1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
// Copyright 2022 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#![cfg_attr(windows, allow(dead_code))]

use base::error;
use base::AsRawDescriptor;
use base::Event;
use base::RawDescriptor;
use base::Tube;
use bit_field::*;
use vm_control::VmIrqRequest;
use vm_control::VmIrqResponse;
use zerocopy::AsBytes;
use zerocopy::FromBytes;
use zerocopy::FromZeroes;

use crate::pci::pci_configuration::PciCapConfig;
use crate::pci::pci_configuration::PciCapConfigWriteResult;
use crate::pci::PciCapability;
use crate::pci::PciCapabilityID;

// MSI registers
pub const PCI_MSI_NEXT_POINTER: u32 = 0x1; // Next cap pointer
pub const PCI_MSI_FLAGS: u32 = 0x2; // Message Control
const PCI_MSI_FLAGS_ENABLE: u16 = 0x0001; // MSI feature enabled
pub const PCI_MSI_FLAGS_64BIT: u16 = 0x0080; // 64-bit addresses allowed
pub const PCI_MSI_FLAGS_MASKBIT: u16 = 0x0100; // Per-vector masking capable
const PCI_MSI_ADDRESS_LO: u32 = 0x4; // MSI address lower 32 bits
const PCI_MSI_ADDRESS_HI: u32 = 0x8; // MSI address upper 32 bits (if 64 bit allowed)
const PCI_MSI_DATA_32: u32 = 0x8; // 16 bits of data for 32-bit message address
const PCI_MSI_DATA_64: u32 = 0xC; // 16 bits of date for 64-bit message address

// MSI length
const MSI_LENGTH_32BIT_WITHOUT_MASK: u32 = 0xA;
const MSI_LENGTH_32BIT_WITH_MASK: u32 = 0x14;
const MSI_LENGTH_64BIT_WITHOUT_MASK: u32 = 0xE;
const MSI_LENGTH_64BIT_WITH_MASK: u32 = 0x18;

pub enum MsiStatus {
    Enabled,
    Disabled,
    NothingToDo,
}

/// Wrapper over MSI Capability Structure
pub struct MsiConfig {
    is_64bit: bool,
    mask_cap: bool,
    ctrl: u16,
    address: u64,
    data: u16,
    vm_socket_irq: Tube,
    irqfd: Option<Event>,
    gsi: Option<u32>,
    device_id: u32,
    device_name: String,
}

impl MsiConfig {
    pub fn new(
        is_64bit: bool,
        mask_cap: bool,
        vm_socket_irq: Tube,
        device_id: u32,
        device_name: String,
    ) -> Self {
        let mut ctrl: u16 = 0;
        if is_64bit {
            ctrl |= PCI_MSI_FLAGS_64BIT;
        }
        if mask_cap {
            ctrl |= PCI_MSI_FLAGS_MASKBIT;
        }
        MsiConfig {
            is_64bit,
            mask_cap,
            ctrl,
            address: 0,
            data: 0,
            vm_socket_irq,
            irqfd: None,
            gsi: None,
            device_id,
            device_name,
        }
    }

    fn len(&self) -> u32 {
        match (self.is_64bit, self.mask_cap) {
            (true, true) => MSI_LENGTH_64BIT_WITH_MASK,
            (true, false) => MSI_LENGTH_64BIT_WITHOUT_MASK,
            (false, true) => MSI_LENGTH_32BIT_WITH_MASK,
            (false, false) => MSI_LENGTH_32BIT_WITHOUT_MASK,
        }
    }

    pub fn is_msi_reg(&self, offset: u32, index: u64, len: usize) -> bool {
        let msi_len = self.len();
        index >= offset as u64
            && index + len as u64 <= (offset + msi_len) as u64
            && len as u32 <= msi_len
    }

    pub fn read_msi_capability(&self, offset: u32, data: u32) -> u32 {
        if offset == 0 {
            (self.ctrl as u32) << 16 | (data & u16::MAX as u32)
        } else {
            data
        }
    }

    pub fn write_msi_capability(&mut self, offset: u32, data: &[u8]) -> MsiStatus {
        let len = data.len();
        let mut ret = MsiStatus::NothingToDo;
        let old_address = self.address;
        let old_data = self.data;

        // write msi ctl
        if len == 2 && offset == PCI_MSI_FLAGS {
            let was_enabled = self.is_msi_enabled();
            let value: [u8; 2] = [data[0], data[1]];
            self.ctrl = u16::from_le_bytes(value);
            let is_enabled = self.is_msi_enabled();
            if !was_enabled && is_enabled {
                self.enable();
                ret = MsiStatus::Enabled;
            } else if was_enabled && !is_enabled {
                ret = MsiStatus::Disabled;
            }
        } else if len == 4 && offset == PCI_MSI_ADDRESS_LO && !self.is_64bit {
            //write 32 bit message address
            let value: [u8; 8] = [data[0], data[1], data[2], data[3], 0, 0, 0, 0];
            self.address = u64::from_le_bytes(value);
        } else if len == 4 && offset == PCI_MSI_ADDRESS_LO && self.is_64bit {
            // write 64 bit message address low part
            let value: [u8; 8] = [data[0], data[1], data[2], data[3], 0, 0, 0, 0];
            self.address &= !0xffffffff;
            self.address |= u64::from_le_bytes(value);
        } else if len == 4 && offset == PCI_MSI_ADDRESS_HI && self.is_64bit {
            //write 64 bit message address high part
            let value: [u8; 8] = [0, 0, 0, 0, data[0], data[1], data[2], data[3]];
            self.address &= 0xffffffff;
            self.address |= u64::from_le_bytes(value);
        } else if len == 8 && offset == PCI_MSI_ADDRESS_LO && self.is_64bit {
            // write 64 bit message address
            let value: [u8; 8] = [
                data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7],
            ];
            self.address = u64::from_le_bytes(value);
        } else if len == 2
            && ((offset == PCI_MSI_DATA_32 && !self.is_64bit)
                || (offset == PCI_MSI_DATA_64 && self.is_64bit))
        {
            // write message data
            let value: [u8; 2] = [data[0], data[1]];
            self.data = u16::from_le_bytes(value);
        }

        if self.is_msi_enabled() && (old_address != self.address || old_data != self.data) {
            self.add_msi_route();
        }

        ret
    }

    pub fn is_msi_enabled(&self) -> bool {
        self.ctrl & PCI_MSI_FLAGS_ENABLE == PCI_MSI_FLAGS_ENABLE
    }

    fn add_msi_route(&self) {
        let gsi = match self.gsi {
            Some(g) => g,
            None => {
                error!("Add msi route but gsi is none");
                return;
            }
        };
        if let Err(e) = self.vm_socket_irq.send(&VmIrqRequest::AddMsiRoute {
            gsi,
            msi_address: self.address,
            msi_data: self.data.into(),
        }) {
            error!("failed to send AddMsiRoute request at {:?}", e);
            return;
        }
        match self.vm_socket_irq.recv() {
            Ok(VmIrqResponse::Err(e)) => error!("failed to call AddMsiRoute request {:?}", e),
            Ok(_) => {}
            Err(e) => error!("failed to receive AddMsiRoute response {:?}", e),
        }
    }

    fn allocate_one_msi(&mut self) {
        let irqfd = match self.irqfd.take() {
            Some(e) => e,
            None => match Event::new() {
                Ok(e) => e,
                Err(e) => {
                    error!("failed to create event: {:?}", e);
                    return;
                }
            },
        };

        let request = VmIrqRequest::AllocateOneMsi {
            irqfd,
            device_id: self.device_id,
            queue_id: 0,
            device_name: self.device_name.clone(),
        };
        let request_result = self.vm_socket_irq.send(&request);

        // Stash the irqfd in self immediately because we used take above.
        self.irqfd = match request {
            VmIrqRequest::AllocateOneMsi { irqfd, .. } => Some(irqfd),
            _ => unreachable!(),
        };

        if let Err(e) = request_result {
            error!("failed to send AllocateOneMsi request: {:?}", e);
            return;
        }

        match self.vm_socket_irq.recv() {
            Ok(VmIrqResponse::AllocateOneMsi { gsi }) => self.gsi = Some(gsi),
            _ => error!("failed to receive AllocateOneMsi Response"),
        }
    }

    fn enable(&mut self) {
        if self.gsi.is_none() || self.irqfd.is_none() {
            self.allocate_one_msi();
        }

        self.add_msi_route();
    }

    pub fn get_irqfd(&self) -> Option<&Event> {
        self.irqfd.as_ref()
    }

    pub fn destroy(&mut self) {
        if let Some(gsi) = self.gsi {
            if let Some(irqfd) = self.irqfd.take() {
                let request = VmIrqRequest::ReleaseOneIrq { gsi, irqfd };
                if self.vm_socket_irq.send(&request).is_ok() {
                    let _ = self.vm_socket_irq.recv::<VmIrqResponse>();
                }
            }
        }
    }

    /// Return the raw descriptor of the MSI device socket
    pub fn get_msi_socket(&self) -> RawDescriptor {
        self.vm_socket_irq.as_raw_descriptor()
    }

    pub fn trigger(&self) {
        if let Some(irqfd) = self.irqfd.as_ref() {
            irqfd.signal().unwrap();
        }
    }
}

#[bitfield]
#[derive(Copy, Clone, AsBytes, FromZeroes, FromBytes)]
pub struct MsiCtrl {
    enable: B1,
    multi_msg_capable: B3,
    multi_msg_enable: B3,
    is_64bit: B1,
    per_vector_masking: B1,
    extended_msg_data_capable: B1,
    extended_msg_data_enable: B1,
    reserved: B5,
}

#[allow(dead_code)]
#[repr(C, align(4))]
#[derive(Clone, Copy, Default, AsBytes, FromZeroes, FromBytes)]
struct Msi32BitWithoutMask {
    msg_data: u16,
    msg_extended_data: u16,
    _padding: [u8; 12],
}

#[allow(dead_code)]
#[repr(C, align(4))]
#[derive(Clone, Copy, Default, AsBytes, FromZeroes, FromBytes)]
struct Msi32BitWithMask {
    msg_data: u16,
    msg_extended_data: u16,
    mask_bits: u32,
    pending_bits: u32,
    _padding: [u8; 4],
}

#[allow(dead_code)]
#[repr(C, align(4))]
#[derive(Clone, Copy, Default, AsBytes, FromZeroes, FromBytes)]
struct Msi64BitWithoutMask {
    msg_upper: u32,
    msg_data: u16,
    msg_extended_data: u16,
    _padding: [u8; 8],
}

#[allow(dead_code)]
#[repr(C)]
#[derive(Clone, Copy, Default, AsBytes, FromZeroes, FromBytes)]
struct Msi64BitWithMask {
    msg_upper: u32,
    msg_data: u16,
    msg_extended_data: u16,
    mask_bits: u32,
    pending_bits: u32,
}

#[allow(dead_code)]
#[repr(C)]
#[derive(Clone, Copy, AsBytes, FromZeroes, FromBytes)]
union MsiVary {
    msi_32bit_without_mask: Msi32BitWithoutMask,
    msi_32bit_with_mask: Msi32BitWithMask,
    msi_64bit_without_mask: Msi64BitWithoutMask,
    msi_64bit_with_mask: Msi64BitWithMask,
}

#[allow(dead_code)]
#[repr(C)]
#[derive(Clone, Copy, AsBytes, FromZeroes, FromBytes)]
/// MSI Capability Structure
pub struct MsiCap {
    // To make add_capability() happy
    _cap_vndr: u8,
    _cap_next: u8,
    // Message Control Register
    msg_ctl: MsiCtrl,
    // Message Address
    msg_addr: u32,
    // Msi Vary structure
    msi_vary: MsiVary,
}

impl PciCapability for MsiCap {
    fn bytes(&self) -> &[u8] {
        self.as_bytes()
    }

    fn id(&self) -> PciCapabilityID {
        PciCapabilityID::MessageSignalledInterrupts
    }

    fn writable_bits(&self) -> Vec<u32> {
        // Check spec for detail
        match (
            self.msg_ctl.get_is_64bit(),
            self.msg_ctl.get_per_vector_masking(),
        ) {
            (0, 0) => vec![0x0471_0000, 0xffff_fffc, 0xffff_ffff],
            (0, 1) => vec![0x0471_0000, 0xffff_fffc, 0xffff_ffff, 0xffff_ffff],
            (1, 0) => vec![
                0x0471_0000,
                0xffff_fffc,
                0xffff_ffff,
                0xffff_ffff,
                0x0000_0000,
            ],
            (1, 1) => vec![
                0x0471_0000,
                0xffff_fffc,
                0xffff_ffff,
                0xffff_ffff,
                0xffff_ffff,
                0x0000_0000,
            ],
            (_, _) => Vec::new(),
        }
    }
}

impl MsiCap {
    pub fn new(is_64bit: bool, mask_cap: bool) -> Self {
        let mut msg_ctl = MsiCtrl::new();
        if is_64bit {
            msg_ctl.set_is_64bit(1);
        }
        if mask_cap {
            msg_ctl.set_per_vector_masking(1);
        }
        let msi_vary = match (is_64bit, mask_cap) {
            (false, false) => MsiVary {
                msi_32bit_without_mask: Msi32BitWithoutMask::default(),
            },
            (false, true) => MsiVary {
                msi_32bit_with_mask: Msi32BitWithMask::default(),
            },
            (true, false) => MsiVary {
                msi_64bit_without_mask: Msi64BitWithoutMask::default(),
            },
            (true, true) => MsiVary {
                msi_64bit_with_mask: Msi64BitWithMask::default(),
            },
        };
        MsiCap {
            _cap_vndr: 0,
            _cap_next: 0,
            msg_ctl,
            msg_addr: 0,
            msi_vary,
        }
    }
}

const MSI_CONFIG_READ_MASK: [u32; MSI_LENGTH_64BIT_WITH_MASK as usize / 4] =
    [0xffff_0000, 0, 0, 0, 0, 0];

impl PciCapConfig for MsiConfig {
    fn read_mask(&self) -> &'static [u32] {
        let num_regs = (self.len() + 3) / 4;
        &MSI_CONFIG_READ_MASK[0..(num_regs as usize)]
    }

    fn read_reg(&self, reg_idx: usize) -> u32 {
        self.read_msi_capability(reg_idx as u32 * 4, 0)
    }

    fn write_reg(
        &mut self,
        reg_idx: usize,
        offset: u64,
        data: &[u8],
    ) -> Option<Box<dyn PciCapConfigWriteResult>> {
        let offset = reg_idx as u32 * 4 + offset as u32;
        self.write_msi_capability(offset, data);
        None
    }
}