1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
// Copyright 2021 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use std::cmp::Reverse;
use std::collections::BTreeMap;
use std::collections::VecDeque;
use std::future::pending;
use std::future::Future;
use std::num::Wrapping;
use std::sync::Arc;
use std::task;
use std::task::Poll;
use std::task::Waker;
use std::thread;
use std::thread::ThreadId;
use std::time::Duration;
use std::time::Instant;

use anyhow::Result;
use async_task::Runnable;
use async_task::Task;
use futures::pin_mut;
use futures::task::WakerRef;
use once_cell::unsync::Lazy;
use smallvec::SmallVec;
use sync::Mutex;

use crate::enter::enter;
use crate::sys;
use crate::BlockingPool;

thread_local! (static LOCAL_CONTEXT: Lazy<Arc<Mutex<Context>>> = Lazy::new(Default::default));

#[derive(Default)]
struct Context {
    queue: VecDeque<Runnable>,
    timers: BTreeMap<Reverse<Instant>, SmallVec<[Waker; 2]>>,
    waker: Option<Waker>,
}

#[derive(Default)]
struct Shared {
    queue: VecDeque<Runnable>,
    idle_workers: VecDeque<(ThreadId, Waker)>,
    blocking_pool: BlockingPool,
}

pub(crate) fn add_timer(deadline: Instant, waker: &Waker) {
    LOCAL_CONTEXT.with(|local_ctx| {
        let mut ctx = local_ctx.lock();
        let wakers = ctx.timers.entry(Reverse(deadline)).or_default();
        if wakers.iter().all(|w| !w.will_wake(waker)) {
            wakers.push(waker.clone());
        }
    });
}

/// An executor for scheduling tasks that poll futures to completion.
///
/// All asynchronous operations must run within an executor, which is capable of spawning futures as
/// tasks. This executor also provides a mechanism for performing asynchronous I/O operations.
///
/// The returned type is a cheap, clonable handle to the underlying executor. Cloning it will only
/// create a new reference, not a new executor.
///
/// # Examples
///
/// Concurrently wait for multiple files to become readable/writable and then read/write the data.
///
/// ```
/// use std::{
///     cmp::min,
///     convert::TryFrom,
///     fs::OpenOptions,
/// };
///
/// use anyhow::Result;
/// use cros_async::{Executor, File};
/// use futures::future::join3;
///
/// const CHUNK_SIZE: usize = 32;
///
/// // Transfer `len` bytes of data from `from` to `to`.
/// async fn transfer_data(from: File, to: File, len: usize) -> Result<usize> {
///     let mut rem = len;
///     let mut buf = [0u8; CHUNK_SIZE];
///     while rem > 0 {
///         let count = from.read(&mut buf, None).await?;
///
///         if count == 0 {
///             // End of file. Return the number of bytes transferred.
///             return Ok(len - rem);
///         }
///
///         to.write_all(&buf[..count], None).await?;
///
///         rem = rem.saturating_sub(count);
///     }
///
///     Ok(len)
/// }
///
/// # fn do_it() -> Result<()> {
///     let (rx, tx) = base::pipe(true)?;
///     let zero = File::open("/dev/zero")?;
///     let zero_bytes = CHUNK_SIZE * 7;
///     let zero_to_pipe = transfer_data(
///         zero,
///         File::try_from(tx.try_clone()?)?,
///         zero_bytes,
///     );
///
///     let rand = File::open("/dev/urandom")?;
///     let rand_bytes = CHUNK_SIZE * 19;
///     let rand_to_pipe = transfer_data(
///         rand,
///         File::try_from(tx)?,
///         rand_bytes
///     );
///
///     let null = OpenOptions::new().write(true).open("/dev/null")?;
///     let null_bytes = zero_bytes + rand_bytes;
///     let pipe_to_null = transfer_data(
///         File::try_from(rx)?,
///         File::try_from(null)?,
///         null_bytes
///     );
///
///     Executor::new().run_until(join3(
///         async { assert_eq!(pipe_to_null.await.unwrap(), null_bytes) },
///         async { assert_eq!(zero_to_pipe.await.unwrap(), zero_bytes) },
///         async { assert_eq!(rand_to_pipe.await.unwrap(), rand_bytes) },
///     ))?;
///
/// #     Ok(())
/// # }
///
/// # do_it().unwrap();
/// ```
#[derive(Clone, Default)]
pub struct Executor {
    shared: Arc<Mutex<Shared>>,
}

impl Executor {
    /// Create a new `Executor`.
    pub fn new() -> Executor {
        Default::default()
    }

    /// Spawn a new future for this executor to run to completion. Callers may use the returned
    /// `Task` to await on the result of `f`. Dropping the returned `Task` will cancel `f`,
    /// preventing it from being polled again. To drop a `Task` without canceling the future
    /// associated with it use [`Task::detach`]. To cancel a task gracefully and wait until it is
    /// fully destroyed, use [`Task::cancel`].
    ///
    /// # Examples
    ///
    /// ```
    /// # use anyhow::Result;
    /// # fn example_spawn() -> Result<()> {
    /// #      use std::thread;
    /// #
    /// #      use cros_async::Executor;
    /// #
    /// #      let ex = Executor::new();
    /// #
    /// #      // Spawn a thread that runs the executor.
    /// #      let ex2 = ex.clone();
    /// #      thread::spawn(move || ex2.run());
    /// #
    ///       let task = ex.spawn(async { 7 + 13 });
    ///
    ///       let result = ex.run_until(task)?;
    ///       assert_eq!(result, 20);
    /// #     Ok(())
    /// # }
    /// #
    /// # example_spawn().unwrap();
    /// ```
    pub fn spawn<F>(&self, f: F) -> Task<F::Output>
    where
        F: Future + Send + 'static,
        F::Output: Send + 'static,
    {
        let weak_shared = Arc::downgrade(&self.shared);
        let schedule = move |runnable| {
            if let Some(shared) = weak_shared.upgrade() {
                let waker = {
                    let mut s = shared.lock();
                    s.queue.push_back(runnable);
                    s.idle_workers.pop_front()
                };

                if let Some((_, w)) = waker {
                    w.wake();
                }
            }
        };
        let (runnable, task) = async_task::spawn(f, schedule);
        runnable.schedule();
        task
    }

    /// Spawn a thread-local task for this executor to drive to completion. Like `spawn` but without
    /// requiring `Send` on `F` or `F::Output`. This method should only be called from the same
    /// thread where `run()` or `run_until()` is called.
    ///
    /// # Panics
    ///
    /// `Executor::run` and `Executor::run_util` will panic if they try to poll a future that was
    /// added by calling `spawn_local` from a different thread.
    ///
    /// # Examples
    ///
    /// ```
    /// # use anyhow::Result;
    /// # fn example_spawn_local() -> Result<()> {
    /// #      use cros_async::Executor;
    /// #
    /// #      let ex = Executor::new();
    /// #
    ///       let task = ex.spawn_local(async { 7 + 13 });
    ///
    ///       let result = ex.run_until(task)?;
    ///       assert_eq!(result, 20);
    /// #     Ok(())
    /// # }
    /// #
    /// # example_spawn_local().unwrap();
    /// ```
    pub fn spawn_local<F>(&self, f: F) -> Task<F::Output>
    where
        F: Future + 'static,
        F::Output: 'static,
    {
        let weak_ctx = LOCAL_CONTEXT.with(|ctx| Arc::downgrade(ctx));
        let schedule = move |runnable| {
            if let Some(local_ctx) = weak_ctx.upgrade() {
                let waker = {
                    let mut ctx = local_ctx.lock();
                    ctx.queue.push_back(runnable);
                    ctx.waker.take()
                };

                if let Some(w) = waker {
                    w.wake();
                }
            }
        };
        let (runnable, task) = async_task::spawn_local(f, schedule);
        runnable.schedule();
        task
    }

    /// Run the provided closure on a dedicated thread where blocking is allowed.
    ///
    /// Callers may `await` on the returned `Task` to wait for the result of `f`. Dropping or
    /// canceling the returned `Task` may not cancel the operation if it was already started on a
    /// worker thread.
    ///
    /// # Panics
    ///
    /// `await`ing the `Task` after the `Executor` is dropped will panic if the work was not already
    /// completed.
    ///
    /// # Examples
    ///
    /// ```edition2018
    /// # use cros_async::Executor;
    /// #
    /// # async fn do_it(ex: &Executor) {
    ///     let res = ex.spawn_blocking(move || {
    ///         // Do some CPU-intensive or blocking work here.
    ///
    ///         42
    ///     }).await;
    ///
    ///     assert_eq!(res, 42);
    /// # }
    /// #
    /// # let ex = Executor::new();
    /// # ex.run_until(do_it(&ex)).unwrap();
    /// ```
    pub fn spawn_blocking<F, R>(&self, f: F) -> Task<R>
    where
        F: FnOnce() -> R + Send + 'static,
        R: Send + 'static,
    {
        self.shared.lock().blocking_pool.spawn(f)
    }

    /// Run the executor indefinitely, driving all spawned futures to completion. This method will
    /// block the current thread and only return in the case of an error.
    ///
    /// # Examples
    ///
    /// ```
    /// # use anyhow::Result;
    /// # fn example_run() -> Result<()> {
    ///       use std::thread;
    ///
    ///       use cros_async::Executor;
    ///
    ///       let ex = Executor::new();
    ///
    ///       // Spawn a thread that runs the executor.
    ///       let ex2 = ex.clone();
    ///       thread::spawn(move || ex2.run());
    ///
    ///       let task = ex.spawn(async { 7 + 13 });
    ///
    ///       let result = ex.run_until(task)?;
    ///       assert_eq!(result, 20);
    /// #     Ok(())
    /// # }
    /// #
    /// # example_run().unwrap();
    /// ```
    #[inline]
    pub fn run(&self) -> Result<()> {
        self.run_until(pending())
    }

    /// Drive all futures spawned in this executor until `f` completes. This method will block the
    /// current thread only until `f` is complete and there may still be unfinished futures in the
    /// executor.
    ///
    /// # Examples
    ///
    /// ```
    /// # use anyhow::Result;
    /// # fn example_run_until() -> Result<()> {
    ///       use cros_async::Executor;
    ///
    ///       let ex = Executor::new();
    ///
    ///       let task = ex.spawn_local(async { 7 + 13 });
    ///
    ///       let result = ex.run_until(task)?;
    ///       assert_eq!(result, 20);
    /// #     Ok(())
    /// # }
    /// #
    /// # example_run_until().unwrap();
    /// ```
    pub fn run_until<F: Future>(&self, done: F) -> Result<F::Output> {
        // Prevent nested execution.
        let _guard = enter()?;

        pin_mut!(done);

        let current_thread = thread::current().id();
        let state = sys::platform_state()?;
        let waker = state.waker_ref();
        let mut cx = task::Context::from_waker(&waker);
        let mut done_polled = false;

        LOCAL_CONTEXT.with(|local_ctx| {
            let next_local = || local_ctx.lock().queue.pop_front();
            let next_global = || self.shared.lock().queue.pop_front();

            let mut tick = Wrapping(0u32);

            loop {
                tick += Wrapping(1);

                // If there are always tasks available to run in either the local or the global
                // queue then we may go a long time without fetching completed events from the
                // underlying platform driver. Poll the driver once in a while to prevent this from
                // happening.
                if tick.0 % 31 == 0 {
                    // A zero timeout will fetch new events without blocking.
                    self.get_events(&state, Some(Duration::from_millis(0)))?;
                }

                let was_woken = state.start_processing();
                if was_woken || !done_polled {
                    done_polled = true;
                    if let Poll::Ready(v) = done.as_mut().poll(&mut cx) {
                        return Ok(v);
                    }
                }

                // If there are always tasks in the local queue then any tasks in the global queue
                // will get starved. Pull tasks out of the global queue every once in a while even
                // when there are still local tasks available to prevent this.
                let next_runnable = if tick.0 % 13 == 0 {
                    next_global().or_else(next_local)
                } else {
                    next_local().or_else(next_global)
                };

                if let Some(runnable) = next_runnable {
                    runnable.run();
                    continue;
                }

                // We're about to block so first check that new tasks have not snuck in and set the
                // waker so that we can be woken up when tasks are re-scheduled.
                let deadline = {
                    let mut ctx = local_ctx.lock();
                    if !ctx.queue.is_empty() {
                        // Some more tasks managed to sneak in.  Go back to the start of the loop.
                        continue;
                    }

                    // There are no more tasks to run so set the waker.
                    if ctx.waker.is_none() {
                        ctx.waker = Some(cx.waker().clone());
                    }

                    // TODO: Replace with `last_entry` once it is stabilized.
                    ctx.timers.keys().next_back().cloned()
                };
                {
                    let mut shared = self.shared.lock();
                    if !shared.queue.is_empty() {
                        // More tasks were added to the global queue. Go back to the start of the loop.
                        continue;
                    }

                    // We're going to block so add ourselves to the idle worker list.
                    shared
                        .idle_workers
                        .push_back((current_thread, cx.waker().clone()));
                };

                // Now wait to be woken up.
                let timeout = deadline.map(|d| d.0.saturating_duration_since(Instant::now()));
                self.get_events(&state, timeout)?;

                // Remove from idle workers.
                {
                    let mut shared = self.shared.lock();
                    if let Some(idx) = shared
                        .idle_workers
                        .iter()
                        .position(|(id, _)| id == &current_thread)
                    {
                        shared.idle_workers.swap_remove_back(idx);
                    }
                }

                // Reset the ticks since we just fetched new events from the platform driver.
                tick = Wrapping(0);
            }
        })
    }

    fn get_events<S: PlatformState>(
        &self,
        state: &S,
        timeout: Option<Duration>,
    ) -> anyhow::Result<()> {
        state.wait(timeout)?;

        // Timer maintenance.
        let expired = LOCAL_CONTEXT.with(|local_ctx| {
            let mut ctx = local_ctx.lock();
            let now = Instant::now();
            ctx.timers.split_off(&Reverse(now))
        });

        // We cannot wake the timers while holding the lock because the schedule function for the
        // task that's waiting on the timer may try to acquire the lock.
        for (deadline, wakers) in expired {
            debug_assert!(deadline.0 <= Instant::now());
            for w in wakers {
                w.wake();
            }
        }

        Ok(())
    }
}

// A trait that represents any thread-local platform-specific state that needs to be held on behalf
// of the `Executor`.
pub(crate) trait PlatformState {
    // Indicates that the `Executor` is about to start processing futures that have been woken up.
    //
    // Implementations may use this as an indicator to skip unnecessary work when new tasks are
    // woken up as the `Executor` will eventually get around to processing them on its own.
    //
    // `start_processing` must return true if one or more futures were woken up since the last call
    // to `start_processing`. Otherwise it may return false.
    fn start_processing(&self) -> bool;

    // Returns a `WakerRef` that can be used to wake up the current thread.
    fn waker_ref(&self) -> WakerRef;

    // Waits for one or more futures to be woken up.
    //
    // This method should check with the underlying OS if any asynchronous IO operations have
    // completed and then wake up the associated futures.
    //
    // If `timeout` is provided then this method should block until either one or more futures are
    // woken up or the timeout duration elapses. If `timeout` has a zero duration then this method
    // should fetch completed asynchronous IO operations and then immediately return.
    //
    // If `timeout` is not provided then this method should block until one or more futures are
    // woken up.
    fn wait(&self, timeout: Option<Duration>) -> anyhow::Result<()>;
}

#[cfg(test)]
mod test {
    use std::convert::TryFrom;
    use std::fs::OpenOptions;
    use std::mem;
    use std::pin::Pin;
    use std::thread;
    use std::thread::JoinHandle;
    use std::time::Instant;

    use futures::channel::mpsc;
    use futures::channel::oneshot;
    use futures::future::join3;
    use futures::future::select;
    use futures::future::Either;
    use futures::sink::SinkExt;
    use futures::stream;
    use futures::stream::FuturesUnordered;
    use futures::stream::StreamExt;

    use super::*;
    use crate::File;
    use crate::OwnedIoBuf;

    #[test]
    fn basic() {
        async fn do_it() {
            let (r, _w) = base::pipe(true).unwrap();
            let done = async { 5usize };

            let rx = File::try_from(r).unwrap();
            let mut buf = 0u64.to_ne_bytes();
            let pending = rx.read(&mut buf, None);
            pin_mut!(pending, done);

            match select(pending, done).await {
                Either::Right((5, _pending)) => (),
                _ => panic!("unexpected select result"),
            }
        }

        Executor::new().run_until(do_it()).unwrap();
    }

    #[derive(Default)]
    struct QuitShared {
        wakers: Vec<task::Waker>,
        should_quit: bool,
    }

    #[derive(Clone, Default)]
    struct Quit {
        shared: Arc<Mutex<QuitShared>>,
    }

    impl Quit {
        fn quit(self) {
            let wakers = {
                let mut shared = self.shared.lock();
                shared.should_quit = true;
                mem::take(&mut shared.wakers)
            };

            for w in wakers {
                w.wake();
            }
        }
    }

    impl Future for Quit {
        type Output = ();

        fn poll(self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> Poll<Self::Output> {
            let mut shared = self.shared.lock();
            if shared.should_quit {
                return Poll::Ready(());
            }

            if shared.wakers.iter().all(|w| !w.will_wake(cx.waker())) {
                shared.wakers.push(cx.waker().clone());
            }

            Poll::Pending
        }
    }

    #[test]
    fn outer_future_is_send() {
        const NUM_THREADS: usize = 3;
        const CHUNK_SIZE: usize = 32;

        async fn read_iobuf(
            ex: &Executor,
            f: File,
            buf: OwnedIoBuf,
        ) -> (anyhow::Result<usize>, OwnedIoBuf, File) {
            let (tx, rx) = oneshot::channel();
            ex.spawn_local(async move {
                let (res, buf) = f.read_iobuf(buf, None).await;
                let _ = tx.send((res, buf, f));
            })
            .detach();
            rx.await.unwrap()
        }

        async fn write_iobuf(
            ex: &Executor,
            f: File,
            buf: OwnedIoBuf,
        ) -> (anyhow::Result<usize>, OwnedIoBuf, File) {
            let (tx, rx) = oneshot::channel();
            ex.spawn_local(async move {
                let (res, buf) = f.write_iobuf(buf, None).await;
                let _ = tx.send((res, buf, f));
            })
            .detach();
            rx.await.unwrap()
        }

        async fn transfer_data(
            ex: Executor,
            mut from: File,
            mut to: File,
            len: usize,
        ) -> Result<usize> {
            let mut rem = len;
            let mut buf = OwnedIoBuf::new(vec![0xa2u8; CHUNK_SIZE]);
            while rem > 0 {
                let (res, data, f) = read_iobuf(&ex, from, buf).await;
                let count = res?;
                buf = data;
                from = f;
                if count == 0 {
                    // End of file. Return the number of bytes transferred.
                    return Ok(len - rem);
                }
                assert_eq!(count, CHUNK_SIZE);

                let (res, data, t) = write_iobuf(&ex, to, buf).await;
                let count = res?;
                buf = data;
                to = t;
                assert_eq!(count, CHUNK_SIZE);

                rem = rem.saturating_sub(count);
            }

            Ok(len)
        }

        fn do_it() -> anyhow::Result<()> {
            let ex = Executor::new();
            let (rx, tx) = base::pipe(true)?;
            let zero = File::open("/dev/zero")?;
            let zero_bytes = CHUNK_SIZE * 7;
            let zero_to_pipe = ex.spawn(transfer_data(
                ex.clone(),
                zero,
                File::try_from(tx.try_clone()?)?,
                zero_bytes,
            ));

            let rand = File::open("/dev/urandom")?;
            let rand_bytes = CHUNK_SIZE * 19;
            let rand_to_pipe = ex.spawn(transfer_data(
                ex.clone(),
                rand,
                File::try_from(tx)?,
                rand_bytes,
            ));

            let null = OpenOptions::new().write(true).open("/dev/null")?;
            let null_bytes = zero_bytes + rand_bytes;
            let pipe_to_null = ex.spawn(transfer_data(
                ex.clone(),
                File::try_from(rx)?,
                File::try_from(null)?,
                null_bytes,
            ));

            let mut threads = Vec::with_capacity(NUM_THREADS);
            let quit = Quit::default();
            for _ in 0..NUM_THREADS {
                let thread_ex = ex.clone();
                let thread_quit = quit.clone();
                threads.push(thread::spawn(move || thread_ex.run_until(thread_quit)))
            }
            ex.run_until(join3(
                async { assert_eq!(pipe_to_null.await.unwrap(), null_bytes) },
                async { assert_eq!(zero_to_pipe.await.unwrap(), zero_bytes) },
                async { assert_eq!(rand_to_pipe.await.unwrap(), rand_bytes) },
            ))?;

            quit.quit();
            for t in threads {
                t.join().unwrap().unwrap();
            }

            Ok(())
        }

        do_it().unwrap();
    }

    #[test]
    fn thread_pool() {
        const NUM_THREADS: usize = 8;
        const NUM_CHANNELS: usize = 19;
        const NUM_ITERATIONS: usize = 71;

        let ex = Executor::new();

        let tasks = FuturesUnordered::new();
        let (mut tx, mut rx) = mpsc::channel(10);
        tasks.push(ex.spawn(async move {
            for i in 0..NUM_ITERATIONS {
                tx.send(i).await?;
            }

            Ok::<(), anyhow::Error>(())
        }));

        for _ in 0..NUM_CHANNELS {
            let (mut task_tx, task_rx) = mpsc::channel(10);
            tasks.push(ex.spawn(async move {
                while let Some(v) = rx.next().await {
                    task_tx.send(v).await?;
                }

                Ok::<(), anyhow::Error>(())
            }));

            rx = task_rx;
        }

        tasks.push(ex.spawn(async move {
            let mut zip = rx.zip(stream::iter(0..NUM_ITERATIONS));
            while let Some((l, r)) = zip.next().await {
                assert_eq!(l, r);
            }

            Ok::<(), anyhow::Error>(())
        }));

        let quit = Quit::default();
        let mut threads = Vec::with_capacity(NUM_THREADS);
        for _ in 0..NUM_THREADS {
            let thread_ex = ex.clone();
            let thread_quit = quit.clone();
            threads.push(thread::spawn(move || thread_ex.run_until(thread_quit)));
        }

        let results = ex
            .run_until(tasks.collect::<Vec<anyhow::Result<()>>>())
            .unwrap();
        results
            .into_iter()
            .collect::<anyhow::Result<Vec<()>>>()
            .unwrap();

        quit.quit();
        for t in threads {
            t.join().unwrap().unwrap();
        }
    }

    // Sends a message on `tx` once there is an idle worker in `Executor` or 5 seconds have passed.
    // Sends true if this function observed an idle worker and false otherwise.
    fn notify_on_idle_worker(ex: Executor, tx: oneshot::Sender<bool>) {
        let deadline = Instant::now() + Duration::from_secs(5);
        while Instant::now() < deadline {
            // Wait for the main thread to add itself to the idle worker list.
            if !ex.shared.lock().idle_workers.is_empty() {
                break;
            }

            thread::sleep(Duration::from_millis(10));
        }

        if Instant::now() <= deadline {
            tx.send(true).unwrap();
        } else {
            tx.send(false).unwrap();
        }
    }

    #[test]
    fn wakeup_run_until() {
        let (tx, rx) = oneshot::channel();

        let ex = Executor::new();

        let thread_ex = ex.clone();
        let waker_thread = thread::spawn(move || notify_on_idle_worker(thread_ex, tx));

        // Since we're using `run_until` the wakeup path won't use the regular scheduling functions.
        let success = ex.run_until(rx).unwrap().unwrap();
        assert!(success);
        assert!(ex.shared.lock().idle_workers.is_empty());

        waker_thread.join().unwrap();
    }

    #[test]
    fn wakeup_local_task() {
        let (tx, rx) = oneshot::channel();

        let ex = Executor::new();

        let thread_ex = ex.clone();
        let waker_thread = thread::spawn(move || notify_on_idle_worker(thread_ex, tx));

        // By using `spawn_local`, the wakeup path will go via LOCAL_CTX.
        let task = ex.spawn_local(rx);
        let success = ex.run_until(task).unwrap().unwrap();
        assert!(success);
        assert!(ex.shared.lock().idle_workers.is_empty());

        waker_thread.join().unwrap();
    }

    #[test]
    fn wakeup_global_task() {
        let (tx, rx) = oneshot::channel();

        let ex = Executor::new();

        let thread_ex = ex.clone();
        let waker_thread = thread::spawn(move || notify_on_idle_worker(thread_ex, tx));

        // By using `spawn`, the wakeup path will go via `ex.shared`.
        let task = ex.spawn(rx);
        let success = ex.run_until(task).unwrap().unwrap();
        assert!(success);
        assert!(ex.shared.lock().idle_workers.is_empty());

        waker_thread.join().unwrap();
    }

    #[test]
    fn wake_up_correct_worker() {
        struct ThreadData {
            id: ThreadId,
            sender: mpsc::Sender<()>,
            handle: JoinHandle<anyhow::Result<()>>,
        }

        const NUM_THREADS: usize = 7;
        const NUM_ITERATIONS: usize = 119;

        let ex = Executor::new();

        let (tx, mut rx) = mpsc::channel(0);
        let mut threads = Vec::with_capacity(NUM_THREADS);
        for _ in 0..NUM_THREADS {
            let (sender, mut receiver) = mpsc::channel(0);
            let mut thread_tx = tx.clone();
            let thread_ex = ex.clone();
            let handle = thread::spawn(move || {
                let id = thread::current().id();
                thread_ex
                    .run_until(async move {
                        while let Some(()) = receiver.next().await {
                            thread_tx.send(id).await?;
                        }

                        Ok(())
                    })
                    .unwrap()
            });

            let id = handle.thread().id();
            threads.push(ThreadData { id, sender, handle });
        }

        ex.run_until(async {
            for i in 0..NUM_ITERATIONS {
                let data = &mut threads[i % NUM_THREADS];
                data.sender.send(()).await?;
                assert_eq!(rx.next().await.unwrap(), data.id);
            }

            Ok::<(), anyhow::Error>(())
        })
        .unwrap()
        .unwrap();

        for t in threads {
            let ThreadData { id, sender, handle } = t;

            // Dropping the sender will close the channel and cause the thread to exit.
            drop((id, sender));
            handle.join().unwrap().unwrap();
        }
    }
}