1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
// Copyright 2017 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use std::cmp::Ordering;
use std::convert::TryFrom;
use std::io;
use std::mem;
use std::ops::Deref;
use std::ops::DerefMut;
use std::os::unix::thread::JoinHandleExt;
use std::process::Child;
use std::ptr::null;
use std::ptr::null_mut;
use std::result;
use std::thread::JoinHandle;
use std::time::Duration;
use std::time::Instant;

use libc::c_int;
use libc::pthread_kill;
use libc::pthread_sigmask;
use libc::pthread_t;
use libc::sigaction;
use libc::sigaddset;
use libc::sigemptyset;
use libc::siginfo_t;
use libc::sigismember;
use libc::sigpending;
use libc::sigset_t;
use libc::sigtimedwait;
use libc::sigwait;
use libc::timespec;
use libc::waitpid;
use libc::EAGAIN;
use libc::EINTR;
use libc::EINVAL;
use libc::SA_RESTART;
use libc::SIG_BLOCK;
use libc::SIG_DFL;
use libc::SIG_UNBLOCK;
use libc::WNOHANG;
use remain::sorted;
use thiserror::Error;

use super::duration_to_timespec;
use super::errno_result;
use super::getsid;
use super::Error as ErrnoError;
use super::Pid;
use super::Result;

const POLL_RATE: Duration = Duration::from_millis(50);
const DEFAULT_KILL_TIMEOUT: Duration = Duration::from_secs(5);

#[sorted]
#[derive(Error, Debug)]
pub enum Error {
    /// The signal could not be blocked.
    #[error("signal could not be blocked: {0}")]
    BlockSignal(ErrnoError),
    /// Failed to check if given signal is in the set of pending signals.
    #[error("failed to check whether given signal is in the pending set: {0}")]
    ClearCheckPending(ErrnoError),
    /// Failed to get pending signals.
    #[error("failed to get pending signals: {0}")]
    ClearGetPending(ErrnoError),
    /// Failed to wait for given signal.
    #[error("failed to wait for given signal: {0}")]
    ClearWaitPending(ErrnoError),
    /// Failed to check if the requested signal is in the blocked set already.
    #[error("failed to check whether requested signal is in the blocked set: {0}")]
    CompareBlockedSignals(ErrnoError),
    /// Couldn't create a sigset.
    #[error("couldn't create a sigset: {0}")]
    CreateSigset(ErrnoError),
    /// Failed to get session id.
    #[error("failed to get session id: {0}")]
    GetSid(ErrnoError),
    /// Failed to send signal to pid.
    #[error("failed to send signal: {0}")]
    Kill(ErrnoError),
    /// The signal mask could not be retrieved.
    #[error("failed to retrieve signal mask: {}", io::Error::from_raw_os_error(*.0))]
    RetrieveSignalMask(i32),
    /// Converted signum greater than SIGRTMAX.
    #[error("got RT signal greater than max: {0:?}")]
    RtSignumGreaterThanMax(Signal),
    /// The wrapped signal has already been blocked.
    #[error("signal {0} already blocked")]
    SignalAlreadyBlocked(c_int),
    /// Timeout reached.
    #[error("timeout reached.")]
    TimedOut,
    /// The signal could not be unblocked.
    #[error("signal could not be unblocked: {0}")]
    UnblockSignal(ErrnoError),
    /// Failed to convert signum to Signal.
    #[error("unrecoginized signal number: {0}")]
    UnrecognizedSignum(i32),
    /// Failed to wait for signal.
    #[error("failed to wait for signal: {0}")]
    WaitForSignal(ErrnoError),
    /// Failed to wait for pid.
    #[error("failed to wait for process: {0}")]
    WaitPid(ErrnoError),
}

#[derive(Clone, Copy, Debug, Eq, PartialEq)]
#[repr(i32)]
pub enum Signal {
    Abort = libc::SIGABRT,
    Alarm = libc::SIGALRM,
    Bus = libc::SIGBUS,
    Child = libc::SIGCHLD,
    Continue = libc::SIGCONT,
    ExceededFileSize = libc::SIGXFSZ,
    FloatingPointException = libc::SIGFPE,
    HangUp = libc::SIGHUP,
    IllegalInstruction = libc::SIGILL,
    Interrupt = libc::SIGINT,
    Io = libc::SIGIO,
    Kill = libc::SIGKILL,
    Pipe = libc::SIGPIPE,
    Power = libc::SIGPWR,
    Profile = libc::SIGPROF,
    Quit = libc::SIGQUIT,
    SegmentationViolation = libc::SIGSEGV,
    StackFault = libc::SIGSTKFLT,
    Stop = libc::SIGSTOP,
    Sys = libc::SIGSYS,
    Trap = libc::SIGTRAP,
    Terminate = libc::SIGTERM,
    TtyIn = libc::SIGTTIN,
    TtyOut = libc::SIGTTOU,
    TtyStop = libc::SIGTSTP,
    Urgent = libc::SIGURG,
    User1 = libc::SIGUSR1,
    User2 = libc::SIGUSR2,
    VtAlarm = libc::SIGVTALRM,
    Winch = libc::SIGWINCH,
    Xcpu = libc::SIGXCPU,
    // Rt signal numbers are be adjusted in the conversion to integer.
    Rt0 = libc::SIGSYS + 1,
    Rt1,
    Rt2,
    Rt3,
    Rt4,
    Rt5,
    Rt6,
    Rt7,
    // Only 8 are guaranteed by POSIX, Linux has 32, but only 29 or 30 are usable.
    Rt8,
    Rt9,
    Rt10,
    Rt11,
    Rt12,
    Rt13,
    Rt14,
    Rt15,
    Rt16,
    Rt17,
    Rt18,
    Rt19,
    Rt20,
    Rt21,
    Rt22,
    Rt23,
    Rt24,
    Rt25,
    Rt26,
    Rt27,
    Rt28,
    Rt29,
    Rt30,
    Rt31,
}

impl From<Signal> for c_int {
    fn from(signal: Signal) -> c_int {
        let num = signal as libc::c_int;
        if num >= Signal::Rt0 as libc::c_int {
            return num - (Signal::Rt0 as libc::c_int) + SIGRTMIN();
        }
        num
    }
}

impl TryFrom<c_int> for Signal {
    type Error = Error;

    fn try_from(value: c_int) -> result::Result<Self, Self::Error> {
        use Signal::*;

        Ok(match value {
            libc::SIGABRT => Abort,
            libc::SIGALRM => Alarm,
            libc::SIGBUS => Bus,
            libc::SIGCHLD => Child,
            libc::SIGCONT => Continue,
            libc::SIGXFSZ => ExceededFileSize,
            libc::SIGFPE => FloatingPointException,
            libc::SIGHUP => HangUp,
            libc::SIGILL => IllegalInstruction,
            libc::SIGINT => Interrupt,
            libc::SIGIO => Io,
            libc::SIGKILL => Kill,
            libc::SIGPIPE => Pipe,
            libc::SIGPWR => Power,
            libc::SIGPROF => Profile,
            libc::SIGQUIT => Quit,
            libc::SIGSEGV => SegmentationViolation,
            libc::SIGSTKFLT => StackFault,
            libc::SIGSTOP => Stop,
            libc::SIGSYS => Sys,
            libc::SIGTRAP => Trap,
            libc::SIGTERM => Terminate,
            libc::SIGTTIN => TtyIn,
            libc::SIGTTOU => TtyOut,
            libc::SIGTSTP => TtyStop,
            libc::SIGURG => Urgent,
            libc::SIGUSR1 => User1,
            libc::SIGUSR2 => User2,
            libc::SIGVTALRM => VtAlarm,
            libc::SIGWINCH => Winch,
            libc::SIGXCPU => Xcpu,
            _ => {
                if value < SIGRTMIN() {
                    return Err(Error::UnrecognizedSignum(value));
                }
                let signal = match value - SIGRTMIN() {
                    0 => Rt0,
                    1 => Rt1,
                    2 => Rt2,
                    3 => Rt3,
                    4 => Rt4,
                    5 => Rt5,
                    6 => Rt6,
                    7 => Rt7,
                    8 => Rt8,
                    9 => Rt9,
                    10 => Rt10,
                    11 => Rt11,
                    12 => Rt12,
                    13 => Rt13,
                    14 => Rt14,
                    15 => Rt15,
                    16 => Rt16,
                    17 => Rt17,
                    18 => Rt18,
                    19 => Rt19,
                    20 => Rt20,
                    21 => Rt21,
                    22 => Rt22,
                    23 => Rt23,
                    24 => Rt24,
                    25 => Rt25,
                    26 => Rt26,
                    27 => Rt27,
                    28 => Rt28,
                    29 => Rt29,
                    30 => Rt30,
                    31 => Rt31,
                    _ => {
                        return Err(Error::UnrecognizedSignum(value));
                    }
                };
                if value > SIGRTMAX() {
                    return Err(Error::RtSignumGreaterThanMax(signal));
                }
                signal
            }
        })
    }
}

pub type SignalResult<T> = result::Result<T, Error>;

#[link(name = "c")]
extern "C" {
    fn __libc_current_sigrtmin() -> c_int;
    fn __libc_current_sigrtmax() -> c_int;
}

/// Returns the minimum (inclusive) real-time signal number.
#[allow(non_snake_case)]
pub fn SIGRTMIN() -> c_int {
    unsafe { __libc_current_sigrtmin() }
}

/// Returns the maximum (inclusive) real-time signal number.
#[allow(non_snake_case)]
pub fn SIGRTMAX() -> c_int {
    unsafe { __libc_current_sigrtmax() }
}

fn valid_rt_signal_num(num: c_int) -> bool {
    num >= SIGRTMIN() && num <= SIGRTMAX()
}

/// Registers `handler` as the signal handler of signum `num`.
///
/// # Safety
///
/// This is considered unsafe because the given handler will be called asynchronously, interrupting
/// whatever the thread was doing and therefore must only do async-signal-safe operations.
pub unsafe fn register_signal_handler(num: c_int, handler: extern "C" fn(c_int)) -> Result<()> {
    let mut sigact: sigaction = mem::zeroed();
    sigact.sa_flags = SA_RESTART;
    sigact.sa_sigaction = handler as *const () as usize;

    let ret = sigaction(num, &sigact, null_mut());
    if ret < 0 {
        return errno_result();
    }

    Ok(())
}

/// Resets the signal handler of signum `num` back to the default.
pub fn clear_signal_handler(num: c_int) -> Result<()> {
    // Safe because sigaction is owned and expected to be initialized ot zeros.
    let mut sigact: sigaction = unsafe { mem::zeroed() };
    sigact.sa_flags = SA_RESTART;
    sigact.sa_sigaction = SIG_DFL;

    // Safe because sigact is owned, and this is restoring the default signal handler.
    let ret = unsafe { sigaction(num, &sigact, null_mut()) };
    if ret < 0 {
        return errno_result();
    }

    Ok(())
}

/// Returns true if the signal handler for signum `num` is the default.
pub fn has_default_signal_handler(num: c_int) -> Result<bool> {
    // Safe because sigaction is owned and expected to be initialized ot zeros.
    let mut sigact: sigaction = unsafe { mem::zeroed() };

    // Safe because sigact is owned, and this is just querying the existing state.
    let ret = unsafe { sigaction(num, null(), &mut sigact) };
    if ret < 0 {
        return errno_result();
    }

    Ok(sigact.sa_sigaction == SIG_DFL)
}

/// Registers `handler` as the signal handler for the real-time signal with signum `num`.
///
/// The value of `num` must be within [`SIGRTMIN`, `SIGRTMAX`] range.
///
/// # Safety
///
/// This is considered unsafe because the given handler will be called asynchronously, interrupting
/// whatever the thread was doing and therefore must only do async-signal-safe operations.
pub unsafe fn register_rt_signal_handler(num: c_int, handler: extern "C" fn(c_int)) -> Result<()> {
    if !valid_rt_signal_num(num) {
        return Err(ErrnoError::new(EINVAL));
    }

    register_signal_handler(num, handler)
}

/// Creates `sigset` from an array of signal numbers.
///
/// This is a helper function used when we want to manipulate signals.
pub fn create_sigset(signals: &[c_int]) -> Result<sigset_t> {
    // sigset will actually be initialized by sigemptyset below.
    let mut sigset: sigset_t = unsafe { mem::zeroed() };

    // Safe - return value is checked.
    let ret = unsafe { sigemptyset(&mut sigset) };
    if ret < 0 {
        return errno_result();
    }

    for signal in signals {
        // Safe - return value is checked.
        let ret = unsafe { sigaddset(&mut sigset, *signal) };
        if ret < 0 {
            return errno_result();
        }
    }

    Ok(sigset)
}

/// Wait for signal before continuing. The signal number of the consumed signal is returned on
/// success. EAGAIN means the timeout was reached.
pub fn wait_for_signal(signals: &[c_int], timeout: Option<Duration>) -> Result<c_int> {
    let sigset = create_sigset(signals)?;

    match timeout {
        Some(timeout) => {
            let ts = duration_to_timespec(timeout);
            // Safe - return value is checked.
            let ret = handle_eintr_errno!(unsafe { sigtimedwait(&sigset, null_mut(), &ts) });
            if ret < 0 {
                errno_result()
            } else {
                Ok(ret)
            }
        }
        None => {
            let mut ret: c_int = 0;
            let err = handle_eintr_rc!(unsafe { sigwait(&sigset, &mut ret as *mut c_int) });
            if err != 0 {
                Err(ErrnoError::new(err))
            } else {
                Ok(ret)
            }
        }
    }
}

/// Retrieves the signal mask of the current thread as a vector of c_ints.
pub fn get_blocked_signals() -> SignalResult<Vec<c_int>> {
    let mut mask = Vec::new();

    // Safe - return values are checked.
    unsafe {
        let mut old_sigset: sigset_t = mem::zeroed();
        let ret = pthread_sigmask(SIG_BLOCK, null(), &mut old_sigset as *mut sigset_t);
        if ret < 0 {
            return Err(Error::RetrieveSignalMask(ret));
        }

        for num in 0..=SIGRTMAX() {
            if sigismember(&old_sigset, num) > 0 {
                mask.push(num);
            }
        }
    }

    Ok(mask)
}

/// Masks given signal.
///
/// If signal is already blocked the call will fail with Error::SignalAlreadyBlocked
/// result.
pub fn block_signal(num: c_int) -> SignalResult<()> {
    let sigset = create_sigset(&[num]).map_err(Error::CreateSigset)?;

    // Safe - return values are checked.
    unsafe {
        let mut old_sigset: sigset_t = mem::zeroed();
        let ret = pthread_sigmask(SIG_BLOCK, &sigset, &mut old_sigset as *mut sigset_t);
        if ret < 0 {
            return Err(Error::BlockSignal(ErrnoError::last()));
        }
        let ret = sigismember(&old_sigset, num);
        match ret.cmp(&0) {
            Ordering::Less => {
                return Err(Error::CompareBlockedSignals(ErrnoError::last()));
            }
            Ordering::Greater => {
                return Err(Error::SignalAlreadyBlocked(num));
            }
            _ => (),
        };
    }
    Ok(())
}

/// Unmasks given signal.
pub fn unblock_signal(num: c_int) -> SignalResult<()> {
    let sigset = create_sigset(&[num]).map_err(Error::CreateSigset)?;

    // Safe - return value is checked.
    let ret = unsafe { pthread_sigmask(SIG_UNBLOCK, &sigset, null_mut()) };
    if ret < 0 {
        return Err(Error::UnblockSignal(ErrnoError::last()));
    }
    Ok(())
}

/// Clears pending signal.
pub fn clear_signal(num: c_int) -> SignalResult<()> {
    let sigset = create_sigset(&[num]).map_err(Error::CreateSigset)?;

    while {
        // This is safe as we are rigorously checking return values
        // of libc calls.
        unsafe {
            let mut siginfo: siginfo_t = mem::zeroed();
            let ts = timespec {
                tv_sec: 0,
                tv_nsec: 0,
            };
            // Attempt to consume one instance of pending signal. If signal
            // is not pending, the call will fail with EAGAIN or EINTR.
            let ret = sigtimedwait(&sigset, &mut siginfo, &ts);
            if ret < 0 {
                let e = ErrnoError::last();
                match e.errno() {
                    EAGAIN | EINTR => {}
                    _ => {
                        return Err(Error::ClearWaitPending(ErrnoError::last()));
                    }
                }
            }

            // This sigset will be actually filled with `sigpending` call.
            let mut chkset: sigset_t = mem::zeroed();
            // See if more instances of the signal are pending.
            let ret = sigpending(&mut chkset);
            if ret < 0 {
                return Err(Error::ClearGetPending(ErrnoError::last()));
            }

            let ret = sigismember(&chkset, num);
            if ret < 0 {
                return Err(Error::ClearCheckPending(ErrnoError::last()));
            }

            // This is do-while loop condition.
            ret != 0
        }
    } {}

    Ok(())
}

/// # Safety
/// This is marked unsafe because it allows signals to be sent to arbitrary PIDs. Sending some
/// signals may lead to undefined behavior. Also, the return codes of the child processes need to be
/// reaped to avoid leaking zombie processes.
pub unsafe fn kill(pid: Pid, signum: c_int) -> Result<()> {
    let ret = libc::kill(pid, signum);

    if ret != 0 {
        errno_result()
    } else {
        Ok(())
    }
}

/// Trait for threads that can be signalled via `pthread_kill`.
///
/// Note that this is only useful for signals between SIGRTMIN and SIGRTMAX because these are
/// guaranteed to not be used by the C runtime.
///
/// # Safety
/// This is marked unsafe because the implementation of this trait must guarantee that the returned
/// pthread_t is valid and has a lifetime at least that of the trait object.
pub unsafe trait Killable {
    fn pthread_handle(&self) -> pthread_t;

    /// Sends the signal `num` to this killable thread.
    ///
    /// The value of `num` must be within [`SIGRTMIN`, `SIGRTMAX`] range.
    fn kill(&self, num: c_int) -> Result<()> {
        if !valid_rt_signal_num(num) {
            return Err(ErrnoError::new(EINVAL));
        }

        // Safe because we ensure we are using a valid pthread handle, a valid signal number, and
        // check the return result.
        let ret = unsafe { pthread_kill(self.pthread_handle(), num) };
        if ret < 0 {
            return errno_result();
        }
        Ok(())
    }
}

// Safe because we fulfill our contract of returning a genuine pthread handle.
unsafe impl<T> Killable for JoinHandle<T> {
    fn pthread_handle(&self) -> pthread_t {
        self.as_pthread_t() as _
    }
}

/// Treat some errno's as Ok(()).
macro_rules! ok_if {
    ($result:expr, $errno:pat) => {{
        match $result {
            Err(err) if !matches!(err.errno(), $errno) => Err(err),
            _ => Ok(()),
        }
    }};
}

/// Terminates and reaps a child process. If the child process is a group leader, its children will
/// be terminated and reaped as well. After the given timeout, the child process and any relevant
/// children are killed (i.e. sent SIGKILL).
pub fn kill_tree(child: &mut Child, terminate_timeout: Duration) -> SignalResult<()> {
    let target = {
        let pid = child.id() as Pid;
        if getsid(Some(pid)).map_err(Error::GetSid)? == pid {
            -pid
        } else {
            pid
        }
    };

    // Safe because target is a child process (or group) and behavior of SIGTERM is defined.
    ok_if!(unsafe { kill(target, libc::SIGTERM) }, libc::ESRCH).map_err(Error::Kill)?;

    // Reap the direct child first in case it waits for its descendants, afterward reap any
    // remaining group members.
    let start = Instant::now();
    let mut child_running = true;
    loop {
        // Wait for the direct child to exit before reaping any process group members.
        if child_running {
            if child
                .try_wait()
                .map_err(|e| Error::WaitPid(ErrnoError::from(e)))?
                .is_some()
            {
                child_running = false;
                // Skip the timeout check because waitpid(..., WNOHANG) will not block.
                continue;
            }
        } else {
            // Safe because target is a child process (or group), WNOHANG is used, and the return
            // value is checked.
            let ret = unsafe { waitpid(target, null_mut(), WNOHANG) };
            match ret {
                -1 => {
                    let err = ErrnoError::last();
                    if err.errno() == libc::ECHILD {
                        // No group members to wait on.
                        break;
                    }
                    return Err(Error::WaitPid(err));
                }
                0 => {}
                // If a process was reaped, skip the timeout check in case there are more.
                _ => continue,
            };
        }

        // Check for a timeout.
        let elapsed = start.elapsed();
        if elapsed > terminate_timeout {
            // Safe because target is a child process (or group) and behavior of SIGKILL is defined.
            ok_if!(unsafe { kill(target, libc::SIGKILL) }, libc::ESRCH).map_err(Error::Kill)?;
            return Err(Error::TimedOut);
        }

        // Wait a SIGCHLD or until either the remaining time or a poll interval elapses.
        ok_if!(
            wait_for_signal(
                &[libc::SIGCHLD],
                Some(POLL_RATE.min(terminate_timeout - elapsed))
            ),
            libc::EAGAIN | libc::EINTR
        )
        .map_err(Error::WaitForSignal)?
    }

    Ok(())
}

/// Wraps a Child process, and calls kill_tree for its process group to clean
/// it up when dropped.
pub struct KillOnDrop {
    process: Child,
    timeout: Duration,
}

impl KillOnDrop {
    /// Get the timeout. See timeout_mut() for more details.
    pub fn timeout(&self) -> Duration {
        self.timeout
    }

    /// Change the timeout for how long child processes are waited for before
    /// the process group is forcibly killed.
    pub fn timeout_mut(&mut self) -> &mut Duration {
        &mut self.timeout
    }
}

impl From<Child> for KillOnDrop {
    fn from(process: Child) -> Self {
        KillOnDrop {
            process,
            timeout: DEFAULT_KILL_TIMEOUT,
        }
    }
}

impl AsRef<Child> for KillOnDrop {
    fn as_ref(&self) -> &Child {
        &self.process
    }
}

impl AsMut<Child> for KillOnDrop {
    fn as_mut(&mut self) -> &mut Child {
        &mut self.process
    }
}

impl Deref for KillOnDrop {
    type Target = Child;

    fn deref(&self) -> &Self::Target {
        &self.process
    }
}

impl DerefMut for KillOnDrop {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.process
    }
}

impl Drop for KillOnDrop {
    fn drop(&mut self) {
        if let Err(err) = kill_tree(&mut self.process, self.timeout) {
            eprintln!("failed to kill child process group: {}", err);
        }
    }
}

// Represents a temporarily blocked signal. It will unblock the signal when dropped.
pub struct BlockedSignal {
    signal_num: c_int,
}

impl BlockedSignal {
    // Returns a `BlockedSignal` if the specified signal can be blocked, otherwise None.
    pub fn new(signal_num: c_int) -> Option<BlockedSignal> {
        if block_signal(signal_num).is_ok() {
            Some(BlockedSignal { signal_num })
        } else {
            None
        }
    }
}

impl Drop for BlockedSignal {
    fn drop(&mut self) {
        unblock_signal(self.signal_num).expect("failed to restore signal mask");
    }
}