and getting/setting its state.
pub trait VmX86_64: Vm {
    /// Gets the `HypervisorX86_64` that created this VM.
    fn get_hypervisor(&self) -> &dyn HypervisorX86_64;

    /// Create a Vcpu with the specified Vcpu ID.
    fn create_vcpu(&self, id: usize) -> Result<Box<dyn VcpuX86_64>>;

    /// Sets the address of the three-page region in the VM's address space.
    fn set_tss_addr(&self, addr: GuestAddress) -> Result<()>;

    /// Sets the address of a one-page region in the VM's address space.
    fn set_identity_map_addr(&self, addr: GuestAddress) -> Result<()>;

    /// Load pVM firmware for the VM, creating a memslot for it as needed.
    ///
    /// Only works on protected VMs (i.e. those with vm_type == KVM_X86_PKVM_PROTECTED_VM).
    fn load_protected_vm_firmware(&mut self, fw_addr: GuestAddress, fw_max_size: u64)
        -> Result<()>;
}

/// A wrapper around creating and using a VCPU on x86_64.
pub trait VcpuX86_64: Vcpu {
    /// Sets or clears the flag that requests the VCPU to exit when it becomes possible to inject
    /// interrupts into the guest.
    fn set_interrupt_window_requested(&self, requested: bool);

    /// Checks if we can inject an interrupt into the VCPU.
    fn ready_for_interrupt(&self) -> bool;

    /// Injects interrupt vector `irq` into the VCPU.
    ///
    /// This function should only be called when [`Self::ready_for_interrupt`] returns true.
    /// Otherwise the interrupt injection may fail or the next VCPU run may fail. However, if
    /// [`Self::interrupt`] returns [`Ok`], the implementation must guarantee that the interrupt
    /// isn't injected in an uninterruptible window (e.g. right after the mov ss instruction).
    ///
    /// The caller should avoid calling this function more than 1 time for one VMEXIT, because the
    /// hypervisor may behave differently: some hypervisors(e.g. WHPX, KVM) will only try to inject
    /// the last `irq` requested, while some other hypervisors(e.g. HAXM) may try to inject all
    /// `irq`s requested.
    fn interrupt(&self, irq: u8) -> Result<()>;

    /// Injects a non-maskable interrupt into the VCPU.
    fn inject_nmi(&self) -> Result<()>;

    /// Gets the VCPU general purpose registers.
    fn get_regs(&self) -> Result<Regs>;

    /// Sets the VCPU general purpose registers.
    fn set_regs(&self, regs: &Regs) -> Result<()>;

    /// Gets the VCPU special registers.
    fn get_sregs(&self) -> Result<Sregs>;

    /// Sets the VCPU special registers.
    fn set_sregs(&self, sregs: &Sregs) -> Result<()>;

    /// Gets the VCPU FPU registers.
    fn get_fpu(&self) -> Result<Fpu>;

    /// Sets the VCPU FPU registers.
    fn set_fpu(&self, fpu: &Fpu) -> Result<()>;

    /// Gets the VCPU debug registers.
    fn get_debugregs(&self) -> Result<DebugRegs>;

    /// Sets the VCPU debug registers.
    fn set_debugregs(&self, debugregs: &DebugRegs) -> Result<()>;

    /// Gets the VCPU extended control registers.
    fn get_xcrs(&self) -> Result<BTreeMap<u32, u64>>;

    /// Sets a VCPU extended control register.
    fn set_xcr(&self, xcr: u32, value: u64) -> Result<()>;

    /// Gets the VCPU x87 FPU, MMX, XMM, YMM and MXCSR registers.
    fn get_xsave(&self) -> Result<Xsave>;

    /// Sets the VCPU x87 FPU, MMX, XMM, YMM and MXCSR registers.
    fn set_xsave(&self, xsave: &Xsave) -> Result<()>;

    /// Gets interrupt state (hypervisor specific) for this VCPU that must be
    /// saved/restored for snapshotting.
    fn get_interrupt_state(&self) -> Result<serde_json::Value>;

    /// Sets interrupt state (hypervisor specific) for this VCPU. Only used for
    /// snapshotting.
    fn set_interrupt_state(&self, data: serde_json::Value) -> Result<()>;

    /// Gets a single model-specific register's value.
    fn get_msr(&self, msr_index: u32) -> Result<u64>;

    /// Gets the model-specific registers. Returns all the MSRs for the VCPU.
    fn get_all_msrs(&self) -> Result<BTreeMap<u32, u64>>;

    /// Sets a single model-specific register's value.
    fn set_msr(&self, msr_index: u32, value: u64) -> Result<()>;

    /// Sets up the data returned by the CPUID instruction.
    fn set_cpuid(&self, cpuid: &CpuId) -> Result<()>;

    /// Sets up debug registers and configure vcpu for handling guest debug events.
    fn set_guest_debug(&self, addrs: &[GuestAddress], enable_singlestep: bool) -> Result<()>;

    /// This function should be called after `Vcpu::run` returns `VcpuExit::Cpuid`, and `entry`
    /// should represent the result of emulating the CPUID instruction. The `handle_cpuid` function
    /// will then set the appropriate registers on the vcpu.
    fn handle_cpuid(&mut self, entry: &CpuIdEntry) -> Result<()>;

    /// Gets the guest->host TSC offset.
    ///
    /// The default implementation uses [`VcpuX86_64::get_msr()`] to read the guest TSC.
    fn get_tsc_offset(&self) -> Result<u64> {
        // SAFETY:
        // Safe because _rdtsc takes no arguments
        let host_before_tsc = unsafe { _rdtsc() };

        // get guest TSC value from our hypervisor
        let guest_tsc = self.get_msr(crate::MSR_IA32_TSC)?;

        // SAFETY:
        // Safe because _rdtsc takes no arguments
        let host_after_tsc = unsafe { _rdtsc() };

        // Average the before and after host tsc to get the best value
        let host_tsc = ((host_before_tsc as u128 + host_after_tsc as u128) / 2) as u64;

        Ok(guest_tsc.wrapping_sub(host_tsc))
    }

    /// Sets the guest->host TSC offset.
    ///
    /// The default implementation uses [`VcpuX86_64::set_tsc_value()`] to set the TSC value.
    ///
    /// It sets TSC_OFFSET (VMCS / CB field) by setting the TSC MSR to the current
    /// host TSC value plus the desired offset. We rely on the fact that hypervisors
    /// determine the value of TSC_OFFSET by computing TSC_OFFSET = `new_tsc_value - _rdtsc()` =
    /// `_rdtsc() + offset - _rdtsc()` ~= `offset`. Note that the ~= is important: this is an
    /// approximate operation, because the two _rdtsc() calls
    /// are separated by at least a few ticks.
    ///
    /// Note: TSC_OFFSET, host TSC, guest TSC, and TSC MSR are all different
    /// concepts.
    /// * When a guest executes rdtsc, the value (guest TSC) returned is host_tsc * TSC_MULTIPLIER +
    ///   TSC_OFFSET + TSC_ADJUST.
    /// * The TSC MSR is a special MSR that when written to by the host, will cause TSC_OFFSET to be
    ///   set accordingly by the hypervisor.
    /// * When the guest *writes* to TSC MSR, it actually changes the TSC_ADJUST MSR *for the
    ///   guest*. Generally this is only happens if the guest is trying to re-zero or synchronize
    ///   TSCs.
    fn set_tsc_offset(&self, offset: u64) -> Result<()> {
        // SAFETY: _rdtsc takes no arguments.
        let host_tsc = unsafe { _rdtsc() };
        self.set_tsc_value(host_tsc.wrapping_add(offset))
    }

    /// Sets the guest TSC exactly to the provided value.
    ///
    /// The default implementation sets the guest's TSC by writing the value to the MSR directly.
    ///
    /// See [`VcpuX86_64::set_tsc_offset()`] for an explanation of how this value is actually read
    /// by the guest after being set.
    fn set_tsc_value(&self, value: u64) -> Result<()> {
        self.set_msr(crate::MSR_IA32_TSC, value)
    }

    /// Some hypervisors require special handling to restore timekeeping when
    /// a snapshot is restored. They are provided with a host TSC reference
    /// moment, guaranteed to be the same across all Vcpus, and the Vcpu's TSC
    /// offset at the moment it was snapshotted.
    fn restore_timekeeping(&self, host_tsc_reference_moment: u64, tsc_offset: u64) -> Result<()>;

    /// Snapshot vCPU state
    fn snapshot(&self) -> anyhow::Result<VcpuSnapshot> {
        Ok(VcpuSnapshot {
            vcpu_id: self.id(),
            regs: self.get_regs()?,
            sregs: self.get_sregs()?,
            debug_regs: self.get_debugregs()?,
            xcrs: self.get_xcrs()?,
            msrs: self.get_all_msrs()?,
            xsave: self.get_xsave()?,
            hypervisor_data: self.get_interrupt_state()?,
            tsc_offset: self.get_tsc_offset()?,
        })
    }

    fn restore(
        &mut self,
        snapshot: &VcpuSnapshot,
        host_tsc_reference_moment: u64,
    ) -> anyhow::Result<()> {
        // List of MSRs that may fail to restore due to lack of support in the host kernel.
        // Some hosts are may be running older kernels which do not support all MSRs, but
        // get_all_msrs will still fetch the MSRs supported by the CPU. Trying to set those MSRs
        // will result in failures, so they will throw a warning instead.
        let msr_allowlist = HashSet::from([
            MSR_F15H_PERF_CTL0,
            MSR_F15H_PERF_CTL1,
            MSR_F15H_PERF_CTL2,
            MSR_F15H_PERF_CTL3,
            MSR_F15H_PERF_CTL4,
            MSR_F15H_PERF_CTL5,
            MSR_F15H_PERF_CTR0,
            MSR_F15H_PERF_CTR1,
            MSR_F15H_PERF_CTR2,
            MSR_F15H_PERF_CTR3,
            MSR_F15H_PERF_CTR4,
            MSR_F15H_PERF_CTR5,
            MSR_IA32_PERF_CAPABILITIES,
        ]);
        assert_eq!(snapshot.vcpu_id, self.id());
        self.set_regs(&snapshot.regs)?;
        self.set_sregs(&snapshot.sregs)?;
        self.set_debugregs(&snapshot.debug_regs)?;
        for (xcr_index, value) in &snapshot.xcrs {
            self.set_xcr(*xcr_index, *value)?;
        }

        for (msr_index, value) in snapshot.msrs.iter() {
            if self.get_msr(*msr_index) == Ok(*value) {
                continue; // no need to set MSR since the values are the same.
            }
            if let Err(e) = self.set_msr(*msr_index, *value) {
                if msr_allowlist.contains(msr_index) {
                    warn!(
                        "Failed to set MSR. MSR might not be supported in this kernel. Err: {}",
                        e
                    );
                } else {
                    return Err(e).context(
                        "Failed to set MSR. MSR might not be supported by the CPU or by the kernel,
                         and was not allow-listed.",
                    );
                }
            };
        }
        self.set_xsave(&snapshot.xsave)?;
        self.set_interrupt_state(snapshot.hypervisor_data.clone())?;
        self.restore_timekeeping(host_tsc_reference_moment, snapshot.tsc_offset)?;
        Ok(())
    }
}

/// x86 specific vCPU snapshot.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct VcpuSnapshot {
    pub vcpu_id: usize,
    regs: Regs,
    sregs: Sregs,
    debug_regs: DebugRegs,
    xcrs: BTreeMap<u32, u64>,
    msrs: BTreeMap<u32, u64>,
    xsave: Xsave,
    hypervisor_data: serde_json::Value,
    tsc_offset: u64,
}

impl_downcast!(VcpuX86_64);

// TSC MSR
pub const MSR_IA32_TSC: u32 = 0x00000010;

/// Gets host cpu max physical address bits.
#[cfg(any(unix, feature = "haxm", feature = "whpx"))]
pub(crate) fn host_phys_addr_bits() -> u8 {
    // SAFETY: trivially safe
    let highest_ext_function = unsafe { __cpuid(0x80000000) };
    if highest_ext_function.eax >= 0x80000008 {
        // SAFETY: trivially safe
        let addr_size = unsafe { __cpuid(0x80000008) };
        // Low 8 bits of 0x80000008 leaf: host physical address size in bits.
        addr_size.eax as u8
    } else {
        36
    }
}

/// Initial state for x86_64 VCPUs.
#[derive(Clone, Default)]
pub struct VcpuInitX86_64 {
    /// General-purpose registers.
    pub regs: Regs,

    /// Special registers.
    pub sregs: Sregs,

    /// Floating-point registers.
    pub fpu: Fpu,

    /// Machine-specific registers.
    pub msrs: BTreeMap<u32, u64>,
}

/// Hold the CPU feature configurations that are needed to setup a vCPU.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct CpuConfigX86_64 {
    /// whether to force using a calibrated TSC leaf (0x15).
    pub force_calibrated_tsc_leaf: bool,

    /// whether enabling host cpu topology.
    pub host_cpu_topology: bool,

    /// whether expose HWP feature to the guest.
    pub enable_hwp: bool,

    /// Wheter diabling SMT (Simultaneous Multithreading).
    pub no_smt: bool,

    /// whether enabling ITMT scheduler
    pub itmt: bool,

    /// whether setting hybrid CPU type
    pub hybrid_type: Option<CpuHybridType>,
}

impl CpuConfigX86_64 {
    pub fn new(
        force_calibrated_tsc_leaf: bool,
        host_cpu_topology: bool,
        enable_hwp: bool,
        no_smt: bool,
        itmt: bool,
        hybrid_type: Option<CpuHybridType>,
    ) -> Self {
        CpuConfigX86_64 {
            force_calibrated_tsc_leaf,
            host_cpu_topology,
            enable_hwp,
            no_smt,
            itmt,
            hybrid_type,
        }
    }
}

/// A CpuId Entry contains supported feature information for the given processor.
/// This can be modified by the hypervisor to pass additional information to the guest kernel
/// about the hypervisor or vm. Information is returned in the eax, ebx, ecx and edx registers
/// by the cpu for a given function and index/subfunction (passed into the cpu via the eax and ecx
/// register respectively).
#[repr(C)]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct CpuIdEntry {
    pub function: u32,
    pub index: u32,
    // flags is needed for KVM.  We store it on CpuIdEntry to preserve the flags across
    // get_supported_cpuids() -> kvm_cpuid2 -> CpuId -> kvm_cpuid2 -> set_cpuid().
    pub flags: u32,
    pub cpuid: CpuidResult,
}

/// A container for the list of cpu id entries for the hypervisor and underlying cpu.
pub struct CpuId {
    pub cpu_id_entries: Vec<CpuIdEntry>,
}

impl CpuId {
    /// Constructs a new CpuId, with space allocated for `initial_capacity` CpuIdEntries.
    pub fn new(initial_capacity: usize) -> Self {
        CpuId {
            cpu_id_entries: Vec::with_capacity(initial_capacity),
        }
    }
}

#[bitfield]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum DestinationMode {
    Physical = 0,
    Logical = 1,
}

#[bitfield]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum TriggerMode {
    Edge = 0,
    Level = 1,
}

#[bitfield]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum DeliveryMode {
    Fixed = 0b000,
    Lowest = 0b001,
    SMI = 0b010,        // System management interrupt
    RemoteRead = 0b011, // This is no longer supported by intel.
    NMI = 0b100,        // Non maskable interrupt
    Init = 0b101,
    Startup = 0b110,
    External = 0b111,
}

// These MSI structures are for Intel's implementation of MSI.  The PCI spec defines most of MSI,
// but the Intel spec defines the format of messages for raising interrupts.  The PCI spec defines
// three u32s -- the address, address_high, and data -- but Intel only makes use of the address and
// data.  The Intel portion of the specification is in Volume 3 section 10.11.
#[bitfield]
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct MsiAddressMessage {
    pub reserved: BitField2,
    #[bits = 1]
    pub destination_mode: DestinationMode,
    pub redirection_hint: BitField1,
    pub reserved_2: BitField8,
    pub destination_id: BitField8,
    // According to Intel's implementation of MSI, these bits must always be 0xfee.
    pub always_0xfee: BitField12,
}

#[bitfield]
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct MsiDataMessage {
    pub vector: BitField8,
    #[bits = 3]
    pub delivery_mode: DeliveryMode,
    pub reserved: BitField3,
    #[bits = 1]
    pub level: Level,
    #[bits = 1]
    pub trigger: TriggerMode,
    pub reserved2: BitField16,
}

#[bitfield]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum DeliveryStatus {
    Idle = 0,
    Pending = 1,
}

/// The level of a level-triggered interrupt: asserted or deasserted.
#[bitfield]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum Level {
    Deassert = 0,
    Assert = 1,
}

/// Represents a IOAPIC redirection table entry.
#[bitfield]
#[derive(Clone, Copy, Default, PartialEq, Eq, Serialize, Deserialize)]
pub struct IoapicRedirectionTableEntry {
    vector: BitField8,
    #[bits = 3]
    delivery_mode: DeliveryMode,
    #[bits = 1]
    dest_mode: DestinationMode,
    #[bits = 1]
    delivery_status: DeliveryStatus,
    polarity: BitField1,
    remote_irr: bool,
    #[bits = 1]
    trigger_mode: TriggerMode,
    interrupt_mask: bool, // true iff interrupts are masked.
    reserved: BitField39,
    dest_id: BitField8,
}

/// Number of pins on the standard KVM/IOAPIC.
pub const NUM_IOAPIC_PINS: usize = 24;

/// Represents the state of the IOAPIC.
#[repr(C)]
#[derive(Clone, Copy, Debug, PartialEq, Eq, Serialize, Deserialize)]
pub struct IoapicState {
    /// base_address is the memory base address for this IOAPIC. It cannot be changed.
    pub base_address: u64,
    /// ioregsel register. Used for selecting which entry of the redirect table to read/write.
    pub ioregsel: u8,
    /// ioapicid register. Bits 24 - 27 contain the APIC ID for this device.
    pub ioapicid: u32,
    /// current_interrupt_level_bitmap represents a bitmap of the state of all of the irq lines
    pub current_interrupt_level_bitmap: u32,
    /// redirect_table contains the irq settings for each irq line
    #[serde(
        serialize_with = "serialize_arr",
        deserialize_with = "deserialize_seq_to_arr"
    )]
    pub redirect_table: [IoapicRedirectionTableEntry; NUM_IOAPIC_PINS],
}

impl Default for IoapicState {
    fn default() -> IoapicState {
        // SAFETY: trivially safe
        unsafe { std::mem::zeroed() }
    }
}

#[repr(C)]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum PicSelect {
    Primary = 0,
    Secondary = 1,
}

#[repr(C)]
#[derive(enumn::N, Debug, Clone, Copy, Default, PartialEq, Eq, Serialize, Deserialize)]
pub enum PicInitState {
    #[default]
    Icw1 = 0,
    Icw2 = 1,
    Icw3 = 2,
    Icw4 = 3,
}

/// Convenience implementation for converting from a u8
impl From<u8> for PicInitState {
    fn from(item: u8) -> Self {
        PicInitState::n(item).unwrap_or_else(|| {
            error!("Invalid PicInitState {}, setting to 0", item);
            PicInitState::Icw1
        })
    }
}

/// Represents the state of the PIC.
#[repr(C)]
#[derive(Clone, Copy, Default, Debug, PartialEq, Eq, Serialize, Deserialize)]
pub struct PicState {
    /// Edge detection.
    pub last_irr: u8,
    /// Interrupt Request Register.
    pub irr: u8,
    /// Interrupt Mask Register.
    pub imr: u8,
    /// Interrupt Service Register.
    pub isr: u8,
    /// Highest priority, for priority rotation.
    pub priority_add: u8,
    pub irq_base: u8,
    pub read_reg_select: bool,
    pub poll: bool,
    pub special_mask: bool,
    pub init_state: PicInitState,
    pub auto_eoi: bool,
    pub rotate_on_auto_eoi: bool,
    pub special_fully_nested_mode: bool,
    /// PIC takes either 3 or 4 bytes of initialization command word during
    /// initialization. use_4_byte_icw is true if 4 bytes of ICW are needed.
    pub use_4_byte_icw: bool,
    /// "Edge/Level Control Registers", for edge trigger selection.
    /// When a particular bit is set, the corresponding IRQ is in level-triggered mode. Otherwise
    /// it is in edge-triggered mode.
    pub elcr: u8,
    pub elcr_mask: u8,
}

/// The LapicState represents the state of an x86 CPU's Local APIC.
/// The Local APIC consists of 64 128-bit registers, but only the first 32-bits of each register
/// can be used, so this structure only stores the first 32-bits of each register.
#[repr(C)]
#[derive(Clone, Copy, Serialize, Deserialize)]
pub struct LapicState {
    #[serde(
        serialize_with = "serialize_arr",
        deserialize_with = "deserialize_seq_to_arr"
    )]
    pub regs: [LapicRegister; 64],
}

pub type LapicRegister = u32;

// rust arrays longer than 32 need custom implementations of Debug
impl std::fmt::Debug for LapicState {
    fn fmt(&self, formatter: &mut std::fmt::Formatter) -> std::fmt::Result {
        self.regs[..].fmt(formatter)
    }
}

// rust arrays longer than 32 need custom implementations of PartialEq
impl PartialEq for LapicState {
    fn eq(&self, other: &LapicState) -> bool {
        self.regs[..] == other.regs[..]
    }
}

// Lapic equality is reflexive, so we impl Eq
impl Eq for LapicState {}

/// The PitState represents the state of the PIT (aka the Programmable Interval Timer).
/// The state is simply the state of it's three channels.
#[repr(C)]
#[derive(Clone, Copy, Debug, PartialEq, Eq, Serialize, Deserialize)]
pub struct PitState {
    pub channels: [PitChannelState; 3],
    /// Hypervisor-specific flags for setting the pit state.
    pub flags: u32,
}

/// The PitRWMode enum represents the access mode of a PIT channel.
/// Reads and writes to the Pit happen over Port-mapped I/O, which happens one byte at a time,
/// but the count values and latch values are two bytes. So the access mode controls which of the
/// two bytes will be read when.
#[repr(C)]
#[derive(enumn::N, Clone, Copy, Debug, PartialEq, Eq, Serialize, Deserialize)]
pub enum PitRWMode {
    /// None mode means that no access mode has been set.
    None = 0,
    /// Least mode means all reads/writes will read/write the least significant byte.
    Least = 1,
    /// Most mode means all reads/writes will read/write the most significant byte.
    Most = 2,
    /// Both mode means first the least significant byte will be read/written, then the
    /// next read/write will read/write the most significant byte.
    Both = 3,
}

/// Convenience implementation for converting from a u8
impl From<u8> for PitRWMode {
    fn from(item: u8) -> Self {
        PitRWMode::n(item).unwrap_or_else(|| {
            error!("Invalid PitRWMode value {}, setting to 0", item);
            PitRWMode::None
        })
    }
}

/// The PitRWState enum represents the state of reading to or writing from a channel.
/// This is related to the PitRWMode, it mainly gives more detail about the state of the channel
/// with respect to PitRWMode::Both.
#[repr(C)]
#[derive(enumn::N, Clone, Copy, Debug, PartialEq, Eq, Serialize, Deserialize)]
pub enum PitRWState {
    /// None mode means that no access mode has been set.
    None = 0,
    /// LSB means that the channel is in PitRWMode::Least access mode.
    LSB = 1,
    /// MSB means that the channel is in PitRWMode::Most access mode.
    MSB = 2,
    /// Word0 means that the channel is in PitRWMode::Both mode, and the least sginificant byte
    /// has not been read/written yet.
    Word0 = 3,
    /// Word1 means that the channel is in PitRWMode::Both mode and the least significant byte
    /// has already been read/written, and the next byte to be read/written will be the most
    /// significant byte.
    Word1 = 4,
}

/// Convenience implementation for converting from a u8
impl From<u8> for PitRWState {
    fn from(item: u8) -> Self {
        PitRWState::n(item).unwrap_or_else(|| {
            error!("Invalid PitRWState value {}, setting to 0", item);
            PitRWState::None
        })
    }
}

/// The PitChannelState represents the state of one of the PIT's three counters.
#[repr(C)]
#[derive(Clone, Copy, Debug, PartialEq, Eq, Serialize, Deserialize)]
pub struct PitChannelState {
    /// The starting value for the counter.
    pub count: u32,
    /// Stores the channel count from the last time the count was latched.
    pub latched_count: u16,
    /// Indicates the PitRWState state of reading the latch value.
    pub count_latched: PitRWState,
    /// Indicates whether ReadBack status has been latched.
    pub status_latched: bool,
    /// Stores the channel status from the last time the status was latched. The status contains
    /// information about the access mode of this channel, but changing those bits in the status
    /// will not change the behavior of the pit.
    pub status: u8,
    /// Indicates the PitRWState state of reading the counter.
    pub read_state: PitRWState,
    /// Indicates the PitRWState state of writing the counter.
    pub write_state: PitRWState,
    /// Stores the value with which the counter was initialized. Counters are 16-
    /// bit values with an effective range of 1-65536 (65536 represented by 0).
    pub reload_value: u16,
    /// The command access mode of this channel.
    pub rw_mode: PitRWMode,
    /// The operation mode of this channel.
    pub mode: u8,
    /// Whether or not we are in bcd mode. Not supported by KVM or crosvm's PIT implementation.
    pub bcd: bool,
    /// Value of the gate input pin. This only applies to channel 2.
    pub gate: bool,
    /// Nanosecond timestamp of when the count value was loaded.
    pub count_load_time: u64,
}

// Convenience constructors for IrqRoutes
impl IrqRoute {
    pub fn ioapic_irq_route(irq_num: u32) -> IrqRoute {
        IrqRoute {
            gsi: irq_num,
            source: IrqSource::Irqchip {
                chip: IrqSourceChip::Ioapic,
                pin: irq_num,
            },
        }
    }

    pub fn pic_irq_route(id: IrqSourceChip, irq_num: u32) -> IrqRoute {
        IrqRoute {
            gsi: irq_num,
            source: IrqSource::Irqchip {
                chip: id,
                pin: irq_num % 8,
            },
        }
    }
}

/// State of a VCPU's general purpose registers.
#[repr(C)]
#[derive(Debug, Copy, Clone, Serialize, Deserialize)]
pub struct Regs {
    pub rax: u64,
    pub rbx: u64,
    pub rcx: u64,
    pub rdx: u64,
    pub rsi: u64,
    pub rdi: u64,
    pub rsp: u64,
    pub rbp: u64,
    pub r8: u64,
    pub r9: u64,
    pub r10: u64,
    pub r11: u64,
    pub r12: u64,
    pub r13: u64,
    pub r14: u64,
    pub r15: u64,
    pub rip: u64,
    pub rflags: u64,
}

impl Default for Regs {
    fn default() -> Self {
        Regs {
            rax: 0,
            rbx: 0,
            rcx: 0,
            rdx: 0,
            rsi: 0,
            rdi: 0,
            rsp: 0,
            rbp: 0,
            r8: 0,
            r9: 0,
            r10: 0,
            r11: 0,
            r12: 0,
            r13: 0,
            r14: 0,
            r15: 0,
            rip: 0xfff0, // Reset vector.
            rflags: 0x2, // Bit 1 (0x2) is always 1.
        }
    }
}

/// State of a memory segment.
#[repr(C)]
#[derive(Debug, Default, Copy, Clone, Serialize, Deserialize, PartialEq, Eq)]
pub struct Segment {
    pub base: u64,
    /// Limit of the segment - always in bytes, regardless of granularity (`g`) field.
    pub limit_bytes: u32,
    pub selector: u16,
    pub type_: u8,
    pub present: u8,
    pub dpl: u8,
    pub db: u8,
    pub s: u8,
    pub l: u8,
    pub g: u8,
    pub avl: u8,
}

/// State of a global descriptor table or interrupt descriptor table.
#[repr(C)]
#[derive(Debug, Default, Copy, Clone, Serialize, Deserialize)]
pub struct DescriptorTable {
    pub base: u64,
    pub limit: u16,
}

/// State of a VCPU's special registers.
#[repr(C)]
#[derive(Debug, Copy, Clone, Serialize, Deserialize)]
pub struct Sregs {
    pub cs: Segment,
    pub ds: Segment,
    pub es: Segment,
    pub fs: Segment,
    pub gs: Segment,
    pub ss: Segment,
    pub tr: Segment,
    pub ldt: Segment,
    pub gdt: DescriptorTable,
    pub idt: DescriptorTable,
    pub cr0: u64,
    pub cr2: u64,
    pub cr3: u64,
    pub cr4: u64,
    pub cr8: u64,
    pub efer: u64,
}

impl Default for Sregs {
    fn default() -> Self {
        // Intel SDM Vol. 3A, 3.4.5.1 ("Code- and Data-Segment Descriptor Types")
        const SEG_TYPE_DATA: u8 = 0b0000;
        const SEG_TYPE_DATA_WRITABLE: u8 = 0b0010;

        const SEG_TYPE_CODE: u8 = 0b1000;
        const SEG_TYPE_CODE_READABLE: u8 = 0b0010;

        const SEG_TYPE_ACCESSED: u8 = 0b0001;

        // Intel SDM Vol. 3A, 3.4.5 ("Segment Descriptors")
        const SEG_S_SYSTEM: u8 = 0; // System segment.
        const SEG_S_CODE_OR_DATA: u8 = 1; // Data/code segment.

        // 16-bit real-mode code segment (reset vector).
        let code_seg = Segment {
            base: 0xffff0000,
            limit_bytes: 0xffff,
            selector: 0xf000,
            type_: SEG_TYPE_CODE | SEG_TYPE_CODE_READABLE | SEG_TYPE_ACCESSED, // 11
            present: 1,
            s: SEG_S_CODE_OR_DATA,
            ..Default::default()
        };

        // 16-bit real-mode data segment.
        let data_seg = Segment {
            base: 0,
            limit_bytes: 0xffff,
            selector: 0,
            type_: SEG_TYPE_DATA | SEG_TYPE_DATA_WRITABLE | SEG_TYPE_ACCESSED, // 3
            present: 1,
            s: SEG_S_CODE_OR_DATA,
            ..Default::default()
        };

        // 16-bit TSS segment.
        let task_seg = Segment {
            base: 0,
            limit_bytes: 0xffff,
            selector: 0,
            type_: SEG_TYPE_CODE | SEG_TYPE_CODE_READABLE | SEG_TYPE_ACCESSED, // 11
            present: 1,
            s: SEG_S_SYSTEM,
            ..Default::default()
        };

        // Local descriptor table.
        let ldt = Segment {
            base: 0,
            limit_bytes: 0xffff,
            selector: 0,
            type_: SEG_TYPE_DATA | SEG_TYPE_DATA_WRITABLE, // 2
            present: 1,
            s: SEG_S_SYSTEM,
            ..Default::default()
        };

        // Global descriptor table.
        let gdt = DescriptorTable {
            base: 0,
            limit: 0xffff,
        };

        // Interrupt descriptor table.
        let idt = DescriptorTable {
            base: 0,
            limit: 0xffff,
        };

        let cr0 = (1 << 4) // CR0.ET (reserved, always 1)
                | (1 << 30); // CR0.CD (cache disable)

        Sregs {
            cs: code_seg,
            ds: data_seg,
            es: data_seg,
            fs: data_seg,
            gs: data_seg,
            ss: data_seg,
            tr: task_seg,
            ldt,
            gdt,
            idt,
            cr0,
            cr2: 0,
            cr3: 0,
            cr4: 0,
            cr8: 0,
            efer: 0,
        }
    }
}

/// x87 80-bit floating point value.
#[repr(C)]
#[derive(Copy, Clone, Debug, Default, Eq, PartialEq, Serialize, Deserialize)]
pub struct FpuReg {
    /// 64-bit mantissa.
    pub significand: u64,

    /// 15-bit biased exponent and sign bit.
    pub sign_exp: u16,
}

impl FpuReg {
    /// Convert an array of 8x16-byte arrays to an array of 8 `FpuReg`.
    ///
    /// Ignores any data in the upper 6 bytes of each element; the values represent 80-bit FPU
    /// registers, so the upper 48 bits are unused.
    pub fn from_16byte_arrays(byte_arrays: &[[u8; 16]; 8]) -> [FpuReg; 8] {
        let mut regs = [FpuReg::default(); 8];
        for (dst, src) in regs.iter_mut().zip(byte_arrays.iter()) {
            let tbyte: [u8; 10] = src[0..10].try_into().unwrap();
            *dst = FpuReg::from(tbyte);
        }
        regs
    }

    /// Convert an array of 8 `FpuReg` into 8x16-byte arrays.
    pub fn to_16byte_arrays(regs: &[FpuReg; 8]) -> [[u8; 16]; 8] {
        let mut byte_arrays = [[0u8; 16]; 8];
        for (dst, src) in byte_arrays.iter_mut().zip(regs.iter()) {
            *dst = (*src).into();
        }
        byte_arrays
    }
}

impl From<[u8; 10]> for FpuReg {
    /// Construct a `FpuReg` from an 80-bit representation.
    fn from(value: [u8; 10]) -> FpuReg {
        // These array sub-slices can't fail, but there's no (safe) way to express that in Rust
        // without an `unwrap()`.
        let significand_bytes = value[0..8].try_into().unwrap();
        let significand = u64::from_le_bytes(significand_bytes);
        let sign_exp_bytes = value[8..10].try_into().unwrap();
        let sign_exp = u16::from_le_bytes(sign_exp_bytes);
        FpuReg {
            significand,
            sign_exp,
        }
    }
}

impl From<FpuReg> for [u8; 10] {
    /// Convert an `FpuReg` into its 80-bit "TBYTE" representation.
    fn from(value: FpuReg) -> [u8; 10] {
        let mut bytes = [0u8; 10];
        bytes[0..8].copy_from_slice(&value.significand.to_le_bytes());
        bytes[8..10].copy_from_slice(&value.sign_exp.to_le_bytes());
        bytes
    }
}

impl From<FpuReg> for [u8; 16] {
    /// Convert an `FpuReg` into its 80-bit representation plus 6 unused upper bytes.
    /// This is a convenience function for converting to hypervisor types.
    fn from(value: FpuReg) -> [u8; 16] {
        let mut bytes = [0u8; 16];
        bytes[0..8].copy_from_slice(&value.significand.to_le_bytes());
        bytes[8..10].copy_from_slice(&value.sign_exp.to_le_bytes());
        bytes
    }
}

/// State of a VCPU's floating point unit.
#[repr(C)]
#[derive(Debug, Copy, Clone, Serialize, Deserialize)]
pub struct Fpu {
    pub fpr: [FpuReg; 8],
    pub fcw: u16,
    pub fsw: u16,
    pub ftwx: u8,
    pub last_opcode: u16,
    pub last_ip: u64,
    pub last_dp: u64,
    pub xmm: [[u8; 16usize]; 16usize],
    pub mxcsr: u32,
}

impl Default for Fpu {
    fn default() -> Self {
        Fpu {
            fpr: Default::default(),
            fcw: 0x37f, // Intel SDM Vol. 1, 13.6
            fsw: 0,
            ftwx: 0,
            last_opcode: 0,
            last_ip: 0,
            last_dp: 0,
            xmm: Default::default(),
            mxcsr: 0x1f80, // Intel SDM Vol. 1, 11.6.4
        }
    }
}

/// State of a VCPU's debug registers.
#[repr(C)]
#[derive(Debug, Default, Copy, Clone, Serialize, Deserialize)]
pub struct DebugRegs {
    pub db: [u64; 4usize],
    pub dr6: u64,
    pub dr7: u64,
}

/// The hybrid type for intel hybrid CPU.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Serialize, Deserialize)]
pub enum CpuHybridType {
    /// Intel Atom.
    Atom,
    /// Intel Core.
    Core,
}

/// State of the VCPU's x87 FPU, MMX, XMM, YMM registers.
/// May contain more state depending on enabled extensions.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct Xsave {
    data: Vec<u32>,

    // Actual length in bytes. May be smaller than data if a non-u32 multiple of bytes is
    // requested.
    len: usize,
}

impl Xsave {
    /// Create a new buffer to store Xsave data.
    ///
    /// # Argments
    /// * `len` size in bytes.
    pub fn new(len: usize) -> Self {
        Xsave {
            data: vec![0; (len + 3) / 4],
            len,
        }
    }

    pub fn as_ptr(&self) -> *const c_void {
        self.data.as_ptr() as *const c_void
    }

    pub fn as_mut_ptr(&mut self) -> *mut c_void {
        self.data.as_mut_ptr() as *mut c_void
    }

    /// Length in bytes of the XSAVE data.
    pub fn len(&self) -> usize {
        self.len
    }

    /// Returns true is length of XSAVE data is zero
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }
}