1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
// Copyright 2020 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use std::future::Future;
use std::pin::Pin;
use std::sync::Arc;
use base::debug;
use base::warn;
use base::AsRawDescriptors;
use base::RawDescriptor;
use once_cell::sync::OnceCell;
use serde::Deserialize;
use serde::Serialize;
use thiserror::Error as ThisError;
use super::fd_executor::EpollReactor;
use super::uring_executor::check_uring_availability;
use super::uring_executor::is_uring_stable;
use super::uring_executor::Error as UringError;
use super::uring_executor::UringReactor;
use crate::common_executor;
use crate::common_executor::RawExecutor;
use crate::AsyncResult;
use crate::IntoAsync;
use crate::IoSource;
/// An executor for scheduling tasks that poll futures to completion.
///
/// All asynchronous operations must run within an executor, which is capable of spawning futures as
/// tasks. This executor also provides a mechanism for performing asynchronous I/O operations.
///
/// The returned type is a cheap, clonable handle to the underlying executor. Cloning it will only
/// create a new reference, not a new executor.
///
/// Note that language limitations (trait objects can have <=1 non auto trait) require this to be
/// represented on the POSIX side as an enum, rather than a trait. This leads to some code &
/// interface duplication, but as far as we understand that is unavoidable.
///
/// See <https://chromium-review.googlesource.com/c/chromiumos/platform/crosvm/+/2571401/2..6/cros_async/src/executor.rs#b75>
/// for further details.
///
/// # Examples
///
/// Concurrently wait for multiple files to become readable/writable and then read/write the data.
///
/// ```
/// use std::cmp::min;
/// use std::error::Error;
/// use std::fs::{File, OpenOptions};
///
/// use cros_async::{AsyncResult, Executor, IoSource, complete3};
/// const CHUNK_SIZE: usize = 32;
///
/// // Write all bytes from `data` to `f`.
/// async fn write_file(f: &IoSource<File>, mut data: Vec<u8>) -> AsyncResult<()> {
/// while data.len() > 0 {
/// let (count, mut buf) = f.write_from_vec(None, data).await?;
///
/// data = buf.split_off(count);
/// }
///
/// Ok(())
/// }
///
/// // Transfer `len` bytes of data from `from` to `to`.
/// async fn transfer_data(
/// from: IoSource<File>,
/// to: IoSource<File>,
/// len: usize,
/// ) -> AsyncResult<usize> {
/// let mut rem = len;
///
/// while rem > 0 {
/// let buf = vec![0u8; min(rem, CHUNK_SIZE)];
/// let (count, mut data) = from.read_to_vec(None, buf).await?;
///
/// if count == 0 {
/// // End of file. Return the number of bytes transferred.
/// return Ok(len - rem);
/// }
///
/// data.truncate(count);
/// write_file(&to, data).await?;
///
/// rem = rem.saturating_sub(count);
/// }
///
/// Ok(len)
/// }
///
/// #[cfg(any(target_os = "android", target_os = "linux"))]
/// # fn do_it() -> Result<(), Box<dyn Error>> {
/// let ex = Executor::new()?;
///
/// let (rx, tx) = base::unix::pipe(true)?;
/// let zero = File::open("/dev/zero")?;
/// let zero_bytes = CHUNK_SIZE * 7;
/// let zero_to_pipe = transfer_data(
/// ex.async_from(zero)?,
/// ex.async_from(tx.try_clone()?)?,
/// zero_bytes,
/// );
///
/// let rand = File::open("/dev/urandom")?;
/// let rand_bytes = CHUNK_SIZE * 19;
/// let rand_to_pipe = transfer_data(ex.async_from(rand)?, ex.async_from(tx)?, rand_bytes);
///
/// let null = OpenOptions::new().write(true).open("/dev/null")?;
/// let null_bytes = zero_bytes + rand_bytes;
/// let pipe_to_null = transfer_data(ex.async_from(rx)?, ex.async_from(null)?, null_bytes);
///
/// ex.run_until(complete3(
/// async { assert_eq!(pipe_to_null.await.unwrap(), null_bytes) },
/// async { assert_eq!(zero_to_pipe.await.unwrap(), zero_bytes) },
/// async { assert_eq!(rand_to_pipe.await.unwrap(), rand_bytes) },
/// ))?;
///
/// # Ok(())
/// # }
/// #[cfg(any(target_os = "android", target_os = "linux"))]
/// # do_it().unwrap();
/// ```
#[derive(Clone)]
pub enum Executor {
Uring(Arc<RawExecutor<UringReactor>>),
Fd(Arc<RawExecutor<EpollReactor>>),
}
/// An enum to express the kind of the backend of `Executor`
#[derive(
Clone, Copy, Debug, PartialEq, Eq, Serialize, Deserialize, serde_keyvalue::FromKeyValues,
)]
#[serde(deny_unknown_fields, rename_all = "kebab-case")]
pub enum ExecutorKind {
Uring,
// For command-line parsing, user-friendly "epoll" is chosen instead of fd.
#[serde(rename = "epoll")]
Fd,
}
/// If set, [`ExecutorKind::default()`] returns the value of `DEFAULT_EXECUTOR_KIND`.
/// If not set, [`ExecutorKind::default()`] returns a statically-chosen default value, and
/// [`ExecutorKind::default()`] initializes `DEFAULT_EXECUTOR_KIND` with that value.
static DEFAULT_EXECUTOR_KIND: OnceCell<ExecutorKind> = OnceCell::new();
impl Default for ExecutorKind {
fn default() -> Self {
*DEFAULT_EXECUTOR_KIND.get_or_init(|| ExecutorKind::Fd)
}
}
/// The error type for [`Executor::set_default_executor_kind()`].
#[derive(Debug, ThisError)]
pub enum SetDefaultExecutorKindError {
/// The default executor kind is set more than once.
#[error("The default executor kind is already set to {0:?}")]
SetMoreThanOnce(ExecutorKind),
/// io_uring is unavailable. The reason might be the lack of the kernel support,
/// but is not limited to that.
#[error("io_uring is unavailable: {0}")]
UringUnavailable(UringError),
}
/// Reference to a task managed by the executor.
///
/// Dropping a `TaskHandle` attempts to cancel the associated task. Call `detach` to allow it to
/// continue running the background.
///
/// `await`ing the `TaskHandle` waits for the task to finish and yields its result.
pub enum TaskHandle<R> {
Uring(common_executor::TaskHandle<UringReactor, R>),
Fd(common_executor::TaskHandle<EpollReactor, R>),
}
impl<R: Send + 'static> TaskHandle<R> {
pub fn detach(self) {
match self {
TaskHandle::Uring(x) => x.detach(),
TaskHandle::Fd(x) => x.detach(),
}
}
// Cancel the task and wait for it to stop. Returns the result of the task if it was already
// finished.
pub async fn cancel(self) -> Option<R> {
match self {
TaskHandle::Uring(x) => x.cancel().await,
TaskHandle::Fd(x) => x.cancel().await,
}
}
}
impl<R: 'static> Future for TaskHandle<R> {
type Output = R;
fn poll(self: Pin<&mut Self>, cx: &mut std::task::Context) -> std::task::Poll<Self::Output> {
match self.get_mut() {
TaskHandle::Uring(x) => Pin::new(x).poll(cx),
TaskHandle::Fd(x) => Pin::new(x).poll(cx),
}
}
}
impl Executor {
/// Create a new `Executor`.
pub fn new() -> AsyncResult<Self> {
Executor::with_executor_kind(ExecutorKind::default())
}
/// Create a new `Executor` of the given `ExecutorKind`.
pub fn with_executor_kind(kind: ExecutorKind) -> AsyncResult<Self> {
match kind {
ExecutorKind::Uring => RawExecutor::new().map(Executor::Uring),
ExecutorKind::Fd => RawExecutor::new().map(Executor::Fd),
}
}
/// Set the default ExecutorKind for [`Self::new()`]. This call is effective only once.
/// If a call is the first call, it sets the default, and `set_default_executor_kind`
/// returns `Ok(())`. Otherwise, it returns `SetDefaultExecutorKindError::SetMoreThanOnce`
/// which contains the existing ExecutorKind value configured by the first call.
pub fn set_default_executor_kind(
executor_kind: ExecutorKind,
) -> Result<(), SetDefaultExecutorKindError> {
if executor_kind == ExecutorKind::Uring {
check_uring_availability().map_err(SetDefaultExecutorKindError::UringUnavailable)?;
if !is_uring_stable() {
warn!(
"Enabling io_uring executor on the kernel version where io_uring is unstable"
);
}
}
debug!("setting the default executor to {:?}", executor_kind);
DEFAULT_EXECUTOR_KIND.set(executor_kind).map_err(|_|
// `expect` succeeds since this closure runs only when DEFAULT_EXECUTOR_KIND is set.
SetDefaultExecutorKindError::SetMoreThanOnce(
*DEFAULT_EXECUTOR_KIND
.get()
.expect("Failed to get DEFAULT_EXECUTOR_KIND"),
))
}
/// Create a new `IoSource<F>` associated with `self`. Callers may then use the returned
/// `IoSource` to directly start async operations without needing a separate reference to the
/// executor.
pub fn async_from<'a, F: IntoAsync + 'a>(&self, f: F) -> AsyncResult<IoSource<F>> {
match self {
Executor::Uring(ex) => ex.new_source(f),
Executor::Fd(ex) => ex.new_source(f),
}
}
/// Spawn a new future for this executor to run to completion. Callers may use the returned
/// `TaskHandle` to await on the result of `f`. Dropping the returned `TaskHandle` will cancel
/// `f`, preventing it from being polled again. To drop a `TaskHandle` without canceling the
/// future associated with it use `TaskHandle::detach`.
///
/// # Examples
///
/// ```
/// # use cros_async::AsyncResult;
/// # fn example_spawn() -> AsyncResult<()> {
/// # use std::thread;
///
/// # use cros_async::Executor;
/// use futures::executor::block_on;
///
/// # let ex = Executor::new()?;
///
/// # // Spawn a thread that runs the executor.
/// # let ex2 = ex.clone();
/// # thread::spawn(move || ex2.run());
///
/// let task = ex.spawn(async { 7 + 13 });
///
/// let result = block_on(task);
/// assert_eq!(result, 20);
/// # Ok(())
/// # }
///
/// # example_spawn().unwrap();
/// ```
pub fn spawn<F>(&self, f: F) -> TaskHandle<F::Output>
where
F: Future + Send + 'static,
F::Output: Send + 'static,
{
match self {
Executor::Uring(ex) => TaskHandle::Uring(ex.spawn(f)),
Executor::Fd(ex) => TaskHandle::Fd(ex.spawn(f)),
}
}
/// Spawn a thread-local task for this executor to drive to completion. Like `spawn` but without
/// requiring `Send` on `F` or `F::Output`. This method should only be called from the same
/// thread where `run()` or `run_until()` is called.
///
/// # Panics
///
/// `Executor::run` and `Executor::run_until` will panic if they try to poll a future that was
/// added by calling `spawn_local` from a different thread.
///
/// # Examples
///
/// ```
/// # use cros_async::AsyncResult;
/// # fn example_spawn_local() -> AsyncResult<()> {
/// # use cros_async::Executor;
///
/// # let ex = Executor::new()?;
///
/// let task = ex.spawn_local(async { 7 + 13 });
///
/// let result = ex.run_until(task)?;
/// assert_eq!(result, 20);
/// # Ok(())
/// # }
///
/// # example_spawn_local().unwrap();
/// ```
pub fn spawn_local<F>(&self, f: F) -> TaskHandle<F::Output>
where
F: Future + 'static,
F::Output: 'static,
{
match self {
Executor::Uring(ex) => TaskHandle::Uring(ex.spawn_local(f)),
Executor::Fd(ex) => TaskHandle::Fd(ex.spawn_local(f)),
}
}
/// Run the provided closure on a dedicated thread where blocking is allowed.
///
/// Callers may `await` on the returned `TaskHandle` to wait for the result of `f`. Dropping
/// the returned `TaskHandle` may not cancel the operation if it was already started on a
/// worker thread.
///
/// # Panics
///
/// `await`ing the `TaskHandle` after the `Executor` is dropped will panic if the work was not
/// already completed.
///
/// # Examples
///
/// ```edition2018
/// # use cros_async::Executor;
///
/// # async fn do_it(ex: &Executor) {
/// let res = ex.spawn_blocking(move || {
/// // Do some CPU-intensive or blocking work here.
///
/// 42
/// }).await;
///
/// assert_eq!(res, 42);
/// # }
///
/// # let ex = Executor::new().unwrap();
/// # ex.run_until(do_it(&ex)).unwrap();
/// ```
pub fn spawn_blocking<F, R>(&self, f: F) -> TaskHandle<R>
where
F: FnOnce() -> R + Send + 'static,
R: Send + 'static,
{
match self {
Executor::Uring(ex) => TaskHandle::Uring(ex.spawn_blocking(f)),
Executor::Fd(ex) => TaskHandle::Fd(ex.spawn_blocking(f)),
}
}
/// Run the executor indefinitely, driving all spawned futures to completion. This method will
/// block the current thread and only return in the case of an error.
///
/// # Panics
///
/// Once this method has been called on a thread, it may only be called on that thread from that
/// point on. Attempting to call it from another thread will panic.
///
/// # Examples
///
/// ```
/// # use cros_async::AsyncResult;
/// # fn example_run() -> AsyncResult<()> {
/// use std::thread;
///
/// use cros_async::Executor;
/// use futures::executor::block_on;
///
/// let ex = Executor::new()?;
///
/// // Spawn a thread that runs the executor.
/// let ex2 = ex.clone();
/// thread::spawn(move || ex2.run());
///
/// let task = ex.spawn(async { 7 + 13 });
///
/// let result = block_on(task);
/// assert_eq!(result, 20);
/// # Ok(())
/// # }
///
/// # example_run().unwrap();
/// ```
pub fn run(&self) -> AsyncResult<()> {
self.run_until(std::future::pending())
}
/// Drive all futures spawned in this executor until `f` completes. This method will block the
/// current thread only until `f` is complete and there may still be unfinished futures in the
/// executor.
///
/// # Panics
///
/// Once this method has been called on a thread, from then onwards it may only be called on
/// that thread. Attempting to call it from another thread will panic.
///
/// # Examples
///
/// ```
/// # use cros_async::AsyncResult;
/// # fn example_run_until() -> AsyncResult<()> {
/// use cros_async::Executor;
///
/// let ex = Executor::new()?;
///
/// let task = ex.spawn_local(async { 7 + 13 });
///
/// let result = ex.run_until(task)?;
/// assert_eq!(result, 20);
/// # Ok(())
/// # }
///
/// # example_run_until().unwrap();
/// ```
pub fn run_until<F: Future>(&self, f: F) -> AsyncResult<F::Output> {
match self {
Executor::Uring(ex) => Ok(ex.run_until(f)?),
Executor::Fd(ex) => Ok(ex.run_until(f)?),
}
}
}
impl AsRawDescriptors for Executor {
fn as_raw_descriptors(&self) -> Vec<RawDescriptor> {
match self {
Executor::Uring(ex) => ex.as_raw_descriptors(),
Executor::Fd(ex) => ex.as_raw_descriptors(),
}
}
}