1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
// Copyright 2022 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use std::cell::RefCell;
use std::collections::BTreeMap;
use std::path::PathBuf;
use std::rc::Rc;
use std::sync::Arc;

use anyhow::Context;
use argh::FromArgs;
use base::clone_descriptor;
use base::error;
use base::RawDescriptor;
use base::SafeDescriptor;
use base::Tube;
use base::UnixSeqpacketListener;
use base::UnlinkUnixSeqpacketListener;
use cros_async::AsyncWrapper;
use cros_async::Executor;
use cros_async::IoSource;
use hypervisor::ProtectionType;
use sync::Mutex;

use crate::virtio;
use crate::virtio::gpu;
use crate::virtio::gpu::ProcessDisplayResult;
use crate::virtio::vhost::user::device::gpu::GpuBackend;
use crate::virtio::vhost::user::device::wl::parse_wayland_sock;
use crate::virtio::vhost::user::device::BackendConnection;
use crate::virtio::Gpu;
use crate::virtio::GpuDisplayParameters;
use crate::virtio::GpuParameters;
use crate::virtio::Interrupt;

async fn run_display(
    display: IoSource<AsyncWrapper<SafeDescriptor>>,
    state: Rc<RefCell<gpu::Frontend>>,
) {
    loop {
        if let Err(e) = display.wait_readable().await {
            error!(
                "Failed to wait for display context to become readable: {}",
                e
            );
            break;
        }

        match state.borrow_mut().process_display() {
            ProcessDisplayResult::Error(e) => {
                error!("Failed to process display events: {}", e);
                break;
            }
            ProcessDisplayResult::CloseRequested => break,
            ProcessDisplayResult::Success => {}
        }
    }
}

async fn run_resource_bridge(tube: IoSource<Tube>, state: Rc<RefCell<gpu::Frontend>>) {
    loop {
        if let Err(e) = tube.wait_readable().await {
            error!(
                "Failed to wait for resource bridge tube to become readable: {}",
                e
            );
            break;
        }

        if let Err(e) = state.borrow_mut().process_resource_bridge(tube.as_source()) {
            error!("Failed to process resource bridge: {:#}", e);
            break;
        }
    }
}

impl GpuBackend {
    pub fn start_platform_workers(&mut self, _interrupt: Interrupt) -> anyhow::Result<()> {
        let state = self
            .state
            .as_ref()
            .context("frontend state wasn't set")?
            .clone();

        // Start handling the resource bridges.
        for bridge in self.resource_bridges.lock().drain(..) {
            let tube = self
                .ex
                .async_from(bridge)
                .context("failed to create async tube")?;
            let task = self
                .ex
                .spawn_local(run_resource_bridge(tube, state.clone()));
            self.platform_worker_tx
                .unbounded_send(task)
                .context("sending the run_resource_bridge task")?;
        }

        // Start handling the display.
        let display = clone_descriptor(&*state.borrow_mut().display().borrow())
            .map(AsyncWrapper::new)
            .context("failed to clone inner WaitContext for gpu display")
            .and_then(|ctx| {
                self.ex
                    .async_from(ctx)
                    .context("failed to create async WaitContext")
            })?;

        let task = self.ex.spawn_local(run_display(display, state));
        self.platform_worker_tx
            .unbounded_send(task)
            .context("sending the run_display task")?;

        Ok(())
    }
}
fn gpu_parameters_from_str(input: &str) -> Result<GpuParameters, String> {
    serde_json::from_str(input).map_err(|e| e.to_string())
}

#[derive(FromArgs)]
/// GPU device
#[argh(subcommand, name = "gpu")]
pub struct Options {
    #[argh(option, arg_name = "PATH", hidden_help)]
    /// deprecated - please use --socket-path instead
    socket: Option<String>,
    #[argh(option, arg_name = "PATH")]
    /// path to the vhost-user socket to bind to.
    /// If this flag is set, --fd cannot be specified.
    socket_path: Option<String>,
    #[argh(option, arg_name = "FD")]
    /// file descriptor of a connected vhost-user socket.
    /// If this flag is set, --socket-path cannot be specified.
    fd: Option<RawDescriptor>,

    #[argh(option, from_str_fn(parse_wayland_sock), arg_name = "PATH[,name=NAME]")]
    /// path to one or more Wayland sockets. The unnamed socket is
    /// used for displaying virtual screens while the named ones are used for IPC
    wayland_sock: Vec<(String, PathBuf)>,
    #[argh(option, arg_name = "PATH")]
    /// path to one or more bridge sockets for communicating with
    /// other graphics devices (wayland, video, etc)
    resource_bridge: Vec<String>,
    #[argh(option, arg_name = "DISPLAY")]
    /// X11 display name to use
    x_display: Option<String>,
    #[argh(
        option,
        from_str_fn(gpu_parameters_from_str),
        default = "Default::default()",
        arg_name = "JSON"
    )]
    /// a JSON object of virtio-gpu parameters
    params: GpuParameters,
}

pub fn run_gpu_device(opts: Options) -> anyhow::Result<()> {
    let Options {
        x_display,
        params: mut gpu_parameters,
        resource_bridge,
        socket,
        socket_path,
        fd,
        wayland_sock,
    } = opts;

    let channels: BTreeMap<_, _> = wayland_sock.into_iter().collect();

    let resource_bridge_listeners = resource_bridge
        .into_iter()
        .map(|p| {
            UnixSeqpacketListener::bind(&p)
                .map(UnlinkUnixSeqpacketListener)
                .with_context(|| format!("failed to bind socket at path {}", p))
        })
        .collect::<anyhow::Result<Vec<_>>>()?;

    if gpu_parameters.display_params.is_empty() {
        gpu_parameters
            .display_params
            .push(GpuDisplayParameters::default());
    }

    let ex = Executor::new().context("failed to create executor")?;

    // We don't know the order in which other devices are going to connect to the resource bridges
    // so start listening for all of them on separate threads. Any devices that connect after the
    // gpu device starts its queues will not have its resource bridges processed. In practice this
    // should be fine since the devices that use the resource bridge always try to connect to the
    // gpu device before handling messages from the VM.
    let resource_bridges = Arc::new(Mutex::new(Vec::with_capacity(
        resource_bridge_listeners.len(),
    )));
    for listener in resource_bridge_listeners {
        let resource_bridges = Arc::clone(&resource_bridges);
        ex.spawn_blocking(move || match listener.accept() {
            Ok(stream) => resource_bridges
                .lock()
                .push(Tube::new_from_unix_seqpacket(stream).unwrap()),
            Err(e) => {
                let path = listener
                    .path()
                    .unwrap_or_else(|_| PathBuf::from("{unknown}"));
                error!(
                    "Failed to accept resource bridge connection for socket {}: {}",
                    path.display(),
                    e
                );
            }
        })
        .detach();
    }

    // TODO(b/232344535): Read side of the tube is ignored currently.
    // Complete the implementation by polling `exit_evt_rdtube` and
    // kill the sibling VM.
    let (exit_evt_wrtube, _) =
        Tube::directional_pair().context("failed to create vm event tube")?;

    let (gpu_control_tube, _) = Tube::pair().context("failed to create gpu control tube")?;

    let mut display_backends = vec![
        virtio::DisplayBackend::X(x_display),
        virtio::DisplayBackend::Stub,
    ];
    if let Some(p) = channels.get("") {
        display_backends.insert(0, virtio::DisplayBackend::Wayland(Some(p.to_owned())));
    }

    // These are only used when there is an input device.
    let event_devices = Vec::new();

    let base_features = virtio::base_features(ProtectionType::Unprotected);

    let conn = BackendConnection::from_opts(socket.as_deref(), socket_path.as_deref(), fd)?;

    let gpu = Rc::new(RefCell::new(Gpu::new(
        exit_evt_wrtube,
        gpu_control_tube,
        Vec::new(), // resource_bridges, handled separately by us
        display_backends,
        &gpu_parameters,
        /* rutabaga_server_descriptor */
        None,
        event_devices,
        base_features,
        &channels,
        /* gpu_cgroup_path */
        None,
    )));

    let (platform_worker_tx, platform_worker_rx) = futures::channel::mpsc::unbounded();
    let backend = GpuBackend {
        ex: ex.clone(),
        gpu,
        resource_bridges,
        state: None,
        fence_state: Default::default(),
        queue_workers: Default::default(),
        platform_worker_rx,
        platform_worker_tx,
        shmem_mapper: Arc::new(Mutex::new(None)),
    };

    // Run until the backend is finished.
    let _ = ex.run_until(conn.run_backend(backend, &ex))?;

    // Process any tasks from the backend's destructor.
    Ok(ex.run_until(async {})?)
}