1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
// Copyright 2022 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use std::io::Cursor;

use anyhow::anyhow;
use anyhow::Result;
use bytes::Buf;

/// A bit reader for h264 bitstreams. It properly handles emulation-prevention
/// bytes and stop bits.
pub struct NaluReader<T> {
    /// A reference into the next unread byte in the stream.
    data: Cursor<T>,
    /// Contents of the current byte. First unread bit starting at position 8 -
    /// num_remaining_bits_in_curr_bytes.
    curr_byte: u32,
    /// Number of bits remaining in `curr_byte`
    num_remaining_bits_in_curr_byte: usize,
    /// Used in epb detection.
    prev_two_bytes: u32,
    /// Number of epbs (i.e. 0x000003) we found.
    num_epb: usize,
}

impl<T: AsRef<[u8]>> NaluReader<T> {
    pub fn new(data: T) -> Self {
        Self {
            data: Cursor::new(data),
            curr_byte: Default::default(),
            num_remaining_bits_in_curr_byte: Default::default(),
            prev_two_bytes: 0xffff,
            num_epb: Default::default(),
        }
    }

    /// Read a single bit from the stream.
    pub fn read_bit(&mut self) -> Result<bool> {
        let bit = self.read_bits(1)?;
        match bit {
            1 => Ok(true),
            0 => Ok(false),
            _ => panic!("Unexpected value {}", bit),
        }
    }

    /// Read up to 31 bits from the stream.
    pub fn read_bits<U: TryFrom<u32>>(&mut self, num_bits: usize) -> Result<U> {
        if num_bits > 31 {
            return Err(anyhow!("Overflow: more than 31 bits requested at once"));
        }

        let mut bits_left = num_bits;
        let mut out = 0;

        while self.num_remaining_bits_in_curr_byte < bits_left {
            out |= self.curr_byte << (bits_left - self.num_remaining_bits_in_curr_byte);
            bits_left -= self.num_remaining_bits_in_curr_byte;
            self.update_curr_byte()?;
        }

        out |= self.curr_byte >> (self.num_remaining_bits_in_curr_byte - bits_left);
        out &= (1 << num_bits) - 1;
        self.num_remaining_bits_in_curr_byte -= bits_left;

        U::try_from(out).map_err(|_| anyhow!("Conversion failed"))
    }

    /// Skip up to 31 bits from the stream.
    pub fn skip_bits(&mut self, num_bits: usize) -> Result<()> {
        self.read_bits::<u32>(num_bits)?;
        Ok(())
    }

    /// Returns the amount of bits left in the stream
    pub fn num_bits_left(&self) -> usize {
        self.data.remaining() * 8 + self.num_remaining_bits_in_curr_byte
    }

    /// Returns the number of emulation-prevention bytes read so far.
    pub fn num_epb(&self) -> usize {
        self.num_epb
    }

    /// Whether the stream still has RBSP data. Implements more_rbsp_data(). See
    /// the spec for more details.
    pub fn has_more_rsbp_data(&mut self) -> bool {
        if self.num_remaining_bits_in_curr_byte == 0 && self.update_curr_byte().is_err() {
            // no more data at all in the rbsp
            return false;
        }

        // If the next bit is the stop bit, then we should only see unset bits
        // until the end of the data.
        if (self.curr_byte & ((1 << (self.num_remaining_bits_in_curr_byte - 1)) - 1)) != 0 {
            return true;
        }

        let data = self.data.chunk();
        for data in &data[0..self.data.remaining()] {
            if *data != 0 {
                return true;
            }
        }

        self.data.advance(self.data.remaining());
        false
    }

    pub fn read_ue<U: TryFrom<u32>>(&mut self) -> Result<U> {
        let mut num_bits = 0;
        let mut bit = self.read_bits::<u32>(1)?;

        while bit == 0 {
            num_bits += 1;
            bit = self.read_bits(1)?;
        }

        if num_bits > 31 {
            return Err(anyhow!("Invalid stream"));
        }

        let mut value = (1 << num_bits) - 1;
        let rest;

        // Check for overflow
        if num_bits == 31 {
            rest = self.read_bits::<u32>(num_bits)?;
            if rest == 0 {
                return U::try_from(value).map_err(|_| anyhow!("Conversion error"));
            } else {
                return Err(anyhow!("Invalid stream"));
            }
        }

        if num_bits > 0 {
            value += self.read_bits::<u32>(num_bits)?;
        }

        U::try_from(value).map_err(|_| anyhow!("Conversion error"))
    }

    pub fn read_ue_max<U: TryFrom<u32>>(&mut self, max: u32) -> Result<U> {
        let ue = self.read_ue()?;
        if ue > max {
            Err(anyhow!(
                "Value out of bounds: expected at most {}, got {}",
                max,
                ue
            ))
        } else {
            Ok(U::try_from(ue).map_err(|_| anyhow!("Conversion error"))?)
        }
    }

    pub fn read_se<U: TryFrom<i32>>(&mut self) -> Result<U> {
        let ue = self.read_ue::<u32>()? as i32;

        if ue % 2 == 0 {
            Ok(U::try_from(-ue / 2).map_err(|_| anyhow!("Conversion error"))?)
        } else {
            Ok(U::try_from(ue / 2 + 1).map_err(|_| anyhow!("Conversion error"))?)
        }
    }

    pub fn read_se_bounded<U: TryFrom<i32>>(&mut self, min: i32, max: i32) -> Result<U> {
        let se = self.read_se()?;
        if se < min || se > max {
            Err(anyhow!(
                "Value out of bounds, expected between {}-{}, got {}",
                min,
                max,
                se
            ))
        } else {
            Ok(U::try_from(se).map_err(|_| anyhow!("Conversion error"))?)
        }
    }

    fn get_byte(&mut self) -> Result<u8> {
        if self.data.remaining() == 0 {
            return Err(anyhow!("Reader ran out of bits"));
        }

        Ok(self.data.get_u8())
    }

    fn update_curr_byte(&mut self) -> Result<()> {
        let mut byte = self.get_byte()?;

        if (self.prev_two_bytes & 0xffff) == 0 && byte == 0x03 {
            // We found an epb
            self.num_epb += 1;
            // Read another byte
            byte = self.get_byte()?;
            // We need another 3 bytes before another epb can happen.
            self.prev_two_bytes = 0xffff;
        }

        self.num_remaining_bits_in_curr_byte = 8;
        self.prev_two_bytes = ((self.prev_two_bytes & 0xff) << 8) | u32::from(byte);

        self.curr_byte = u32::from(byte);
        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use crate::decoders::h264::nalu_reader::NaluReader;

    // These tests are adapted from the chromium tests at media/video/h264_bit_reader_unitttest.cc

    #[test]
    fn read_stream_without_escape_and_trailing_zero_bytes() {
        const RBSP: [u8; 6] = [0x01, 0x23, 0x45, 0x67, 0x89, 0xa0];

        let mut reader = NaluReader::new(&RBSP);
        assert_eq!(reader.read_bits::<u32>(1).unwrap(), 0);
        assert_eq!(reader.num_bits_left(), 47);
        assert!(reader.has_more_rsbp_data());

        assert_eq!(reader.read_bits::<u32>(8).unwrap(), 0x02);
        assert_eq!(reader.num_bits_left(), 39);
        assert!(reader.has_more_rsbp_data());

        assert_eq!(reader.read_bits::<u32>(31).unwrap(), 0x23456789);
        assert_eq!(reader.num_bits_left(), 8);
        assert!(reader.has_more_rsbp_data());

        assert_eq!(reader.read_bits::<u32>(1).unwrap(), 1);
        assert_eq!(reader.num_bits_left(), 7);
        assert!(reader.has_more_rsbp_data());

        assert_eq!(reader.read_bits::<u32>(1).unwrap(), 0);
        assert_eq!(reader.num_bits_left(), 6);
        assert!(!reader.has_more_rsbp_data());
    }

    #[test]
    fn single_byte_stream() {
        const RBSP: [u8; 1] = [0x18];

        let mut reader = NaluReader::new(&RBSP);
        assert_eq!(reader.num_bits_left(), 8);
        assert!(reader.has_more_rsbp_data());
        assert_eq!(reader.read_bits::<u32>(4).unwrap(), 1);
        assert!(!reader.has_more_rsbp_data());
    }

    #[test]
    fn stop_bit_occupy_full_byte() {
        const RBSP: [u8; 2] = [0xab, 0x80];

        let mut reader = NaluReader::new(&RBSP);
        assert_eq!(reader.num_bits_left(), 16);
        assert!(reader.has_more_rsbp_data());

        assert_eq!(reader.read_bits::<u32>(8).unwrap(), 0xab);
        assert_eq!(reader.num_bits_left(), 8);

        assert!(!reader.has_more_rsbp_data());
    }
}