1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
// Copyright 2020 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use std::future::Future;
use std::pin::Pin;
use std::sync::Arc;

use base::debug;
use base::warn;
use base::AsRawDescriptors;
use base::RawDescriptor;
use once_cell::sync::OnceCell;
use serde::Deserialize;
use serde::Serialize;
use thiserror::Error as ThisError;

use super::fd_executor::EpollReactor;
use super::uring_executor::check_uring_availability;
use super::uring_executor::is_uring_stable;
use super::uring_executor::Error as UringError;
use super::uring_executor::UringReactor;
use crate::common_executor;
use crate::common_executor::RawExecutor;
use crate::AsyncResult;
use crate::IntoAsync;
use crate::IoSource;

/// An executor for scheduling tasks that poll futures to completion.
///
/// All asynchronous operations must run within an executor, which is capable of spawning futures as
/// tasks. This executor also provides a mechanism for performing asynchronous I/O operations.
///
/// The returned type is a cheap, clonable handle to the underlying executor. Cloning it will only
/// create a new reference, not a new executor.
///
/// Note that language limitations (trait objects can have <=1 non auto trait) require this to be
/// represented on the POSIX side as an enum, rather than a trait. This leads to some code &
/// interface duplication, but as far as we understand that is unavoidable.
///
/// See <https://chromium-review.googlesource.com/c/chromiumos/platform/crosvm/+/2571401/2..6/cros_async/src/executor.rs#b75>
/// for further details.
///
/// # Examples
///
/// Concurrently wait for multiple files to become readable/writable and then read/write the data.
///
/// ```
/// use std::cmp::min;
/// use std::error::Error;
/// use std::fs::{File, OpenOptions};
///
/// use cros_async::{AsyncResult, Executor, IoSource, complete3};
/// const CHUNK_SIZE: usize = 32;
///
/// // Write all bytes from `data` to `f`.
/// async fn write_file(f: &IoSource<File>, mut data: Vec<u8>) -> AsyncResult<()> {
///     while data.len() > 0 {
///         let (count, mut buf) = f.write_from_vec(None, data).await?;
///
///         data = buf.split_off(count);
///     }
///
///     Ok(())
/// }
///
/// // Transfer `len` bytes of data from `from` to `to`.
/// async fn transfer_data(
///     from: IoSource<File>,
///     to: IoSource<File>,
///     len: usize,
/// ) -> AsyncResult<usize> {
///     let mut rem = len;
///
///     while rem > 0 {
///         let buf = vec![0u8; min(rem, CHUNK_SIZE)];
///         let (count, mut data) = from.read_to_vec(None, buf).await?;
///
///         if count == 0 {
///             // End of file. Return the number of bytes transferred.
///             return Ok(len - rem);
///         }
///
///         data.truncate(count);
///         write_file(&to, data).await?;
///
///         rem = rem.saturating_sub(count);
///     }
///
///     Ok(len)
/// }
///
/// #[cfg(any(target_os = "android", target_os = "linux"))]
/// # fn do_it() -> Result<(), Box<dyn Error>> {
///     let ex = Executor::new()?;
///
///     let (rx, tx) = base::unix::pipe(true)?;
///     let zero = File::open("/dev/zero")?;
///     let zero_bytes = CHUNK_SIZE * 7;
///     let zero_to_pipe = transfer_data(
///         ex.async_from(zero)?,
///         ex.async_from(tx.try_clone()?)?,
///         zero_bytes,
///     );
///
///     let rand = File::open("/dev/urandom")?;
///     let rand_bytes = CHUNK_SIZE * 19;
///     let rand_to_pipe = transfer_data(ex.async_from(rand)?, ex.async_from(tx)?, rand_bytes);
///
///     let null = OpenOptions::new().write(true).open("/dev/null")?;
///     let null_bytes = zero_bytes + rand_bytes;
///     let pipe_to_null = transfer_data(ex.async_from(rx)?, ex.async_from(null)?, null_bytes);
///
///     ex.run_until(complete3(
///         async { assert_eq!(pipe_to_null.await.unwrap(), null_bytes) },
///         async { assert_eq!(zero_to_pipe.await.unwrap(), zero_bytes) },
///         async { assert_eq!(rand_to_pipe.await.unwrap(), rand_bytes) },
///     ))?;
///
/// #     Ok(())
/// # }
/// #[cfg(any(target_os = "android", target_os = "linux"))]
/// # do_it().unwrap();
/// ```

#[derive(Clone)]
pub enum Executor {
    Uring(Arc<RawExecutor<UringReactor>>),
    Fd(Arc<RawExecutor<EpollReactor>>),
}

/// An enum to express the kind of the backend of `Executor`
#[derive(
    Clone, Copy, Debug, PartialEq, Eq, Serialize, Deserialize, serde_keyvalue::FromKeyValues,
)]
#[serde(deny_unknown_fields, rename_all = "kebab-case")]
pub enum ExecutorKind {
    Uring,
    // For command-line parsing, user-friendly "epoll" is chosen instead of fd.
    #[serde(rename = "epoll")]
    Fd,
}

/// If set, [`ExecutorKind::default()`] returns the value of `DEFAULT_EXECUTOR_KIND`.
/// If not set, [`ExecutorKind::default()`] returns a statically-chosen default value, and
/// [`ExecutorKind::default()`] initializes `DEFAULT_EXECUTOR_KIND` with that value.
static DEFAULT_EXECUTOR_KIND: OnceCell<ExecutorKind> = OnceCell::new();

impl Default for ExecutorKind {
    fn default() -> Self {
        *DEFAULT_EXECUTOR_KIND.get_or_init(|| ExecutorKind::Fd)
    }
}

/// The error type for [`Executor::set_default_executor_kind()`].
#[derive(Debug, ThisError)]
pub enum SetDefaultExecutorKindError {
    /// The default executor kind is set more than once.
    #[error("The default executor kind is already set to {0:?}")]
    SetMoreThanOnce(ExecutorKind),

    /// io_uring is unavailable. The reason might be the lack of the kernel support,
    /// but is not limited to that.
    #[error("io_uring is unavailable: {0}")]
    UringUnavailable(UringError),
}

/// Reference to a task managed by the executor.
///
/// Dropping a `TaskHandle` attempts to cancel the associated task. Call `detach` to allow it to
/// continue running the background.
///
/// `await`ing the `TaskHandle` waits for the task to finish and yields its result.
pub enum TaskHandle<R> {
    Uring(common_executor::TaskHandle<UringReactor, R>),
    Fd(common_executor::TaskHandle<EpollReactor, R>),
}

impl<R: Send + 'static> TaskHandle<R> {
    pub fn detach(self) {
        match self {
            TaskHandle::Uring(x) => x.detach(),
            TaskHandle::Fd(x) => x.detach(),
        }
    }

    // Cancel the task and wait for it to stop. Returns the result of the task if it was already
    // finished.
    pub async fn cancel(self) -> Option<R> {
        match self {
            TaskHandle::Uring(x) => x.cancel().await,
            TaskHandle::Fd(x) => x.cancel().await,
        }
    }
}

impl<R: 'static> Future for TaskHandle<R> {
    type Output = R;

    fn poll(self: Pin<&mut Self>, cx: &mut std::task::Context) -> std::task::Poll<Self::Output> {
        match self.get_mut() {
            TaskHandle::Uring(x) => Pin::new(x).poll(cx),
            TaskHandle::Fd(x) => Pin::new(x).poll(cx),
        }
    }
}

impl Executor {
    /// Create a new `Executor`.
    pub fn new() -> AsyncResult<Self> {
        Executor::with_executor_kind(ExecutorKind::default())
    }

    /// Create a new `Executor` of the given `ExecutorKind`.
    pub fn with_executor_kind(kind: ExecutorKind) -> AsyncResult<Self> {
        match kind {
            ExecutorKind::Uring => RawExecutor::new().map(Executor::Uring),
            ExecutorKind::Fd => RawExecutor::new().map(Executor::Fd),
        }
    }

    /// Set the default ExecutorKind for [`Self::new()`]. This call is effective only once.
    /// If a call is the first call, it sets the default, and `set_default_executor_kind`
    /// returns `Ok(())`. Otherwise, it returns `SetDefaultExecutorKindError::SetMoreThanOnce`
    /// which contains the existing ExecutorKind value configured by the first call.
    pub fn set_default_executor_kind(
        executor_kind: ExecutorKind,
    ) -> Result<(), SetDefaultExecutorKindError> {
        if executor_kind == ExecutorKind::Uring {
            check_uring_availability().map_err(SetDefaultExecutorKindError::UringUnavailable)?;
            if !is_uring_stable() {
                warn!(
                    "Enabling io_uring executor on the kernel version where io_uring is unstable"
                );
            }
        }

        debug!("setting the default executor to {:?}", executor_kind);
        DEFAULT_EXECUTOR_KIND.set(executor_kind).map_err(|_|
            // `expect` succeeds since this closure runs only when DEFAULT_EXECUTOR_KIND is set.
            SetDefaultExecutorKindError::SetMoreThanOnce(
                *DEFAULT_EXECUTOR_KIND
                    .get()
                    .expect("Failed to get DEFAULT_EXECUTOR_KIND"),
            ))
    }

    /// Create a new `IoSource<F>` associated with `self`. Callers may then use the returned
    /// `IoSource` to directly start async operations without needing a separate reference to the
    /// executor.
    pub fn async_from<'a, F: IntoAsync + 'a>(&self, f: F) -> AsyncResult<IoSource<F>> {
        match self {
            Executor::Uring(ex) => ex.new_source(f),
            Executor::Fd(ex) => ex.new_source(f),
        }
    }

    /// Spawn a new future for this executor to run to completion. Callers may use the returned
    /// `TaskHandle` to await on the result of `f`. Dropping the returned `TaskHandle` will cancel
    /// `f`, preventing it from being polled again. To drop a `TaskHandle` without canceling the
    /// future associated with it use `TaskHandle::detach`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use cros_async::AsyncResult;
    /// # fn example_spawn() -> AsyncResult<()> {
    /// #      use std::thread;
    ///
    /// #      use cros_async::Executor;
    ///       use futures::executor::block_on;
    ///
    /// #      let ex = Executor::new()?;
    ///
    /// #      // Spawn a thread that runs the executor.
    /// #      let ex2 = ex.clone();
    /// #      thread::spawn(move || ex2.run());
    ///
    ///       let task = ex.spawn(async { 7 + 13 });
    ///
    ///       let result = block_on(task);
    ///       assert_eq!(result, 20);
    /// #     Ok(())
    /// # }
    ///
    /// # example_spawn().unwrap();
    /// ```
    pub fn spawn<F>(&self, f: F) -> TaskHandle<F::Output>
    where
        F: Future + Send + 'static,
        F::Output: Send + 'static,
    {
        match self {
            Executor::Uring(ex) => TaskHandle::Uring(ex.spawn(f)),
            Executor::Fd(ex) => TaskHandle::Fd(ex.spawn(f)),
        }
    }

    /// Spawn a thread-local task for this executor to drive to completion. Like `spawn` but without
    /// requiring `Send` on `F` or `F::Output`. This method should only be called from the same
    /// thread where `run()` or `run_until()` is called.
    ///
    /// # Panics
    ///
    /// `Executor::run` and `Executor::run_until` will panic if they try to poll a future that was
    /// added by calling `spawn_local` from a different thread.
    ///
    /// # Examples
    ///
    /// ```
    /// # use cros_async::AsyncResult;
    /// # fn example_spawn_local() -> AsyncResult<()> {
    /// #      use cros_async::Executor;
    ///
    /// #      let ex = Executor::new()?;
    ///
    ///       let task = ex.spawn_local(async { 7 + 13 });
    ///
    ///       let result = ex.run_until(task)?;
    ///       assert_eq!(result, 20);
    /// #     Ok(())
    /// # }
    ///
    /// # example_spawn_local().unwrap();
    /// ```
    pub fn spawn_local<F>(&self, f: F) -> TaskHandle<F::Output>
    where
        F: Future + 'static,
        F::Output: 'static,
    {
        match self {
            Executor::Uring(ex) => TaskHandle::Uring(ex.spawn_local(f)),
            Executor::Fd(ex) => TaskHandle::Fd(ex.spawn_local(f)),
        }
    }

    /// Run the provided closure on a dedicated thread where blocking is allowed.
    ///
    /// Callers may `await` on the returned `TaskHandle` to wait for the result of `f`. Dropping
    /// the returned `TaskHandle` may not cancel the operation if it was already started on a
    /// worker thread.
    ///
    /// # Panics
    ///
    /// `await`ing the `TaskHandle` after the `Executor` is dropped will panic if the work was not
    /// already completed.
    ///
    /// # Examples
    ///
    /// ```edition2018
    /// # use cros_async::Executor;
    ///
    /// # async fn do_it(ex: &Executor) {
    ///     let res = ex.spawn_blocking(move || {
    ///         // Do some CPU-intensive or blocking work here.
    ///
    ///         42
    ///     }).await;
    ///
    ///     assert_eq!(res, 42);
    /// # }
    ///
    /// # let ex = Executor::new().unwrap();
    /// # ex.run_until(do_it(&ex)).unwrap();
    /// ```
    pub fn spawn_blocking<F, R>(&self, f: F) -> TaskHandle<R>
    where
        F: FnOnce() -> R + Send + 'static,
        R: Send + 'static,
    {
        match self {
            Executor::Uring(ex) => TaskHandle::Uring(ex.spawn_blocking(f)),
            Executor::Fd(ex) => TaskHandle::Fd(ex.spawn_blocking(f)),
        }
    }

    /// Run the executor indefinitely, driving all spawned futures to completion. This method will
    /// block the current thread and only return in the case of an error.
    ///
    /// # Panics
    ///
    /// Once this method has been called on a thread, it may only be called on that thread from that
    /// point on. Attempting to call it from another thread will panic.
    ///
    /// # Examples
    ///
    /// ```
    /// # use cros_async::AsyncResult;
    /// # fn example_run() -> AsyncResult<()> {
    ///       use std::thread;
    ///
    ///       use cros_async::Executor;
    ///       use futures::executor::block_on;
    ///
    ///       let ex = Executor::new()?;
    ///
    ///       // Spawn a thread that runs the executor.
    ///       let ex2 = ex.clone();
    ///       thread::spawn(move || ex2.run());
    ///
    ///       let task = ex.spawn(async { 7 + 13 });
    ///
    ///       let result = block_on(task);
    ///       assert_eq!(result, 20);
    /// #     Ok(())
    /// # }
    ///
    /// # example_run().unwrap();
    /// ```
    pub fn run(&self) -> AsyncResult<()> {
        self.run_until(std::future::pending())
    }

    /// Drive all futures spawned in this executor until `f` completes. This method will block the
    /// current thread only until `f` is complete and there may still be unfinished futures in the
    /// executor.
    ///
    /// # Panics
    ///
    /// Once this method has been called on a thread, from then onwards it may only be called on
    /// that thread. Attempting to call it from another thread will panic.
    ///
    /// # Examples
    ///
    /// ```
    /// # use cros_async::AsyncResult;
    /// # fn example_run_until() -> AsyncResult<()> {
    ///       use cros_async::Executor;
    ///
    ///       let ex = Executor::new()?;
    ///
    ///       let task = ex.spawn_local(async { 7 + 13 });
    ///
    ///       let result = ex.run_until(task)?;
    ///       assert_eq!(result, 20);
    /// #     Ok(())
    /// # }
    ///
    /// # example_run_until().unwrap();
    /// ```
    pub fn run_until<F: Future>(&self, f: F) -> AsyncResult<F::Output> {
        match self {
            Executor::Uring(ex) => Ok(ex.run_until(f)?),
            Executor::Fd(ex) => Ok(ex.run_until(f)?),
        }
    }
}

impl AsRawDescriptors for Executor {
    fn as_raw_descriptors(&self) -> Vec<RawDescriptor> {
        match self {
            Executor::Uring(ex) => ex.as_raw_descriptors(),
            Executor::Fd(ex) => ex.as_raw_descriptors(),
        }
    }
}