1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
// Copyright (C) 2019-2021 Alibaba Cloud. All rights reserved.
// SPDX-License-Identifier: Apache-2.0
use std::fs::File;
use std::mem;
use base::AsRawDescriptor;
use base::SafeDescriptor;
use crate::message::*;
use crate::Connection;
use crate::Error;
use crate::HandlerResult;
use crate::Result;
use crate::SlaveReq;
use crate::SystemStream;
/// Define services provided by masters for the slave communication channel.
///
/// The vhost-user specification defines a slave communication channel, by which slaves could
/// request services from masters. The [VhostUserMasterReqHandler] trait defines services provided
/// by masters, and it's used both on the master side and slave side.
/// - on the slave side, a stub forwarder implementing [VhostUserMasterReqHandler] will proxy
/// service requests to masters. The [Slave] is an example stub forwarder.
/// - on the master side, the [MasterReqHandler] will forward service requests to a handler
/// implementing [VhostUserMasterReqHandler].
///
/// [VhostUserMasterReqHandler]: trait.VhostUserMasterReqHandler.html
/// [MasterReqHandler]: struct.MasterReqHandler.html
/// [Slave]: struct.Slave.html
pub trait VhostUserMasterReqHandler {
/// Handle device configuration change notifications.
fn handle_config_change(&mut self) -> HandlerResult<u64> {
Err(std::io::Error::from_raw_os_error(libc::ENOSYS))
}
/// Handle shared memory region mapping requests.
fn shmem_map(
&mut self,
_req: &VhostUserShmemMapMsg,
_fd: &dyn AsRawDescriptor,
) -> HandlerResult<u64> {
Err(std::io::Error::from_raw_os_error(libc::ENOSYS))
}
/// Handle shared memory region unmapping requests.
fn shmem_unmap(&mut self, _req: &VhostUserShmemUnmapMsg) -> HandlerResult<u64> {
Err(std::io::Error::from_raw_os_error(libc::ENOSYS))
}
// fn handle_iotlb_msg(&mut self, iotlb: VhostUserIotlb);
// fn handle_vring_host_notifier(&mut self, area: VhostUserVringArea, fd: RawDescriptor);
/// Handle GPU shared memory region mapping requests.
fn gpu_map(
&mut self,
_req: &VhostUserGpuMapMsg,
_descriptor: &dyn AsRawDescriptor,
) -> HandlerResult<u64> {
Err(std::io::Error::from_raw_os_error(libc::ENOSYS))
}
/// Handle external memory region mapping requests.
fn external_map(&mut self, _req: &VhostUserExternalMapMsg) -> HandlerResult<u64> {
Err(std::io::Error::from_raw_os_error(libc::ENOSYS))
}
}
/// The [MasterReqHandler] acts as a server on the master side, to handle service requests from
/// slaves on the slave communication channel. It's actually a proxy invoking the registered
/// handler implementing [VhostUserMasterReqHandler] to do the real work.
///
/// [MasterReqHandler]: struct.MasterReqHandler.html
/// [VhostUserMasterReqHandler]: trait.VhostUserMasterReqHandler.html
///
/// Server to handle service requests from slaves from the slave communication channel.
pub struct MasterReqHandler<S: VhostUserMasterReqHandler> {
// underlying Unix domain socket for communication
pub(crate) sub_sock: Connection<SlaveReq>,
tx_sock: Option<SystemStream>,
// Serializes tx_sock for passing to the backend.
serialize_tx: Box<dyn Fn(SystemStream) -> SafeDescriptor + Send>,
// Protocol feature VHOST_USER_PROTOCOL_F_REPLY_ACK has been negotiated.
reply_ack_negotiated: bool,
/// the VirtIO backend device object
backend: S,
}
impl<S: VhostUserMasterReqHandler> MasterReqHandler<S> {
/// Create a server to handle service requests from slaves on the slave communication channel.
///
/// This opens a pair of connected anonymous sockets to form the slave communication channel.
/// The socket fd returned by [Self::take_tx_descriptor()] should be sent to the slave by
/// [Master::set_slave_request_fd()].
///
/// [Self::take_tx_descriptor()]: struct.MasterReqHandler.html#method.take_tx_descriptor
/// [Master::set_slave_request_fd()]: struct.Master.html#method.set_slave_request_fd
pub fn new(
backend: S,
serialize_tx: Box<dyn Fn(SystemStream) -> SafeDescriptor + Send>,
) -> Result<Self> {
let (tx, rx) = SystemStream::pair()?;
Ok(MasterReqHandler {
sub_sock: Connection::from(rx),
tx_sock: Some(tx),
serialize_tx,
reply_ack_negotiated: false,
backend,
})
}
/// Get the descriptor for the slave to communication with the master.
///
/// The caller owns the descriptor. The returned descriptor should be sent to the slave by
/// [Master::set_slave_request_fd()].
///
/// [Master::set_slave_request_fd()]: struct.Master.html#method.set_slave_request_fd
pub fn take_tx_descriptor(&mut self) -> SafeDescriptor {
(self.serialize_tx)(self.tx_sock.take().expect("tx_sock should have a value"))
}
/// Set the negotiation state of the `VHOST_USER_PROTOCOL_F_REPLY_ACK` protocol feature.
///
/// When the `VHOST_USER_PROTOCOL_F_REPLY_ACK` protocol feature has been negotiated,
/// the "REPLY_ACK" flag will be set in the message header for every slave to master request
/// message.
pub fn set_reply_ack_flag(&mut self, enable: bool) {
self.reply_ack_negotiated = enable;
}
/// Get the underlying backend device
pub fn backend_mut(&mut self) -> &mut S {
&mut self.backend
}
/// Main entrance to server slave request from the slave communication channel.
///
/// The caller needs to:
/// - serialize calls to this function
/// - decide what to do when errer happens
/// - optional recover from failure
pub fn handle_request(&mut self) -> Result<u64> {
// The underlying communication channel is a Unix domain socket in
// stream mode, and recvmsg() is a little tricky here. To successfully
// receive attached file descriptors, we need to receive messages and
// corresponding attached file descriptors in this way:
// . recv messsage header and optional attached file
// . validate message header
// . recv optional message body and payload according size field in
// message header
// . validate message body and optional payload
let (hdr, files) = self.sub_sock.recv_header()?;
self.check_attached_files(&hdr, &files)?;
let buf = self.sub_sock.recv_body_bytes(&hdr)?;
let size = buf.len();
let res = match hdr.get_code() {
Ok(SlaveReq::CONFIG_CHANGE_MSG) => {
self.check_msg_size(&hdr, size, 0)?;
self.backend
.handle_config_change()
.map_err(Error::ReqHandlerError)
}
Ok(SlaveReq::SHMEM_MAP) => {
let msg = self.extract_msg_body::<VhostUserShmemMapMsg>(&hdr, size, &buf)?;
// check_attached_files() has validated files
self.backend
.shmem_map(&msg, &files[0])
.map_err(Error::ReqHandlerError)
}
Ok(SlaveReq::SHMEM_UNMAP) => {
let msg = self.extract_msg_body::<VhostUserShmemUnmapMsg>(&hdr, size, &buf)?;
self.backend
.shmem_unmap(&msg)
.map_err(Error::ReqHandlerError)
}
Ok(SlaveReq::GPU_MAP) => {
let msg = self.extract_msg_body::<VhostUserGpuMapMsg>(&hdr, size, &buf)?;
// check_attached_files() has validated files
self.backend
.gpu_map(&msg, &files[0])
.map_err(Error::ReqHandlerError)
}
Ok(SlaveReq::EXTERNAL_MAP) => {
let msg = self.extract_msg_body::<VhostUserExternalMapMsg>(&hdr, size, &buf)?;
self.backend
.external_map(&msg)
.map_err(Error::ReqHandlerError)
}
_ => Err(Error::InvalidMessage),
};
self.send_reply(&hdr, &res)?;
res
}
fn check_msg_size(
&self,
hdr: &VhostUserMsgHeader<SlaveReq>,
size: usize,
expected: usize,
) -> Result<()> {
if hdr.get_size() as usize != expected
|| hdr.is_reply()
|| hdr.get_version() != 0x1
|| size != expected
{
return Err(Error::InvalidMessage);
}
Ok(())
}
fn check_attached_files(
&self,
hdr: &VhostUserMsgHeader<SlaveReq>,
files: &[File],
) -> Result<()> {
let expected_num_files = match hdr.get_code().map_err(|_| Error::InvalidMessage)? {
// Expect a single file is passed.
SlaveReq::SHMEM_MAP | SlaveReq::GPU_MAP => 1,
_ => 0,
};
if files.len() == expected_num_files {
Ok(())
} else {
Err(Error::InvalidMessage)
}
}
fn extract_msg_body<T: Sized + VhostUserMsgValidator>(
&self,
hdr: &VhostUserMsgHeader<SlaveReq>,
size: usize,
buf: &[u8],
) -> Result<T> {
self.check_msg_size(hdr, size, mem::size_of::<T>())?;
// SAFETY: above check ensures that buf is `T` sized.
let msg = unsafe { std::ptr::read_unaligned(buf.as_ptr() as *const T) };
if !msg.is_valid() {
return Err(Error::InvalidMessage);
}
Ok(msg)
}
fn new_reply_header<T: Sized>(
&self,
req: &VhostUserMsgHeader<SlaveReq>,
) -> Result<VhostUserMsgHeader<SlaveReq>> {
Ok(VhostUserMsgHeader::new(
req.get_code().map_err(|_| Error::InvalidMessage)?,
VhostUserHeaderFlag::REPLY.bits(),
mem::size_of::<T>() as u32,
))
}
fn send_reply(&mut self, req: &VhostUserMsgHeader<SlaveReq>, res: &Result<u64>) -> Result<()> {
let code = req.get_code().map_err(|_| Error::InvalidMessage)?;
if code == SlaveReq::SHMEM_MAP
|| code == SlaveReq::SHMEM_UNMAP
|| code == SlaveReq::GPU_MAP
|| code == SlaveReq::EXTERNAL_MAP
|| (self.reply_ack_negotiated && req.is_need_reply())
{
let hdr = self.new_reply_header::<VhostUserU64>(req)?;
let def_err = libc::EINVAL;
let val = match res {
Ok(n) => *n,
Err(e) => match e {
Error::ReqHandlerError(ioerr) => match ioerr.raw_os_error() {
Some(rawerr) => -rawerr as u64,
None => -def_err as u64,
},
_ => -def_err as u64,
},
};
let msg = VhostUserU64::new(val);
self.sub_sock.send_message(&hdr, &msg, None)?;
}
Ok(())
}
}