1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
// Copyright 2020 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use std::arch::x86_64::CpuidResult;
#[cfg(any(unix, feature = "haxm", feature = "whpx"))]
use std::arch::x86_64::__cpuid;
use std::arch::x86_64::_rdtsc;
use std::collections::BTreeMap;
use std::collections::HashSet;
use anyhow::Context;
use base::custom_serde::deserialize_seq_to_arr;
use base::custom_serde::serialize_arr;
use base::error;
use base::warn;
use base::Result;
use bit_field::*;
use downcast_rs::impl_downcast;
use libc::c_void;
use serde::Deserialize;
use serde::Serialize;
use vm_memory::GuestAddress;
use crate::Hypervisor;
use crate::IrqRoute;
use crate::IrqSource;
use crate::IrqSourceChip;
use crate::Vcpu;
use crate::Vm;
const MSR_F15H_PERF_CTL0: u32 = 0xc0010200;
const MSR_F15H_PERF_CTL1: u32 = 0xc0010202;
const MSR_F15H_PERF_CTL2: u32 = 0xc0010204;
const MSR_F15H_PERF_CTL3: u32 = 0xc0010206;
const MSR_F15H_PERF_CTL4: u32 = 0xc0010208;
const MSR_F15H_PERF_CTL5: u32 = 0xc001020a;
const MSR_F15H_PERF_CTR0: u32 = 0xc0010201;
const MSR_F15H_PERF_CTR1: u32 = 0xc0010203;
const MSR_F15H_PERF_CTR2: u32 = 0xc0010205;
const MSR_F15H_PERF_CTR3: u32 = 0xc0010207;
const MSR_F15H_PERF_CTR4: u32 = 0xc0010209;
const MSR_F15H_PERF_CTR5: u32 = 0xc001020b;
const MSR_IA32_PERF_CAPABILITIES: u32 = 0x00000345;
/// A trait for managing cpuids for an x86_64 hypervisor and for checking its capabilities.
pub trait HypervisorX86_64: Hypervisor {
/// Get the system supported CPUID values.
fn get_supported_cpuid(&self) -> Result<CpuId>;
/// Gets the list of supported MSRs.
fn get_msr_index_list(&self) -> Result<Vec<u32>>;
}
/// A wrapper for using a VM on x86_64 and getting/setting its state.
pub trait VmX86_64: Vm {
/// Gets the `HypervisorX86_64` that created this VM.
fn get_hypervisor(&self) -> &dyn HypervisorX86_64;
/// Create a Vcpu with the specified Vcpu ID.
fn create_vcpu(&self, id: usize) -> Result<Box<dyn VcpuX86_64>>;
/// Sets the address of the three-page region in the VM's address space.
fn set_tss_addr(&self, addr: GuestAddress) -> Result<()>;
/// Sets the address of a one-page region in the VM's address space.
fn set_identity_map_addr(&self, addr: GuestAddress) -> Result<()>;
}
/// A wrapper around creating and using a VCPU on x86_64.
pub trait VcpuX86_64: Vcpu {
/// Sets or clears the flag that requests the VCPU to exit when it becomes possible to inject
/// interrupts into the guest.
fn set_interrupt_window_requested(&self, requested: bool);
/// Checks if we can inject an interrupt into the VCPU.
fn ready_for_interrupt(&self) -> bool;
/// Injects interrupt vector `irq` into the VCPU.
///
/// This function should only be called when [`Self::ready_for_interrupt`] returns true.
/// Otherwise the interrupt injection may fail or the next VCPU run may fail. However, if
/// [`Self::interrupt`] returns [`Ok`], the implementation must guarantee that the interrupt
/// isn't injected in an uninterruptible window (e.g. right after the mov ss instruction).
///
/// The caller should avoid calling this function more than 1 time for one VMEXIT, because the
/// hypervisor may behave differently: some hypervisors(e.g. WHPX, KVM) will only try to inject
/// the last `irq` requested, while some other hypervisors(e.g. HAXM) may try to inject all
/// `irq`s requested.
fn interrupt(&self, irq: u8) -> Result<()>;
/// Injects a non-maskable interrupt into the VCPU.
fn inject_nmi(&self) -> Result<()>;
/// Gets the VCPU general purpose registers.
fn get_regs(&self) -> Result<Regs>;
/// Sets the VCPU general purpose registers.
fn set_regs(&self, regs: &Regs) -> Result<()>;
/// Gets the VCPU special registers.
fn get_sregs(&self) -> Result<Sregs>;
/// Sets the VCPU special registers.
fn set_sregs(&self, sregs: &Sregs) -> Result<()>;
/// Gets the VCPU FPU registers.
fn get_fpu(&self) -> Result<Fpu>;
/// Sets the VCPU FPU registers.
fn set_fpu(&self, fpu: &Fpu) -> Result<()>;
/// Gets the VCPU debug registers.
fn get_debugregs(&self) -> Result<DebugRegs>;
/// Sets the VCPU debug registers.
fn set_debugregs(&self, debugregs: &DebugRegs) -> Result<()>;
/// Gets the VCPU extended control registers.
fn get_xcrs(&self) -> Result<BTreeMap<u32, u64>>;
/// Sets a VCPU extended control register.
fn set_xcr(&self, xcr: u32, value: u64) -> Result<()>;
/// Gets the VCPU x87 FPU, MMX, XMM, YMM and MXCSR registers.
fn get_xsave(&self) -> Result<Xsave>;
/// Sets the VCPU x87 FPU, MMX, XMM, YMM and MXCSR registers.
fn set_xsave(&self, xsave: &Xsave) -> Result<()>;
/// Gets interrupt state (hypervisor specific) for this VCPU that must be
/// saved/restored for snapshotting.
fn get_interrupt_state(&self) -> Result<serde_json::Value>;
/// Sets interrupt state (hypervisor specific) for this VCPU. Only used for
/// snapshotting.
fn set_interrupt_state(&self, data: serde_json::Value) -> Result<()>;
/// Gets a single model-specific register's value.
fn get_msr(&self, msr_index: u32) -> Result<u64>;
/// Gets the model-specific registers. Returns all the MSRs for the VCPU.
fn get_all_msrs(&self) -> Result<BTreeMap<u32, u64>>;
/// Sets a single model-specific register's value.
fn set_msr(&self, msr_index: u32, value: u64) -> Result<()>;
/// Sets up the data returned by the CPUID instruction.
fn set_cpuid(&self, cpuid: &CpuId) -> Result<()>;
/// Sets up debug registers and configure vcpu for handling guest debug events.
fn set_guest_debug(&self, addrs: &[GuestAddress], enable_singlestep: bool) -> Result<()>;
/// This function should be called after `Vcpu::run` returns `VcpuExit::Cpuid`, and `entry`
/// should represent the result of emulating the CPUID instruction. The `handle_cpuid` function
/// will then set the appropriate registers on the vcpu.
fn handle_cpuid(&mut self, entry: &CpuIdEntry) -> Result<()>;
/// Gets the guest->host TSC offset.
///
/// The default implementation uses [`VcpuX86_64::get_msr()`] to read the guest TSC.
fn get_tsc_offset(&self) -> Result<u64> {
// SAFETY:
// Safe because _rdtsc takes no arguments
let host_before_tsc = unsafe { _rdtsc() };
// get guest TSC value from our hypervisor
let guest_tsc = self.get_msr(crate::MSR_IA32_TSC)?;
// SAFETY:
// Safe because _rdtsc takes no arguments
let host_after_tsc = unsafe { _rdtsc() };
// Average the before and after host tsc to get the best value
let host_tsc = ((host_before_tsc as u128 + host_after_tsc as u128) / 2) as u64;
Ok(guest_tsc.wrapping_sub(host_tsc))
}
/// Sets the guest->host TSC offset.
///
/// The default implementation uses [`VcpuX86_64::set_tsc_value()`] to set the TSC value.
///
/// It sets TSC_OFFSET (VMCS / CB field) by setting the TSC MSR to the current
/// host TSC value plus the desired offset. We rely on the fact that hypervisors
/// determine the value of TSC_OFFSET by computing TSC_OFFSET = `new_tsc_value - _rdtsc()` =
/// `_rdtsc() + offset - _rdtsc()` ~= `offset`. Note that the ~= is important: this is an
/// approximate operation, because the two _rdtsc() calls
/// are separated by at least a few ticks.
///
/// Note: TSC_OFFSET, host TSC, guest TSC, and TSC MSR are all different
/// concepts.
/// * When a guest executes rdtsc, the value (guest TSC) returned is host_tsc * TSC_MULTIPLIER +
/// TSC_OFFSET + TSC_ADJUST.
/// * The TSC MSR is a special MSR that when written to by the host, will cause TSC_OFFSET to be
/// set accordingly by the hypervisor.
/// * When the guest *writes* to TSC MSR, it actually changes the TSC_ADJUST MSR *for the
/// guest*. Generally this is only happens if the guest is trying to re-zero or synchronize
/// TSCs.
fn set_tsc_offset(&self, offset: u64) -> Result<()> {
// SAFETY: _rdtsc takes no arguments.
let host_tsc = unsafe { _rdtsc() };
self.set_tsc_value(host_tsc.wrapping_add(offset))
}
/// Sets the guest TSC exactly to the provided value.
///
/// The default implementation sets the guest's TSC by writing the value to the MSR directly.
///
/// See [`VcpuX86_64::set_tsc_offset()`] for an explanation of how this value is actually read
/// by the guest after being set.
fn set_tsc_value(&self, value: u64) -> Result<()> {
self.set_msr(crate::MSR_IA32_TSC, value)
}
/// Some hypervisors require special handling to restore timekeeping when
/// a snapshot is restored. They are provided with a host TSC reference
/// moment, guaranteed to be the same across all Vcpus, and the Vcpu's TSC
/// offset at the moment it was snapshotted.
fn restore_timekeeping(&self, host_tsc_reference_moment: u64, tsc_offset: u64) -> Result<()>;
/// Snapshot vCPU state
fn snapshot(&self) -> anyhow::Result<VcpuSnapshot> {
Ok(VcpuSnapshot {
vcpu_id: self.id(),
regs: self.get_regs()?,
sregs: self.get_sregs()?,
debug_regs: self.get_debugregs()?,
xcrs: self.get_xcrs()?,
msrs: self.get_all_msrs()?,
xsave: self.get_xsave()?,
hypervisor_data: self.get_interrupt_state()?,
tsc_offset: self.get_tsc_offset()?,
})
}
fn restore(
&mut self,
snapshot: &VcpuSnapshot,
host_tsc_reference_moment: u64,
) -> anyhow::Result<()> {
// List of MSRs that may fail to restore due to lack of support in the host kernel.
// Some hosts are may be running older kernels which do not support all MSRs, but
// get_all_msrs will still fetch the MSRs supported by the CPU. Trying to set those MSRs
// will result in failures, so they will throw a warning instead.
let msr_allowlist = HashSet::from([
MSR_F15H_PERF_CTL0,
MSR_F15H_PERF_CTL1,
MSR_F15H_PERF_CTL2,
MSR_F15H_PERF_CTL3,
MSR_F15H_PERF_CTL4,
MSR_F15H_PERF_CTL5,
MSR_F15H_PERF_CTR0,
MSR_F15H_PERF_CTR1,
MSR_F15H_PERF_CTR2,
MSR_F15H_PERF_CTR3,
MSR_F15H_PERF_CTR4,
MSR_F15H_PERF_CTR5,
MSR_IA32_PERF_CAPABILITIES,
]);
assert_eq!(snapshot.vcpu_id, self.id());
self.set_regs(&snapshot.regs)?;
self.set_sregs(&snapshot.sregs)?;
self.set_debugregs(&snapshot.debug_regs)?;
for (xcr_index, value) in &snapshot.xcrs {
self.set_xcr(*xcr_index, *value)?;
}
for (msr_index, value) in snapshot.msrs.iter() {
if self.get_msr(*msr_index) == Ok(*value) {
continue; // no need to set MSR since the values are the same.
}
if let Err(e) = self.set_msr(*msr_index, *value) {
if msr_allowlist.contains(msr_index) {
warn!(
"Failed to set MSR. MSR might not be supported in this kernel. Err: {}",
e
);
} else {
return Err(e).context(
"Failed to set MSR. MSR might not be supported by the CPU or by the kernel,
and was not allow-listed.",
);
}
};
}
self.set_xsave(&snapshot.xsave)?;
self.set_interrupt_state(snapshot.hypervisor_data.clone())?;
self.restore_timekeeping(host_tsc_reference_moment, snapshot.tsc_offset)?;
Ok(())
}
}
/// x86 specific vCPU snapshot.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct VcpuSnapshot {
pub vcpu_id: usize,
regs: Regs,
sregs: Sregs,
debug_regs: DebugRegs,
xcrs: BTreeMap<u32, u64>,
msrs: BTreeMap<u32, u64>,
xsave: Xsave,
hypervisor_data: serde_json::Value,
tsc_offset: u64,
}
impl_downcast!(VcpuX86_64);
// TSC MSR
pub const MSR_IA32_TSC: u32 = 0x00000010;
/// Gets host cpu max physical address bits.
#[cfg(any(unix, feature = "haxm", feature = "whpx"))]
pub(crate) fn host_phys_addr_bits() -> u8 {
// SAFETY: trivially safe
let highest_ext_function = unsafe { __cpuid(0x80000000) };
if highest_ext_function.eax >= 0x80000008 {
// SAFETY: trivially safe
let addr_size = unsafe { __cpuid(0x80000008) };
// Low 8 bits of 0x80000008 leaf: host physical address size in bits.
addr_size.eax as u8
} else {
36
}
}
/// Initial state for x86_64 VCPUs.
#[derive(Clone, Default)]
pub struct VcpuInitX86_64 {
/// General-purpose registers.
pub regs: Regs,
/// Special registers.
pub sregs: Sregs,
/// Floating-point registers.
pub fpu: Fpu,
/// Machine-specific registers.
pub msrs: BTreeMap<u32, u64>,
}
/// Hold the CPU feature configurations that are needed to setup a vCPU.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct CpuConfigX86_64 {
/// whether to force using a calibrated TSC leaf (0x15).
pub force_calibrated_tsc_leaf: bool,
/// whether enabling host cpu topology.
pub host_cpu_topology: bool,
/// whether expose HWP feature to the guest.
pub enable_hwp: bool,
/// Wheter diabling SMT (Simultaneous Multithreading).
pub no_smt: bool,
/// whether enabling ITMT scheduler
pub itmt: bool,
/// whether setting hybrid CPU type
pub hybrid_type: Option<CpuHybridType>,
}
impl CpuConfigX86_64 {
pub fn new(
force_calibrated_tsc_leaf: bool,
host_cpu_topology: bool,
enable_hwp: bool,
no_smt: bool,
itmt: bool,
hybrid_type: Option<CpuHybridType>,
) -> Self {
CpuConfigX86_64 {
force_calibrated_tsc_leaf,
host_cpu_topology,
enable_hwp,
no_smt,
itmt,
hybrid_type,
}
}
}
/// A CpuId Entry contains supported feature information for the given processor.
/// This can be modified by the hypervisor to pass additional information to the guest kernel
/// about the hypervisor or vm. Information is returned in the eax, ebx, ecx and edx registers
/// by the cpu for a given function and index/subfunction (passed into the cpu via the eax and ecx
/// register respectively).
#[repr(C)]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct CpuIdEntry {
pub function: u32,
pub index: u32,
// flags is needed for KVM. We store it on CpuIdEntry to preserve the flags across
// get_supported_cpuids() -> kvm_cpuid2 -> CpuId -> kvm_cpuid2 -> set_cpuid().
pub flags: u32,
pub cpuid: CpuidResult,
}
/// A container for the list of cpu id entries for the hypervisor and underlying cpu.
pub struct CpuId {
pub cpu_id_entries: Vec<CpuIdEntry>,
}
impl CpuId {
/// Constructs a new CpuId, with space allocated for `initial_capacity` CpuIdEntries.
pub fn new(initial_capacity: usize) -> Self {
CpuId {
cpu_id_entries: Vec::with_capacity(initial_capacity),
}
}
}
#[bitfield]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum DestinationMode {
Physical = 0,
Logical = 1,
}
#[bitfield]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum TriggerMode {
Edge = 0,
Level = 1,
}
#[bitfield]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum DeliveryMode {
Fixed = 0b000,
Lowest = 0b001,
SMI = 0b010, // System management interrupt
RemoteRead = 0b011, // This is no longer supported by intel.
NMI = 0b100, // Non maskable interrupt
Init = 0b101,
Startup = 0b110,
External = 0b111,
}
// These MSI structures are for Intel's implementation of MSI. The PCI spec defines most of MSI,
// but the Intel spec defines the format of messages for raising interrupts. The PCI spec defines
// three u32s -- the address, address_high, and data -- but Intel only makes use of the address and
// data. The Intel portion of the specification is in Volume 3 section 10.11.
#[bitfield]
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct MsiAddressMessage {
pub reserved: BitField2,
#[bits = 1]
pub destination_mode: DestinationMode,
pub redirection_hint: BitField1,
pub reserved_2: BitField8,
pub destination_id: BitField8,
// According to Intel's implementation of MSI, these bits must always be 0xfee.
pub always_0xfee: BitField12,
}
#[bitfield]
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct MsiDataMessage {
pub vector: BitField8,
#[bits = 3]
pub delivery_mode: DeliveryMode,
pub reserved: BitField3,
#[bits = 1]
pub level: Level,
#[bits = 1]
pub trigger: TriggerMode,
pub reserved2: BitField16,
}
#[bitfield]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum DeliveryStatus {
Idle = 0,
Pending = 1,
}
/// The level of a level-triggered interrupt: asserted or deasserted.
#[bitfield]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum Level {
Deassert = 0,
Assert = 1,
}
/// Represents a IOAPIC redirection table entry.
#[bitfield]
#[derive(Clone, Copy, Default, PartialEq, Eq, Serialize, Deserialize)]
pub struct IoapicRedirectionTableEntry {
vector: BitField8,
#[bits = 3]
delivery_mode: DeliveryMode,
#[bits = 1]
dest_mode: DestinationMode,
#[bits = 1]
delivery_status: DeliveryStatus,
polarity: BitField1,
remote_irr: bool,
#[bits = 1]
trigger_mode: TriggerMode,
interrupt_mask: bool, // true iff interrupts are masked.
reserved: BitField39,
dest_id: BitField8,
}
/// Number of pins on the standard KVM/IOAPIC.
pub const NUM_IOAPIC_PINS: usize = 24;
/// Represents the state of the IOAPIC.
#[repr(C)]
#[derive(Clone, Copy, Debug, PartialEq, Eq, Serialize, Deserialize)]
pub struct IoapicState {
/// base_address is the memory base address for this IOAPIC. It cannot be changed.
pub base_address: u64,
/// ioregsel register. Used for selecting which entry of the redirect table to read/write.
pub ioregsel: u8,
/// ioapicid register. Bits 24 - 27 contain the APIC ID for this device.
pub ioapicid: u32,
/// current_interrupt_level_bitmap represents a bitmap of the state of all of the irq lines
pub current_interrupt_level_bitmap: u32,
/// redirect_table contains the irq settings for each irq line
#[serde(
serialize_with = "serialize_arr",
deserialize_with = "deserialize_seq_to_arr"
)]
pub redirect_table: [IoapicRedirectionTableEntry; NUM_IOAPIC_PINS],
}
impl Default for IoapicState {
fn default() -> IoapicState {
// SAFETY: trivially safe
unsafe { std::mem::zeroed() }
}
}
#[repr(C)]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum PicSelect {
Primary = 0,
Secondary = 1,
}
#[repr(C)]
#[derive(enumn::N, Debug, Clone, Copy, Default, PartialEq, Eq, Serialize, Deserialize)]
pub enum PicInitState {
#[default]
Icw1 = 0,
Icw2 = 1,
Icw3 = 2,
Icw4 = 3,
}
/// Convenience implementation for converting from a u8
impl From<u8> for PicInitState {
fn from(item: u8) -> Self {
PicInitState::n(item).unwrap_or_else(|| {
error!("Invalid PicInitState {}, setting to 0", item);
PicInitState::Icw1
})
}
}
/// Represents the state of the PIC.
#[repr(C)]
#[derive(Clone, Copy, Default, Debug, PartialEq, Eq, Serialize, Deserialize)]
pub struct PicState {
/// Edge detection.
pub last_irr: u8,
/// Interrupt Request Register.
pub irr: u8,
/// Interrupt Mask Register.
pub imr: u8,
/// Interrupt Service Register.
pub isr: u8,
/// Highest priority, for priority rotation.
pub priority_add: u8,
pub irq_base: u8,
pub read_reg_select: bool,
pub poll: bool,
pub special_mask: bool,
pub init_state: PicInitState,
pub auto_eoi: bool,
pub rotate_on_auto_eoi: bool,
pub special_fully_nested_mode: bool,
/// PIC takes either 3 or 4 bytes of initialization command word during
/// initialization. use_4_byte_icw is true if 4 bytes of ICW are needed.
pub use_4_byte_icw: bool,
/// "Edge/Level Control Registers", for edge trigger selection.
/// When a particular bit is set, the corresponding IRQ is in level-triggered mode. Otherwise
/// it is in edge-triggered mode.
pub elcr: u8,
pub elcr_mask: u8,
}
/// The LapicState represents the state of an x86 CPU's Local APIC.
/// The Local APIC consists of 64 128-bit registers, but only the first 32-bits of each register
/// can be used, so this structure only stores the first 32-bits of each register.
#[repr(C)]
#[derive(Clone, Copy, Serialize, Deserialize)]
pub struct LapicState {
#[serde(
serialize_with = "serialize_arr",
deserialize_with = "deserialize_seq_to_arr"
)]
pub regs: [LapicRegister; 64],
}
pub type LapicRegister = u32;
// rust arrays longer than 32 need custom implementations of Debug
impl std::fmt::Debug for LapicState {
fn fmt(&self, formatter: &mut std::fmt::Formatter) -> std::fmt::Result {
self.regs[..].fmt(formatter)
}
}
// rust arrays longer than 32 need custom implementations of PartialEq
impl PartialEq for LapicState {
fn eq(&self, other: &LapicState) -> bool {
self.regs[..] == other.regs[..]
}
}
// Lapic equality is reflexive, so we impl Eq
impl Eq for LapicState {}
/// The PitState represents the state of the PIT (aka the Programmable Interval Timer).
/// The state is simply the state of it's three channels.
#[repr(C)]
#[derive(Clone, Copy, Debug, PartialEq, Eq, Serialize, Deserialize)]
pub struct PitState {
pub channels: [PitChannelState; 3],
/// Hypervisor-specific flags for setting the pit state.
pub flags: u32,
}
/// The PitRWMode enum represents the access mode of a PIT channel.
/// Reads and writes to the Pit happen over Port-mapped I/O, which happens one byte at a time,
/// but the count values and latch values are two bytes. So the access mode controls which of the
/// two bytes will be read when.
#[repr(C)]
#[derive(enumn::N, Clone, Copy, Debug, PartialEq, Eq, Serialize, Deserialize)]
pub enum PitRWMode {
/// None mode means that no access mode has been set.
None = 0,
/// Least mode means all reads/writes will read/write the least significant byte.
Least = 1,
/// Most mode means all reads/writes will read/write the most significant byte.
Most = 2,
/// Both mode means first the least significant byte will be read/written, then the
/// next read/write will read/write the most significant byte.
Both = 3,
}
/// Convenience implementation for converting from a u8
impl From<u8> for PitRWMode {
fn from(item: u8) -> Self {
PitRWMode::n(item).unwrap_or_else(|| {
error!("Invalid PitRWMode value {}, setting to 0", item);
PitRWMode::None
})
}
}
/// The PitRWState enum represents the state of reading to or writing from a channel.
/// This is related to the PitRWMode, it mainly gives more detail about the state of the channel
/// with respect to PitRWMode::Both.
#[repr(C)]
#[derive(enumn::N, Clone, Copy, Debug, PartialEq, Eq, Serialize, Deserialize)]
pub enum PitRWState {
/// None mode means that no access mode has been set.
None = 0,
/// LSB means that the channel is in PitRWMode::Least access mode.
LSB = 1,
/// MSB means that the channel is in PitRWMode::Most access mode.
MSB = 2,
/// Word0 means that the channel is in PitRWMode::Both mode, and the least sginificant byte
/// has not been read/written yet.
Word0 = 3,
/// Word1 means that the channel is in PitRWMode::Both mode and the least significant byte
/// has already been read/written, and the next byte to be read/written will be the most
/// significant byte.
Word1 = 4,
}
/// Convenience implementation for converting from a u8
impl From<u8> for PitRWState {
fn from(item: u8) -> Self {
PitRWState::n(item).unwrap_or_else(|| {
error!("Invalid PitRWState value {}, setting to 0", item);
PitRWState::None
})
}
}
/// The PitChannelState represents the state of one of the PIT's three counters.
#[repr(C)]
#[derive(Clone, Copy, Debug, PartialEq, Eq, Serialize, Deserialize)]
pub struct PitChannelState {
/// The starting value for the counter.
pub count: u32,
/// Stores the channel count from the last time the count was latched.
pub latched_count: u16,
/// Indicates the PitRWState state of reading the latch value.
pub count_latched: PitRWState,
/// Indicates whether ReadBack status has been latched.
pub status_latched: bool,
/// Stores the channel status from the last time the status was latched. The status contains
/// information about the access mode of this channel, but changing those bits in the status
/// will not change the behavior of the pit.
pub status: u8,
/// Indicates the PitRWState state of reading the counter.
pub read_state: PitRWState,
/// Indicates the PitRWState state of writing the counter.
pub write_state: PitRWState,
/// Stores the value with which the counter was initialized. Counters are 16-
/// bit values with an effective range of 1-65536 (65536 represented by 0).
pub reload_value: u16,
/// The command access mode of this channel.
pub rw_mode: PitRWMode,
/// The operation mode of this channel.
pub mode: u8,
/// Whether or not we are in bcd mode. Not supported by KVM or crosvm's PIT implementation.
pub bcd: bool,
/// Value of the gate input pin. This only applies to channel 2.
pub gate: bool,
/// Nanosecond timestamp of when the count value was loaded.
pub count_load_time: u64,
}
// Convenience constructors for IrqRoutes
impl IrqRoute {
pub fn ioapic_irq_route(irq_num: u32) -> IrqRoute {
IrqRoute {
gsi: irq_num,
source: IrqSource::Irqchip {
chip: IrqSourceChip::Ioapic,
pin: irq_num,
},
}
}
pub fn pic_irq_route(id: IrqSourceChip, irq_num: u32) -> IrqRoute {
IrqRoute {
gsi: irq_num,
source: IrqSource::Irqchip {
chip: id,
pin: irq_num % 8,
},
}
}
}
/// State of a VCPU's general purpose registers.
#[repr(C)]
#[derive(Debug, Copy, Clone, Serialize, Deserialize)]
pub struct Regs {
pub rax: u64,
pub rbx: u64,
pub rcx: u64,
pub rdx: u64,
pub rsi: u64,
pub rdi: u64,
pub rsp: u64,
pub rbp: u64,
pub r8: u64,
pub r9: u64,
pub r10: u64,
pub r11: u64,
pub r12: u64,
pub r13: u64,
pub r14: u64,
pub r15: u64,
pub rip: u64,
pub rflags: u64,
}
impl Default for Regs {
fn default() -> Self {
Regs {
rax: 0,
rbx: 0,
rcx: 0,
rdx: 0,
rsi: 0,
rdi: 0,
rsp: 0,
rbp: 0,
r8: 0,
r9: 0,
r10: 0,
r11: 0,
r12: 0,
r13: 0,
r14: 0,
r15: 0,
rip: 0xfff0, // Reset vector.
rflags: 0x2, // Bit 1 (0x2) is always 1.
}
}
}
/// State of a memory segment.
#[repr(C)]
#[derive(Debug, Default, Copy, Clone, Serialize, Deserialize, PartialEq, Eq)]
pub struct Segment {
pub base: u64,
/// Limit of the segment - always in bytes, regardless of granularity (`g`) field.
pub limit_bytes: u32,
pub selector: u16,
pub type_: u8,
pub present: u8,
pub dpl: u8,
pub db: u8,
pub s: u8,
pub l: u8,
pub g: u8,
pub avl: u8,
}
/// State of a global descriptor table or interrupt descriptor table.
#[repr(C)]
#[derive(Debug, Default, Copy, Clone, Serialize, Deserialize)]
pub struct DescriptorTable {
pub base: u64,
pub limit: u16,
}
/// State of a VCPU's special registers.
#[repr(C)]
#[derive(Debug, Copy, Clone, Serialize, Deserialize)]
pub struct Sregs {
pub cs: Segment,
pub ds: Segment,
pub es: Segment,
pub fs: Segment,
pub gs: Segment,
pub ss: Segment,
pub tr: Segment,
pub ldt: Segment,
pub gdt: DescriptorTable,
pub idt: DescriptorTable,
pub cr0: u64,
pub cr2: u64,
pub cr3: u64,
pub cr4: u64,
pub cr8: u64,
pub efer: u64,
}
impl Default for Sregs {
fn default() -> Self {
// Intel SDM Vol. 3A, 3.4.5.1 ("Code- and Data-Segment Descriptor Types")
const SEG_TYPE_DATA: u8 = 0b0000;
const SEG_TYPE_DATA_WRITABLE: u8 = 0b0010;
const SEG_TYPE_CODE: u8 = 0b1000;
const SEG_TYPE_CODE_READABLE: u8 = 0b0010;
const SEG_TYPE_ACCESSED: u8 = 0b0001;
// Intel SDM Vol. 3A, 3.4.5 ("Segment Descriptors")
const SEG_S_SYSTEM: u8 = 0; // System segment.
const SEG_S_CODE_OR_DATA: u8 = 1; // Data/code segment.
// 16-bit real-mode code segment (reset vector).
let code_seg = Segment {
base: 0xffff0000,
limit_bytes: 0xffff,
selector: 0xf000,
type_: SEG_TYPE_CODE | SEG_TYPE_CODE_READABLE | SEG_TYPE_ACCESSED, // 11
present: 1,
s: SEG_S_CODE_OR_DATA,
..Default::default()
};
// 16-bit real-mode data segment.
let data_seg = Segment {
base: 0,
limit_bytes: 0xffff,
selector: 0,
type_: SEG_TYPE_DATA | SEG_TYPE_DATA_WRITABLE | SEG_TYPE_ACCESSED, // 3
present: 1,
s: SEG_S_CODE_OR_DATA,
..Default::default()
};
// 16-bit TSS segment.
let task_seg = Segment {
base: 0,
limit_bytes: 0xffff,
selector: 0,
type_: SEG_TYPE_CODE | SEG_TYPE_CODE_READABLE | SEG_TYPE_ACCESSED, // 11
present: 1,
s: SEG_S_SYSTEM,
..Default::default()
};
// Local descriptor table.
let ldt = Segment {
base: 0,
limit_bytes: 0xffff,
selector: 0,
type_: SEG_TYPE_DATA | SEG_TYPE_DATA_WRITABLE, // 2
present: 1,
s: SEG_S_SYSTEM,
..Default::default()
};
// Global descriptor table.
let gdt = DescriptorTable {
base: 0,
limit: 0xffff,
};
// Interrupt descriptor table.
let idt = DescriptorTable {
base: 0,
limit: 0xffff,
};
let cr0 = (1 << 4) // CR0.ET (reserved, always 1)
| (1 << 30); // CR0.CD (cache disable)
Sregs {
cs: code_seg,
ds: data_seg,
es: data_seg,
fs: data_seg,
gs: data_seg,
ss: data_seg,
tr: task_seg,
ldt,
gdt,
idt,
cr0,
cr2: 0,
cr3: 0,
cr4: 0,
cr8: 0,
efer: 0,
}
}
}
/// x87 80-bit floating point value.
#[repr(C)]
#[derive(Copy, Clone, Debug, Default, Eq, PartialEq, Serialize, Deserialize)]
pub struct FpuReg {
/// 64-bit mantissa.
pub significand: u64,
/// 15-bit biased exponent and sign bit.
pub sign_exp: u16,
}
impl FpuReg {
/// Convert an array of 8x16-byte arrays to an array of 8 `FpuReg`.
///
/// Ignores any data in the upper 6 bytes of each element; the values represent 80-bit FPU
/// registers, so the upper 48 bits are unused.
pub fn from_16byte_arrays(byte_arrays: &[[u8; 16]; 8]) -> [FpuReg; 8] {
let mut regs = [FpuReg::default(); 8];
for (dst, src) in regs.iter_mut().zip(byte_arrays.iter()) {
let tbyte: [u8; 10] = src[0..10].try_into().unwrap();
*dst = FpuReg::from(tbyte);
}
regs
}
/// Convert an array of 8 `FpuReg` into 8x16-byte arrays.
pub fn to_16byte_arrays(regs: &[FpuReg; 8]) -> [[u8; 16]; 8] {
let mut byte_arrays = [[0u8; 16]; 8];
for (dst, src) in byte_arrays.iter_mut().zip(regs.iter()) {
*dst = (*src).into();
}
byte_arrays
}
}
impl From<[u8; 10]> for FpuReg {
/// Construct a `FpuReg` from an 80-bit representation.
fn from(value: [u8; 10]) -> FpuReg {
// These array sub-slices can't fail, but there's no (safe) way to express that in Rust
// without an `unwrap()`.
let significand_bytes = value[0..8].try_into().unwrap();
let significand = u64::from_le_bytes(significand_bytes);
let sign_exp_bytes = value[8..10].try_into().unwrap();
let sign_exp = u16::from_le_bytes(sign_exp_bytes);
FpuReg {
significand,
sign_exp,
}
}
}
impl From<FpuReg> for [u8; 10] {
/// Convert an `FpuReg` into its 80-bit "TBYTE" representation.
fn from(value: FpuReg) -> [u8; 10] {
let mut bytes = [0u8; 10];
bytes[0..8].copy_from_slice(&value.significand.to_le_bytes());
bytes[8..10].copy_from_slice(&value.sign_exp.to_le_bytes());
bytes
}
}
impl From<FpuReg> for [u8; 16] {
/// Convert an `FpuReg` into its 80-bit representation plus 6 unused upper bytes.
/// This is a convenience function for converting to hypervisor types.
fn from(value: FpuReg) -> [u8; 16] {
let mut bytes = [0u8; 16];
bytes[0..8].copy_from_slice(&value.significand.to_le_bytes());
bytes[8..10].copy_from_slice(&value.sign_exp.to_le_bytes());
bytes
}
}
/// State of a VCPU's floating point unit.
#[repr(C)]
#[derive(Debug, Copy, Clone, Serialize, Deserialize)]
pub struct Fpu {
pub fpr: [FpuReg; 8],
pub fcw: u16,
pub fsw: u16,
pub ftwx: u8,
pub last_opcode: u16,
pub last_ip: u64,
pub last_dp: u64,
pub xmm: [[u8; 16usize]; 16usize],
pub mxcsr: u32,
}
impl Default for Fpu {
fn default() -> Self {
Fpu {
fpr: Default::default(),
fcw: 0x37f, // Intel SDM Vol. 1, 13.6
fsw: 0,
ftwx: 0,
last_opcode: 0,
last_ip: 0,
last_dp: 0,
xmm: Default::default(),
mxcsr: 0x1f80, // Intel SDM Vol. 1, 11.6.4
}
}
}
/// State of a VCPU's debug registers.
#[repr(C)]
#[derive(Debug, Default, Copy, Clone, Serialize, Deserialize)]
pub struct DebugRegs {
pub db: [u64; 4usize],
pub dr6: u64,
pub dr7: u64,
}
/// The hybrid type for intel hybrid CPU.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Serialize, Deserialize)]
pub enum CpuHybridType {
/// Intel Atom.
Atom,
/// Intel Core.
Core,
}
/// State of the VCPU's x87 FPU, MMX, XMM, YMM registers.
/// May contain more state depending on enabled extensions.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct Xsave {
data: Vec<u32>,
// Actual length in bytes. May be smaller than data if a non-u32 multiple of bytes is
// requested.
len: usize,
}
impl Xsave {
/// Create a new buffer to store Xsave data.
///
/// # Argments
/// * `len` size in bytes.
pub fn new(len: usize) -> Self {
Xsave {
data: vec![0; (len + 3) / 4],
len,
}
}
pub fn as_ptr(&self) -> *const c_void {
self.data.as_ptr() as *const c_void
}
pub fn as_mut_ptr(&mut self) -> *mut c_void {
self.data.as_mut_ptr() as *mut c_void
}
/// Length in bytes of the XSAVE data.
pub fn len(&self) -> usize {
self.len
}
/// Returns true is length of XSAVE data is zero
pub fn is_empty(&self) -> bool {
self.len() == 0
}
}